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Abstract We ask if it is possible to find some particular continuous paths of unit
length in linear Brownian motion. Beginning with a discrete version of the problem,
we derive the asymptotics of the expected waiting time for several interesting
patterns. These suggest corresponding results on the existence/non-existence of
continuous paths embedded in Brownian motion. With further effort we are able
to prove some of these existence and non-existence results by various stochastic
analysis arguments. A list of open problems is presented.
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1 Introduction and Main Results

We are interested in the question of embedding some continuous-time stochastic
processes .Zu; 0 � u � 1/ into a Brownian path .BtI t � 0/, without time-change or
scaling, just by a random translation of origin in spacetime. More precisely, we ask
the following:

Question 1 Given some distribution of a process Z with continuous paths, does
there exist a random time T such that .BTCu � BT I 0 � u � 1/ has the same
distribution as .Zu; 0 � u � 1/?

The question of whether external randomization is allowed to construct such a
random time T, is of no importance here. In fact, we can simply ignore Brownian
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motion on Œ0; 1�, and consider only random times T � 1. Then .BtI 0 � t � 1/

provides an independent random element which is adequate for any randomization,
see e.g. Kallenberg [40, Theorem 6:10].

Note that a continuous-time process whose sample paths have different regu-
larity, e.g. fractional Brownian motion with Hurst parameter H ¤ 1

2
, cannot be

embedded into Brownian motion. Given .BtI t � 0/ standard Brownian motion, we
define g1 WD supft < 1I Bt D 0g the time of last exit from 0 before t D 1, and
d1 WD infft > 1I Bt D 0g the first hitting time of 0 after t D 1. The following
processes, derived from Brownian motion, are of special interest.

• Brownian bridge, which can be defined by

�
b0

u WD 1p
g1

Bug1 I 0 � u � 1

�
;

and its reflected counterpart .jb0
ujI 0 � u � 1/.

• Normalized Brownian excursion defined by

�
eu WD 1p

d1 � g1

jBg1Cu.d1�g1/jI 0 � u � 1

�
:

• Brownian meander defined as
�

mu WD 1p
1 � g1

jBg1Cu.1�g1/jI 0 � u � 1

�
:

• Brownian co-meander defined as
�

Qmu WD 1p
d1 � 1

jBd1�u.d1�1/jI 0 � u � 1

�
:

• The three-dimensional Bessel process

�
Ru WD

q
.Bu/2 C .B0

u/2 C .B00

u /2I 0 � u � 1

�
;

where .B0
tI t � 0/ and .B

00

u I u � 0/ are two independent copies of .BtI t � 0/.
• The first passage bridge through level � ¤ 0, defined by

.F�;br
u I 0 � u � 1/

.d/D .BuI 0 � u � 1/ conditioned on �� D 1;

where �� WD infft � 0I Bt D �g is the first time at which Brownian motion hits

� ¤ 0. Note that for � < 0, .Fj�j;br
u I 0 � u � 1/

.d/D .�F�;br
u I 0 � u � 1/; and

.F�;br
1�u C j�jI 0 � u � 1/ is distributed as three dimensional Bessel bridge ending

at j�j > 0, see e.g. Biane and Yor [10].
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• The Vervaat transform of Brownian motion, defined as

�
Vu WD

�
B�Cu � B� for 0 � u � 1 � �

B��1Cu C B1 � B� for 1 � � � u � 1
I 0 � u � 1

�
;

where � WD argmin0�t�1Bt, and the Vervaat transform of Brownian bridge with
endpoint � 2 R

�
V�

u WD
�

b�
�Cu � b�

� for 0 � u � 1 � �

b�
��1Cu C � � b�

� for 1 � � � u � 1
I 0 � u � 1

�
;

where .b�
u I 0 � u � 1/ is Brownian bridge ending at � 2 R and � WD

argmin0�t�1b�
t . It was proved by Vervaat [85] that .V0

u I 0 � u � 1/
.d/D

.euI 0 � u � 1/. For � < 0, .V j�j
u I 0 � u � 1/ has the same distribution as

.V�
1�u C j�jI 0 � u � 1/.

The Brownian bridge, meander, excursion and the three-dimensional Bessel
process are well-known. The definition of the co-meander is found in Yen and
Yor [91, Chap. 7]. The first passage bridge is studied by Bertoin et al. [8]. The
Vervaat transform of Brownian bridges and of Brownian motion are extensively
discussed in Lupu et al. [56]. According to the above definitions, the distributions of
the Brownian bridge, excursion and (co-)meander can all be achieved in Brownian
motion provided some Brownian scaling operation is allowed. Note that the
distributions of all these processes are singular with respect to Wiener measure. So
it is a non-trivial question whether copies of them can be found in Brownian motion
just by a shift of origin in spacetime. Otherwise, for a process .Zt; 0 � t � 1/ whose
distribution is absolutely continuous with respect to that of .Bt; 0 � t � 1/, for
instance the Brownian motion with drift Zt WD # t C Bt for a fixed # , the distribution
of Z can be easily obtained as that of .BTCt � BT ; 0 � t � 1/ for a suitable
stopping time T C 1 by Rost’s filling scheme. We refer readers to Sect. 3.5 for
further development.

The question raised here has some affinity to the question of embedding a given
one-dimensional distribution as the distribution of BT for a random time T. This
Skorokhod embedding problem traces back to Skorokhod [80] and Dubins [24]–
who found integrable stopping times T such that the distribution of BT coincides
with any prescribed one with zero mean and finite second moment. Monroe [64, 65]
considered embedding of a continuous-time process into Brownian motion, and
showed that every semi-martingale is a time-changed Brownian motion. Rost [76]
studied the problem of embedding a one-dimensional distribution in a Markov
process with randomized stopping times. We refer readers to the excellent survey
of Obloj [69] and references therein. Let Xt WD .BtCu � BtI 0 � u � 1/ for t � 0 be
the moving-window process associated to Brownian motion. In Question 1, we are
concerned with the possibility of embedding a given distribution on CŒ0; 1� as that
of XT for some random time T.
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Let us present the main results of the paper. We start with a list of continuous-
time processes that cannot be embedded into Brownian motion by a shift of origin
in spacetime.

Theorem 1 (Impossibility of Embedding of Normalized Excursion, Reflected
Bridge, Vervaat Transform of Brownian Motion, First Passage Bridge and
Vervaat Bridge) For each of the following five processes Z WD .ZuI 0 � u � 1/,
there is no random time T such that .BTCu � BT I 0 � u � 1/ has the same
distribution as Z:

1. the normalized Brownian excursion Z D .euI 0 � u � 1/;
2. the reflected Brownian bridge Z D .jb0

ujI 0 � u � 1/;
3. the Vervaat transform of Brownian motion Z D .VuI 0 � u � 1/;
4. the first passage bridge through level � ¤ 0, Z D .F�;br

u I 0 � u � 1/;
5. the Vervaat transform of Brownian bridge with endpoint � 2 R, Z=.V�

u I 0 �
u � 1/.

Note that in Theorem 1(4), (5), it suffices to consider the case of � < 0 by time-
reversal. As we will see later in Theorem 4, Theorem 1 is an immediate consequence
of the fact that typical paths of these processes cannot be found in Brownian motion.
The next theorem shows the possibility of embedding into Brownian motion some
continuous-time processes whose distributions are singular with respect to Wiener
measure.

Theorem 2 (Embeddings of Meander, Co-meander and 3-d Bessel Process) For
each of the following three processes Z WD .Zu; 0 � u � 1/ there is some random
time T such that .BTCu � BT I 0 � u � 1/ has the same distribution as Z:

1. the meander Z D .muI 0 � u � 1/.
2. the co-meander Z D . QmuI 0 � u � 1/.
3. the three-dimensional Bessel process Z D .RuI 0 � u � 1/.

The problem of embedding Brownian bridge b0 into Brownian motion is treated
in a subsequent work of Pitman and Tang [73]. Since the proof relies heavily on
Palm theory of stationary random measures, we prefer not to include it in the current
work.

Theorem 3 ([73]) There exists a random time T � 0 such that .BTCu � BT I 0 �
u � 1/ has the same distribution as .b0

uI 0 � u � 1/.

In Question 1, we seek to embed a particular continuous-time process Z of unit
length into a Brownian path. The distribution of X resides in the infinite-dimensional
space C0Œ0; 1� of continuous paths .w.t/I 0 � t � 1/ starting from w.0/ D 0. So
a closely related problem is whether a given subset of C0Œ0; 1� is hit by the path-
valued moving-window process Xt WD .BtCu � BtI 0 � u � 1/ indexed by t � 0. We
formulate this problem as follows.

Question 2 Given a Borel measurable subset S � C0Œ0; 1�, can we find a random
time T such that XT WD .BTCu � BT I 0 � u � 1/ 2 S with probability one?
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Question 2 involves scanning for patterns in a continuous-time process. By
the general theory of stochastic processes, assuming that the underlying Brownian
motion B is defined on a complete probability space, f9T � 0 such that .BTCu �
BT I 0 � u � 1/ 2 Sg is measurable. See e.g. Dellacherie [20, T32, Chap. I], Meyer
and Dellacherie [21, Sect. 44, Chap. III], and Bass [2, 3]. Assume that

P.9T � 0 such that .BTCu � BT I 0 � u � 1/ 2 S/ > 0:

Then there exists some fixed M > 0 and p > 0 such that

P.9T W 0 � T � M and .BTCu � BT I 0 � u � 1/ 2 S/ D p > 0:

We start the process afresh at M C 1, and then also

P.9T W M C 1 � T � 2M C 1 and .BTCu � BT I 0 � u � 1/ 2 S/ D p > 0:

By repeating the above procedure, we obtain a sequence of i.i.d. Bernoulli.p/

random variables. Therefore, the probability that a given measurable set S � C0Œ0; 1�

is hit by the path-valued process generated by Brownian motion is either 0 or 1:

PŒ9T � 0 such that .BTCu � BT I 0 � u � 1/ 2 S� D 0 or 1: (1)

Using various stochastic analysis tools, we are able to show that

Theorem 4 (Impossibility of Embedding of Excursion, Reflected Bridge, Ver-
vaat Transform of Brownian Motion, First Passage Bridge and Vervaat Bridge
Paths) For each of the following five sets of paths S, almost surely, there is no
random time T � 0 such that .BTCu � BT I 0 � u � 1/ 2 S:

1. the set of excursion paths, which first return to 0 at time 1,

S D E WD fw 2 C0Œ0; 1�I w.t/ > w.1/ D 0 for 0 < t < 1gI

2. the set of reflected bridge paths,

S D RBR0 WD fw 2 C0Œ0; 1�I w.t/ � w.1/ D 0 for 0 � t � 1gI

3. the set of paths of Vervaat transform of Brownian motion with a floating negative
endpoint,

S D VB� WD fw 2 C0Œ0; 1�I w.t/ > w.1/ for 0 � t < 1 and infft > 0I w.t/ < 0g > 0gI

4. the set of first passage bridge paths at fixed level � < 0,

S D FP� WD fw 2 C0Œ0; 1�I w.t/ > w.1/ D � for 0 � t < 1gI
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5. the set of Vervaat bridge paths ending at fixed level � < 0,

S D VB� WD fw 2 FP�I infft > 0I w.t/ < 0g > 0g D fw 2 VB�I w.1/ D �g:

Observe that for each � < 0, VB� is a subset of VB� and FP�. Then
Theorem 4(5) follows immediately from Theorem 4(3) or (4). As we will see in
Sect. 3.1, Theorem 4(5) is also reminiscent of Theorem 4(1) in the proof.

It is obvious that for the following two sets of paths S, almost surely, there is a
random time T � 0 such that .BTCu � BT I 0 � u � 1/ 2 S almost surely:

• the set of positive paths,

S D M WD fw 2 C0Œ0; 1�I w.t/ > 0 for 0 < t � 1gI

• the set of bridge paths, which ends at � 2 R,

S D BR� WD fw 2 C0Œ0; 1�I w.1/ D �g:

The case of positive paths is easily treated by excursion theory, as discussed in
Sect. 3.5. Bridge paths are obtained by simply taking T WD infft > 0I BtC1 D Bt C
�g, see Pitman and Tang [73] for related discussion. In both cases, TC1 is a stopping
time relative to the Brownian filtration. For a general measurable S � C0Œ0; 1�, it is
easily shown that if there is a random time T such that .BTCu � BT I 0 � u � 1/ 2 S
almost surely, then for each � > 0 this can be achieved by a random time T such
that T C 1 C � is a stopping time relative to the Brownian filtration.

In the current work, we restrict ourselves to continuous paths in linear Brownian
motion. However, the problem is also worth considering in the multi-dimensional
case, as discussed briefly in Sect. 4.

At first glance, neither Question 1 nor Question 2 seems to be tractable. To gain
some intuition, we start by studying the analogous problem in the random walk
setting. We deal with simple symmetric random walks SW.n/ of length n with
increments ˙1 starting at 0. A typical question is how long it would take, in a
random walk, to observe a pattern in a collection of patterns of length n satisfying
some common properties. More precisely,

Question 3 Given for each n 2 N a collection An of patterns of length L.An/, what
is the asymptotics of the expected waiting time ET.An/ until some element of An

is observed in a random walk?

We are not aware of any previous study on pattern problems in which some
natural definition of the collection of patterns is made for each n 2 N. Nevertheless,
this question fits into the general theory of runs and patterns in a sequence of discrete
trials. This theory dates back to work in 1940s by Wald and Wolfowitz [87] and
Mood [66]. Since then, the subject has become important in various areas of science,
including industrial engineering, biology, economics and statistics. In the 1960s,
Feller [29] treated the problem probabilistically by identifying the occurrence of a
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single pattern as a renewal event. By the generating function method, the law of the
occurrence times of a single pattern is entirely characterized. More advanced study,
of the occurrence of patterns in a collection, developed in 1980s by two different
methods. Guibas and Odlyzko [37], and Breen et al. [12] followed the steps of
Feller [29] by studying the generating functions in pattern-overlapping regimes.
An alternative approach was adopted by Li [55], and Gerber and Li [34] using
martingale arguments. We also refer readers to the book of Fu and Lou [32] for
the Markov chain embedding approach for multi-state trials.

Techniques from the theory of patterns in i.i.d. sequences provide general
strategies to Question 3. Here we focus on some special cases where the asymptotics
of the expected waiting time is computable. As we will see later, these asymptotics
help us predict the existence or non-existence of some particular paths in Brownian
motion. The following result answers Question 3 in some particular cases.

Theorem 5 Let T.An/ be the waiting time until some pattern in An appears in the
simple random walk. Then

1. for the set of discrete positive excursions of length 2n, whose first return to 0

occurs at time 2n,

E2n WD fw 2 SW.2n/I w.i/ > 0 for 1 � i � 2n � 1 and w.2n/ D 0g;

we have

ET.E2n/ � 4
p

�n
3
2 I (2)

2. for the set of positive walks of length 2n C 1,

M2nC1 WD fw 2 SW.2n C 1/I w.i/ > 0 for 1 � i � 2n C 1g;

we have

ET.M2nC1/ � 4nI (3)

3. for the set of discrete bridges of length n, which end at �n for some � 2 R,
where �n WD Œ�

p
n� if Œ�

p
n� and n have the same parity, and �n WD Œ�

p
n� C 1

otherwise,

BR�;n WD fw 2 SW.n/I w.n/ D �ng;

we have

c�
BRn � ET.BR�;n/ � C�

BRn for some c�
BR and C�

BR > 0I (4)
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4. for the set of negative first passage walks of length n, ending at �n with � < 0,

FP�;n WD fw 2 SW.n/I w.i/ > w.n/ D �n for 0 � i � n � 1g;

we have

r
�

2�2
exp

�
�2

2

�
n � ET.FP�;n/ �

r
4

�
exp

�
�2

2

�
n

5
4 : (5)

Now we explain how the asymptotics in Theorem 5 suggest answers to Ques-
tion 1 and Question 2 in some cases. Formula (2) tells that it would take on average
n

3
2 � n steps to observe an excursion in a simple random walk. In view of the

usual scaling of random walks to converge to Brownian motion, the time scale
appears to be too large. Thus we should not expect to find the excursion paths E
in Brownian motion. However, in (3) and (4), the typical waiting time to observe
a positive walk or a bridge has the same order n involved in the time scaling for
convergence in distribution to Brownian motion. So we can anticipate to observe
the positive paths M and the bridge paths BR� in Brownian motion. Finally in (5),
there is an exponent gap in evaluating the expected waiting time for first passage
walks ending at �n � Œ�

p
n� with � < 0. In this case, we do not know whether

it would take asymptotically n steps or much longer to first observe such patterns.
This prevents us from predicting the existence of the first passage bridge paths FP�

in Brownian motion.
The scaling arguments used in the last paragraph are quite intuitive but not

rigorous since we are not aware of any theory which would justify the existence
or non-existence of continuous paths in Brownian motion by taking limits from the
discrete setting.

Organization of the Paper The rest of the paper is organized as follows.

• Section 2 treats the asymptotic behavior of the expected waiting time for discrete
patterns. There Theorem 5 is proved.

• Section 3 is devoted to the analysis of continuous paths/processes in Brownian
motion. Proofs of Theorems 2 and 4 are provided.

• Section 4 discusses the potential theory of continuous paths in Brownian motion.

A selection of open problems is presented in Sects. 2.5 and 4.

2 Expected Waiting Time for Discrete Patterns

Consider the expected waiting time for some collection of patterns

An 2 fE2n;M2nC1;BR�;n;FP�;ng
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as defined in the introduction, except that we now encode a simple walk with m steps
by its sequence of increments, with each increment a ˙1. We call such an increment
sequence a pattern of length m. For each of these collections An, all patterns in the
collection have a common length, say L.An/. We are interested in the asymptotic
behavior of ET.An/ as L.An/ ! 1.

We start by recalling the general strategy to compute the expected waiting
time for discrete patterns in a simple random walk. From now on, let An WD
fAn

1; � � � ; An
#An g, where An

i is a sequence of signs ˙1 for 1 � i � #An. That is,

An
i WD An

i1 � � � An
iL.An/; where An

ik D ˙1 for 1 � k � L.An/:

Let T.An
i / be the waiting time until the end of the first occurrence of An

i , and let
T.An/ be the waiting time until the first of the patterns in An is observed. So T.An/

is the minimum of the T.An
i / over 1 � i � #An.

Define the matching matrix M.An/, which accounts for the overlapping phe-
nomenon among patterns within the collection An. The coefficients are given by

M.An/ij WD
L.An/�1X

lD0

�l.An
i ; An

j /

2l
for 1 � i; j � #An; (6)

where �l.An
i ; An

j / is defined for An
i D An

i1 � � � An
iL.An/ and An

j D An
j1 � � � An

jL.An/ as

�l.A
n
i ; An

j / WD
(

1 if An
i1 D An

j1Cl; � � � ; An
iL.An/�l D An

jL.An/

0 otherwise;
(7)

for 0 � l � L.An/�1. Note that in general for i ¤ j, M.An/ij ¤ M.An/ji and hence
the matching matrix M.An/ is not necessarily symmetric. The following result,
which can be read from Breen et al. [12] is the main tool to study the expected
waiting time for the collection of patterns.

Theorem 6 ([12])

1. The matching matrix M.An/ is invertible and the expected waiting times for
patterns in An WD fAn

1; � � � ; An
#Ang are given by

�
1

ET.An
1/

; � � � ;
1

ET.An
#An /

�T

D 1

2n
M.An/�1 .1; � � � ; 1/T I (8)

2. The expected waiting time till one of the patterns in An is observed is given by

1

ET.An/
D

#AnX
lD1

1

ET.An
l /

D 1

2n
.1; � � � ; 1/M.An/�1.1; � � � ; 1/T : (9)
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In Sect. 2.1, we apply the previous theorem to obtain the expected waiting time
for discrete excursions E2n, i.e. (1) of Theorem 5. The same problem for positive
walks M2nC1, bridge paths BR0;2n and first passage walks FP�;n through �n �
�

p
n, i.e. (2)–(4) of Theorem 5, is studied in Sects. 2.2–2.4. Finally, we discuss the

problem of the exponent gap for some discrete patterns in Sect. 2.5.

2.1 Expected Waiting Time for Discrete Excursions

For n 2 N, the number of discrete excursions of length 2n is equal to the n � 1th
Catalan number, see e.g. Stanley [82, Exercise 6:19 (i)]. That is,

#E2n D 1

n

 
2n � 2

n � 1

!
� 1

4
p

�
22nn� 3

2 : (10)

Note that discrete excursions never overlap since the starting point and the
endpoint are the only two minima. We have then �.En

i ; En
j / D ıij for 1 � i; j � #E2n

by (7). Thus, the matching matrix defined as in (6) for discrete excursions E2n has
the simple form

M.E2n/ D I#E2n .#E2n 	 #E2n identity matrix/:

According to Theorem 6,

81 � i � #E2n; ET.En
i / D 22n and ET.En/ D 22n

#E2n
� 4

p
�n

3
2 ; (11)

where #E2n is given as in (10). This is (2). �

2.2 Expected Waiting Time for Positive Walks

Let n 2 N. It is well-known that the number of non-negative walks of length 2n C 1

is
�

2n
n

�
, see e.g. Larbarbe and Marckert [52] and Leeuwen [84] for modern proofs.

Thus the number of positive walks of length 2n C 1 is given by

#M2nC1 D
 

2n

n

!
� 1p

�
22nn� 1

2 : (12)

Note that a positive walk of length 2n C 1 is uniquely determined by

• its first 2n steps, which is a positive walk of length 2n;
• its last step, which can be either C1 or �1.
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As a consequence,

#M2n D 1

2
#M2nC1 � 1p

�
22n�1n� 1

2 : (13)

Now consider the matching matrix M.M2nC1/ defined as in (6) for positive walks
M2nC1. M.M2nC1/ is no longer diagonal since there are overlaps among positive
walks. The following lemma presents the particular structure of this matrix.

Lemma 1 M.M2nC1/ is a multiple of some right stochastic matrix (whose row
sums are equal to 1). The multiplicity is

1 C
2nX

lD1

k.Ml/

2l
� 2p

�

p
n: (14)

Proof Let 1 � i � #M2nC1 and consider the sum of the ith row

#M2nC1X
jD1

M.M2nC1/ij WD
#M2nC1X

jD1

2nX
lD0

�l.M
2nC1
i ; M2nC1

j /

2l

D
2nX

lD0

1

2l

#M2nC1X
jD1

�l.M
2nC1
i ; M2nC1

j /; (15)

where for 0 � l � 2n and M2nC1
i ; M2nC1

j 2 M2nC1, �l.M
2nC1
i ; M2nC1

j / is defined as

in (7). Note that �0.M
2nC1
i ; M2nC1

j / D 1 if and only if i D j. Thus,

#M2nC1X
jD1

�0.M2nC1
i ; M2nC1

j / D 1: (16)

In addition, for 1 � l � 2n,

#M2nC1X
jD1

�l.M
2nC1
i ; M2nC1

j /

D #fM2nC1
j 2 M2nC1I M2nC1

i1 D M2nC1
j1Cl ; � � � ; M2nC1

i2nC1�l D M2nC1
j2nC1g:

Note that given M2nC1
i1 D M2nC1

j1Cl ; � � � ; M2nC1
i2nC1�l D M2nC1

j2nC1, which implies that

M2nC1
j1Cl � � � M2nC1

j2nC1 is a positive walk of length 2n � l C 1, we have

M2nC1
j 2 M2nC1 ” M2nC1

j1 � � � M2nC1
jl is a positive walk of length l:
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Therefore, for 1 � l � 2n,

#M2nC1X
jD1

�l.M
2nC1
i ; M2nC1

j / D k.Ml/: (17)

In view of (15), (16) and (17), we obtain for all 1 � i � #M2nC1, the sum of ith
row of M.M2nC1/ is given by (14). Furthermore, by (12) and (13), we know that
k.Ml/ � 1p

2�
2ll� 1

2 as l ! 1, which yields the asymptotics 2p
�

p
n. �

Now by Theorem 6(1), M.M2nC1/ is invertible and the inverse M.M2nC1/�1 is
as well the multiple of some right stochastic matrix. The multiplicity is

 
1 C

n�1X
lD1

k.Ml/

2l

!�1

�
p

�

2
p

n
:

Then using (9), we obtain

ET.M2nC1/ D 22nC1

�
1 CPn�1

lD1
k.Ml/

2l

��1

#M2nC1

� 4n: (18)

This is (3). �

2.3 Expected Waiting Time for Bridge Paths

In this part, we deal with the expected waiting time for the set of discrete bridges.
In order to simplify the notations, we focus on the set of bridges of length 2n which
end at � D 0, that is BR0;2n. Note that the result in the general case for BR�;n,
where � 2 R, can be derived in a similar way. Using Theorem 6, we prove a weaker
version of (4): there exist Qc0

BR and C0
BR > 0 such that

Qc0
BRn

1
2 � ET.BR0;n/ � C0

BRn: (19)

Compared to (4), there is an exponent gap in (19) and the lower bound is not optimal.
Nevertheless, the lower bound of (4) follows a soft argument by scaling limit,
Proposition 1. We defer the discussion to Sect. 2.5. It is standard that the number
of discrete bridges of length 2n is

#BR0;2n D
 

2n

n

!
� 1p

�
22nn� 1

2 : (20)
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Denote BR0;2n WD fBR2n
1 ; � � � ; BR2n

#BR0;2ng and M.BR0;2n/ the matching matrix

of BR0;2n. We first establish the LHS estimate of (19). According to (8), we have

.1; � � � ; 1/M.BR0;2n/

 
1

ET.BR2n
1 /

; � � � ;
1

ET.BR2n
#BR0;2n/

!T

D #BR0;2n

22n
: (21)

Note that the matching matrix M.BR0;2n/ is non-negative with diagonal elements

M.BR0;2n/ii � �0.BR2n
i ; BR2n

i / D 1;

for 1 � i � #BR0;2n. As a direct consequence, the column sums of M.BR0;2n/ is
larger or equal to 1. Then by (9) and (21),

ET.BR0;2n/ � 22n

#BR0;2n � p
�n;

where #BR0;2n is defined as in (20). Take then Qc0
BR D p

� .
Now we establish the RHS estimate of (19). In view of (21), it suffices to work

out an upper bound for the column sums of M.BR0;2n/. Similarly as in (15), for
1 � j � #BR0;2n,

#BR0;2nX
iD1

M.BR0;2n/ij D 1 C
2n�1X
lD1

1

2l

#BR0;2nX
iD1

�l.BR2n
i ; BR2n

j /; (22)

and

#BR0;2nX
iD1

�l.BR2n
i ; BR2n

j /

D #fBR2n
i 2 BR0;2nI BR2n

i1 D BR2n
j1Cl; � � � ; BR2n

in�l D BR2n
jn g;

D #fdiscrete bridges of length l which end at
n�lX
kD1

BR2n
jk g

D
 

l
lCPn�l

kD1 BR2n
jk

2

!
�
 

l

Œ l
2
�

!
; (23)

where the last inequality is due to the fact that
� l

k

� � � l
Œl�=2

�
for 0 � k � l. By (22)

and (23), the column sums of M.BR0;2n/ are bounded from above by

1 C
2n�1X
lD0

1

2l

 
l

Œ l
2
�

!
� 4p

�
n

1
2 :
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Again by (9) and (21),

ET.BR0;2n/ � 22n 4n
1
2 =

p
�

#BR0;2n � 4n:

Hence we take C0
BR D 4. �

2.4 Expected Waiting Time for First Passage Walks

We consider the expected waiting time for first passage walks through �n � �
p

n
for � < 0. Following Feller [29, Theorem 2, Chap. III.7], the number of patterns in
FP�;n is

#FP�;n D �n

n

 
n

nC�n
2

!
� � exp

�
��2

2

�r
2

�
2nn�1: (24)

For FP�;n WD fFPn
1; � � � ; FPn

#FP�;ng and M.FP�;n/ the matching matrix for

FP�;n, we have, by (8), that

.1; � � � ; 1/M.FP�;n/

 
1

ET.FPn
1/

; � � � ;
1

ET.FPn
#FP�;n/

!T

D #FP�;n

2n
: (25)

The LHS bound of (5) can be derived in a similar way as in Sect. 2.3.

ET.FP�;n/ � 2n

#FP�;n
�
r

�

2�2
exp

�
�2

2

�
n;

where #FP�;n is defined as in (24). We get the lower bound of (5).
For the upper bound of (5), we aim to obtain an upper bound for the column sums

of M.FP�;n/. Note that for 1 � j � k�
FPn ,

#FP�;nX
iD1

M.FP�;n/ij D 1 C
n�1X
lD1

1

2l

#FP�;nX
iD1

�l.FPi; FPj/ (26)

and

#FP�;nX
iD1

�l.FPn
i ; FPn

j /

D #fFPn
i 2 FP�;nI FPn

i1 D FPn
j1Cl; � � � ; FPn

in�l D FPn
jng:
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Observe that fFPn
i 2 FP�;nI FPn

i1 D FPn
j1Cl; � � � ; FPn

in�l D FPn
jng ¤ ; if and

only if
Pl

kD1 FPn
jk < 0 (otherwise

Pn�l
kD1 FPn

ik D Pn
kD1Cl FPn

jk D �n �Pl
kD1 FPn

jk <

�n, which implies FPn
i … FP�;n). Then given FPn

i1 D FPn
j1Cl; � � � ; FPn

in�l D FPn
jn

and
Pl

kD1 FPn
jk < 0,

FPn
i 2 FP�;n

” FPn
in�lC1 � � � FPn

in is a first passage walk of length l through
lX

kD1

FPn
jk < 0:

Therefore, for 1 � l � n � 1 and 1 � j � k�
FPn ,

#FP�;nX
iD1

�l.FPn
i ; FPn

j / D 1Pl
kD1 FPn

jk<0

jPl
kD1 FPn

jkj
l

 
l

lCPl
kD1 FPn

jk

2

!
: (27)

From the above discussion, it is easy to see for 1 � j � #FP�;n,

#FP�;nX
iD1

M.FP�;n/ij �
#FP�;nX

iD1

M.FP�;n/ij� ;

where FPn
j� is defined as follows: FPn

j�k D �1 if 1 � k � �n �1; �n �1 < k � n�1

and k � �n is odd; k D n. Otherwise FPn
j�k D 1.

8

6

4

2

0

–2

–4

–6
0 5 10 15 20 25 30 35 40 45 50

FPj*
n

Fig. 1 Extreme patterns FPn
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The rest of this part is devoted to estimating
P#FP�;n

iD1 M.FP�;n/ij� . By (26) and
(27),

#FP�;nX
iD1

M.FP�;n/ij�

D
j�nj�1X

lD0

1

2l
C

n�1X
lD�n

l�j�nj odd

j�nj � 1

l � 2l

 
l

l�j�n jC1
2

!
C

n�1X
lD�n

l�j�nj even

j�nj � 2

l � 2l

 
l

l�j�njC2
2

!

� 2 C j�nj
n�1X

lDj�nj

1

2ll

 
l

Œ l
2
�

!
�
r

8�

�
n

1
4 :

Thus, the column sums of M.FP�;n/ are bounded from above by
q

8�
�

n
1
4 . By (9)

and (25),

ET.FP�;n/ � 2n
p

8�=�n
1
4

#FP�;n
�
r

4

�
exp

�
�2

2

�
n

5
4 :

This is the upper bound of (5). �

2.5 Exponent Gaps for BR�;n and FP�;n

It can be inferred from (19) (resp. (5)) that the expected waiting time for BR�;n

where � 2 R (resp. FP�;n where � < 0) is bounded from below by order n
1
2 (resp.

n) and from above by order n (resp. n
5
4 ). The exponent gap in the estimates of first

passage walks FP�;n is frustrating, since we do not know whether the waiting time
is exactly of order n, or is of order � n. This prevents the prediction of the existence
of first passage bridge patterns FP� in Brownian motion.

From (9), we see that the most precise way to compute ET.BR�;n/ and
ET.FP�;n/ consists in evaluating the sum of all entries in the inverse matching
matrices M.BR�;n/�1 and M.FP�;n/�1. But the task is difficult since the structures
of M.BR�;n/ and M.FP�;n/ are more complex than the structures of M.E2n/ and
M.M2nC1/. We do not understand well the exact form of the inverse matrices
M.BR�;n/�1 and M.FP�;n/�1.

The technique used in Sects. 2.3 and 2.4 is to bound the column sums of the
matching matrix M.BR�;n/ (resp. M.FP�;n/). More precisely, we have proved that

O.1/ � column sums of M.BR�;n/ � O.n
1
2 / for each fixed � 2 RI (28)

O.1/ � column sums of M.FP�;n/ � O.n
1
4 / for each fixed � < 0: (29)
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For the bridge pattern BR0;2n, the LHS bound of (28) is obtained by any
excursion path of length 2n, while the RHS bound of (28) is achieved by the
sawtooth path with consecutive ˙1 increments. In the first passage pattern FP�;n

where � < 0, the LHS bound of (29) is achieved by some excursion-like path, which
starts with an excursion and goes linearly to �

p
n < 0 at the end. The RHS bound

of (29) is given by the extreme pattern defined in Sect. 2.4, see Fig. 1. However,
the above estimations are not accurate, since there are only few columns in BR�;n

which sum up either to O.1/ or to O.n
1
2 /, and few columns of FP�;n which sum up

either to O.1/ or to O.n
1
4 /.

Open Problem 1

1. Determine the exact asymptotics for ET.BR�;n/ where � 2 R, as n ! 1.
2. Determine the exact asymptotics for ET.FP�;n/ where � < 0, as n ! 1.

As we prove below, for � 2 R, ET.BR�;n/ 
 n by a scaling limit argument.
Nevertheless, to obtain this result only by discrete analysis would be of independent
interest. Table 1 provides the simulations of the expected waiting time ET.FP�1;n/

for some large n.

Table 1 Estimation of � by log
ET.FPn2

�1/

ET.FPn1
�1/

= log.
n2

n1
), where n2 is the next to n1 in the table

n 100 200 500 1000 2000 5000 10,000

ET.FPn
�1/ 179.805 358.249 893.041 1800.002 3682.022 8549.390 12231.412

Estimated � 0.9945 0.9968 1.0112 1.0375 1.0205 1.0335

The result suggests that ET.FP�1;n/ be linear, but possibly with some log-
correction. Yuval Peres made the following conjecture:

Conjecture 1 (Peres (personal communications)) For � < 0, there exist c�
FP and

C�
FP > 0 such that

c�
FPn ln n � ET.FP�;n/ � C�

FPn ln n: (30)

This is consistent with Theorem 4(4), that we cannot find a first passage bridge with
fixed negative endpoint in Brownian motion.

Now let us focus on the lower bound (4) of expected waiting time for bridge
pattern BR0. For n 2 2N, we run a simple random walk .RWk/k2N until the first
level bridge of length n appears. That is, we consider

.RWFnCk � RWFn/0�k�n; where Fn WD inffk � 0I RWkCn D RWkg: (31)
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For simplicity, let RWk for non-integer k be defined by the usual linear interpolation
of a simple random walk. For background on the weak convergence in CŒ0; 1�, we
refer readers to Billingsley [11, Chap. 2].

Proposition 1 The process

�
RWFnCnu � RWFnp

n
I 0 � u � 1

�

converges weakly in CŒ0; 1� to the bridge-like process

.BFCu � BFI 0 � u � 1/; where F WD infft > 0I BtC1 � Bt D 0g: (32)

The process .St WD BtC1�BtI t � 0/ is a stationary Gaussian process, first studied
by Slepian [81] and Shepp [79]. The following result, which can be found in Pitman
and Tang [73, Lemma 2:3], is needed for the proof of Proposition 1.

Lemma 2 ([71, 78]) For each fixed t � 0, the distribution of .SuI t � u � t C 1/ is
mutually absolutely continuous with respect to the distribution of

. QBu WD p
2.� C Bu/I t � u � t C 1/; (33)

where � � N .0; 1/. In particular, the distribution of the Slepian zero set restricted
to Œt; tC1�, i.e. fu 2 Œt; tC1�I Su D 0g is mutually absolutely continuous with respect
to that of fu 2 Œt; t C 1�I � C Bu D 0g, the zero set of Brownian motion starting at
� � N .0; 1/.

Proof of Proposition 1 Let PW be Wiener measure on CŒ0; 1/. Let PS (resp. P QW)
be the distribution of the Slepian process S (resp. the distribution of QB defined as in
(33)). We claim that

F WD infft � 0I wtC1 D wtg;

is a functional of the coordinate process w WD fwtI t � 0g 2 CŒ0; 1/ that is
continuous PW a.s. Note that the distribution of .xt WD wtC1 � wtI t � 0/ under PW

is the same as that of .wtI t � 0/ under PS. In addition, x 2 CŒ0; 1/ is a functional
of w 2 CŒ0; 1/ that is continuous PW a.s. By composition, it is equivalent to show
that

F0 WD infft � 0I wt D 0g;

is a functional of w 2 CŒ0; 1/ that is continuous PS a.s. Consider the set

Z WD fw 2 CŒ0; 1/I F0 is not continuous at wg D [p2QZp;
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where Zp WD fw 2 CŒ0; 1/I F0 2 Œp; p C 1� and F0 is not continuous at wg: It is

obvious that P QW.Z/ D 0 and thus P QW.Zp/ D 0 for all p � 0. By Lemma 2, PS is

locally absolutely continuous relative to P
QW, which implies that PS.Zp/ D 0 for all

p � 0. As a countable union of null events, PS.Z/ D 0, and the claim is proved.
Thus, the mapping

	F W CŒ0; 1/ 3 .wtI t � 0/ �! .wFCu � wFI 0 � u � 1/ 2 CŒ0; 1�

is continuous P
W a.s. According to Donsker’s theorem [23], see e.g. Billingsley

[11, Sect. 10] or Kallenberg [40, Chap. 16], the linearly interpolated simple random
walks

�
RWŒnt�p

n
I t � 0

�
converges weakly in CŒ0; 1� to .BtI t � 0/:

So by the continuous mapping theorem, see e.g. Billingsley [11, Theorem 5:1],

	F ı
�

RWŒnt�p
n

I t � 0

�
converges weakly to 	F ı .BtI t � 0/: �

Note that T.BR0;n/ D Fn C n. Following the above analysis, we know that
T.BR0;n/=n converges weakly to F C 1, where T.BR0;n/ is the waiting time until
an element of BR0;n occurs in a simple random walk and F is the random time
defined as in (32). As a consequence,

lim inf
n!1 E

T.BR0;n/

n
� EF C 1; since EF < 1:

In particular, EF � C0
BR � 1 D 3 as in Sect. 2.3. We refer readers to Pitman and

Tang [73] for further discussion on first level bridges and the structure of the Slepian
zero set.

3 Continuous Paths in Brownian Motion

This section is devoted to the proof of Theorems 2 and 4 regarding continuous paths
and the distribution of continuous-time processes embedded in Brownian motion.
In Sect. 3.1, we show that there is no normalized excursion in a Brownian path, i.e.
Theorem 4(1). A slight modification of the proof allows us to exclude the existence
of the Vervaat bridges with negative endpoint, i.e. Theorem 4(5). Furthermore, we
prove in Sect. 3.2 that there is even no reflected bridge in Brownian motion, i.e.
Theorem 4(2). In Sects. 3.3 and 3.4, we show that neither the Vervaat transform
of Brownian motion nor first passage bridges with negative endpoint can be found
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in Brownian motion, i.e. Theorem 4(3), (4). We make use of the potential theory
of additive Lévy processes, which is recalled in Sect. 3.3. Finally in Sect. 3.5, we
provide a proof for the existence of Brownian meander, co-meander and three-
dimensional Bessel process in Brownian motion, i.e. Theorem 2, using the filling
scheme.

3.1 No Normalized Excursion in a Brownian Path

In this part, we provide two proofs for Theorem 4(1), though similar, from different
viewpoints. The first proof is based on a fluctuation version of Williams’ path
decomposition of Brownian motion, originally due to Williams [88], and later
extended in various ways by Millar [61, 62], and Greenwood and Pitman [36]. We
also refer readers to Pitman and Winkel [72] for a combinatorial explanation and
various applications.

Theorem 7 ([36, 88]) Let .BtI t � 0/ be standard Brownian motion and � be
exponentially distributed with rate 1

2
#2, independent of .BtI t � 0/. Define M WD

argminŒ0;��Bt, H WD �BM and R WD B� C H. Then H and R are independent
exponential variables, each with the same rate # . Furthermore, conditionally given
H and R, the path .BtI 0 � t � �/ is decomposed into two independent pieces:

• .BtI 0 � t � M/ is Brownian motion with drift �# < 0 running until it first hits
the level �H < 0;

• .B��t � B� I 0 � t � � � M/ is Brownian motion with drift �# < 0 running until
it first hits the level �R < 0.

Now we introduce the notion of first passage process, which will be used in the
proof of Theorem 4(1). Given a càdlàg process .ZtI t � 0/ starting at 0, we define
the first passage process .��xI x � 0/ associated to X to be the first time that the
level �x < 0 is hit:

��x WD infft � 0I Zt < �xg for x > 0:

When Z is Brownian motion, the distribution of the first passage process is well-
known:

Lemma 3

1. Let W be Wiener measure on CŒ0; 1/. Then the first passage process .��xI x � 0/

under W is a stable. 1
2
/ subordinator, with

E
WŒexp.�˛��x/� D exp.�x

p
2˛/ for ˛ > 0:

2. For # 2 R, let W# be the distribution on CŒ0; 1/ of Brownian motion with
drift # .



Patterns in Random Walks and Brownian Motion 69

Then for each fixed L > 0, on the event ��L < 1, the distribution of the first
passage process .��xI 0 � x � L/ under W# is absolutely continuous with
respect to that under W, with density D#

L WD exp.�#L � #2

2
��L/.

Proof The part (1) of the lemma is a well known result of Lévy, see e.g. Bertoin et
al. [8, Lemma 4]. The part (2) is a direct consequence of Girsanov’s theorem, see
e.g. Revuz and Yor [74, Chap. VIII] for background. �

Proof of Theorem 4(1) Suppose by contradiction that P.T < 1/ > 0, where T is
a random time at which some excursion appears. Take � exponentially distributed
with rate 1

2
, independent of .BtI t � 0/. We have then

P.T < � < T C 1/ > 0: (34)

Now .T; T C1/ is inside the excursion of Brownian motion above its past-minimum
process, which straddles �. See Fig. 2. Define

• .��xI x � 0/ to be the first passage process of .B�Ct � B� I t � 0/.

By the strong Markov property of Brownian motion, .B�Ct � B� I t � 0/ is still
Brownian motion. Thus, .��xI x � 0/ is a stable. 1

2
/ subordinator by part (1) of

Lemma 3. Also, define

• .
�xI x � 0/ to be the first passage process derived from the process .B��t �
B� I 0 � t � � � M/ followed by an independent Brownian motion with drift �1

running forever.

According to Theorem 7, .B��t � B� I 0 � t � � � M/ is Brownian motion with
drift �1 running until it first hits the level �R < 0. Then .
�xI x � 0/ is the first

2
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Fig. 2 No excursion of length 1 in a Brownian path
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passage process of Brownian motion with drift �1, whose distribution is absolutely
continuous on any compact interval Œ0; L�, with respect to that of .��xI 0 � x � L/

by part (2) of Lemma 3.
Thus, the distribution of .
�x C ��xI 0 � x � L/ is absolutely continuous relative

to that of .��2xI 0 � x � L/. It is well known that a real stable. 1
2
/ process does not

hit points, see e.g. Bertoin [5, Theorem 16, Chap. II.5]. As a consequence,

P.
�x C ��x D 1 for some x � 0/ D 0;

which contradicts (34). �

Proof of Theorem 4(5) Impossibility of embedding the Vervaat bridge paths VB�

with endpoint � < 0. We borrow the notations from the preceding proof. Observe
that, for fixed � < 0,

P.
�x C ��xC� D 1 for some x � 0/ D 0:

The rest of the proof is just a duplication of the preceding one. �

We give yet another proof of Theorem 4(1), which relies on Itô’s excursion
theory, combined with Bertoin’s self-similar fragmentation theory. For general
background on fragmentation processes, we refer to the monograph of Bertoin [7].
The next result, regarding a normalized Brownian excursion, follows Bertoin [6,
Corollary 2].

Theorem 8 ([6]) Let e WD .euI 0 � u � 1/ be normalized Brownian excursion and
Fe WD .Fe

t I t � 0/ be the associated interval fragmentation defined as Fe
t WD fu 2

.0; 1/I eu > tg. Introduce

• � WD .�tI t � 0/ the length of the interval component of Fe that contains U,
independent of the excursion and uniformly distributed;

• � WD f�tI t � 0g a subordinator, the Laplace exponent of which is given by

˚ ex.q/ WD q

r
8

�

Z 1

0

tq� 1
2 .1 � t/� 1

2 D q

r
8

�
B.q C 1

2
;

1

2
/I (35)

Then .�tI t � 0/ has the same law as .exp.���t /I t � 0/, where

�t WD inf

�
u � 0I

Z u

0

exp

�
�1

2
�r

�
dr > t

	
: (36)

Alternative Proof of Theorem 4(1) Consider the reflected process .Bt � BtI t � 0/,
where Bt WD inf0�u�t Bu is the past-minimum process of the Brownian motion.
For e the first excursion of B � B that contains some excursion pattern E of
length 1, let �e be the length of such excursion, and e� be the normalized
Brownian excursion. Following Itô’s excursion theory, see e.g. Revuz and Yor [74,
Chap. XII], �e is independent of the distribution of the normalized excursion e�.
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As a consequence, the fragmentation associated to e� produces an interval of length
1

�e
. Now choose U uniformly distributed on Œ0; 1� and independent of the Brownian

motion. According to Theorem 8, there exists a subordinator � characterized as in
(35) and a time-change � defined as in (36) such that .�tI t � 0/, the process of the
length of the interval fragmentation which contains U, has the same distribution as
.exp.���t /I t � 0/. Note that .�tI t � 0/ depends only on the normalized excursion
e� and U, so .�tI t � 0/ is independent of �e. It is a well known result of Kesten
[41] that a subordinator without drift does not hit points. Therefore,

P

�
�t D 1

�e
for some t � 0

�
D 0;

which yields the desired result. �

3.2 No Reflected Bridge in a Brownian Path

This part is devoted to proving Theorem 4(2). The main difference between
Theorem 4(1) and (2) is that the strict inequality BTCu > BT for all u 2 .0; 1/ is
relaxed by the permission of equalities BTCu D BT for some u 2 .0; 1/. Thus, there
are paths in CŒ0; 1� which may contain reflected bridge paths but not excursion paths.
Nevertheless, such paths form a null set for Wiener measure. Below is a slightly
stronger version of this result.

Lemma 4 Almost surely, there are no random times S < T such that BT D BS,
Bu � BS for u 2 .S; T/ and Bv D Bw D BS for some S < v < w < T.

Proof Consider the following two sets

T WD fthere exist S and T which satisfy the conditions in the lemmag

and

U WD
[

s;t2Q
fB attains its minimum for more than once on Œs; t�g:

It is straightforward that T � U . In addition, it is well-known that almost surely
Brownian motion has a unique minimum on any fixed interval Œs; t� for all s; t 2 R.
As a countable union of null events, P.U/ D 0 and thus P.T / D 0. �
Remark 1 The previous lemma has an interesting geometric interpretation in terms
of Brownian trees, see e.g. Pitman [71, Sect. 7:4] for background. Along the lines
of the second proof of Theorem 4(1) in Sect. 3.1, we only need to show that
the situation in Lemma 4 cannot happen in a Brownian excursion either of an
independent and diffuse length or of normalized unit length. But this is just another
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way to state that Brownian trees have only binary branch points, which follows
readily from Aldous’ stick-breaking construction of the continuum random trees,
see e.g. Aldous [1, Sect. 4:3] and Le Gall [53].

According to Theorem 4(1) and Lemma 4, we see that almost surely, there
are neither excursion paths of length 1 nor reflected bridge paths of any length
with at least two intermediate returns in Brownian motion. To prove the desired
result, it suffices to exclude the possibility of reflected bridge paths with exactly one
reflection. This is done by the following lemma.

Lemma 5 Assume that 0 � S < T < U are random times such that BS D BT D BU

and Bu > BS for u 2 .S; T/ [ .T; U/. Then the distribution of U � S is absolutely
continuous with respect to the Lebesgue measure.

Proof Suppose by contradiction that the distribution of U � S is not absolutely
continuous with respect to the Lebesgue measure. Then there exists p; q 2 Q such
that U � S fails to have a density on the event fS < p < T < q < Ug. In fact, if
U � S has a density on fS < p < T < q < Ug for all p; q 2 Q, Radon-Nikodym
theorem guarantees that U � S has a density on fS < T < Ug D [p;q2QfS < p <

T < q < Ug. Note that on the event fS < p < T < q < Ug, U is the first time
after q such that the Brownian motion B attains infu2Œp;q� Bu and obviously has a
density. Again by Radon-Nikodym theorem, the distribution of U � S has a density
on fS < p < T < q < Ug, which leads to a contradiction. �

Remark 2 The previous lemma can also be inferred from a fine study on local
minima of Brownian motion. Neveu and Pitman [68] studied the renewal structure
of local extrema in a Brownian path, in terms of Palm measure, see e.g. Kallenberg
[40, Chap. 11].

More precisely, denote

• C to be the space of continuous paths on R, equipped with Wiener measure W;
• E to be the space of excursions with lifetime �, equipped with Itô measure n.

Then the Palm measure of all local minima is the image of 1
2
.n 	 n 	 W/ by the

mapping E 	 E 	 C 3 .e; e0; w/ ! Qw 2 C given by

Qwt D

8̂
<̂
ˆ̂:

wtC�.e0/ if t � ��.e0/;
e0�t if ��.e0/ � t � 0;

et if 0 � t � �.e/;

wt��.e/ if t � �.e/:

See Fig. 3. Using the notations of Lemma 5, an in-between reflected position T
corresponds to a Brownian local minimum. Then the above discussion implies that
U � S is the sum of two independent random variables with densities and hence
is diffuse. See also Tsirelson [83] for the i.i.d. uniform sampling construction of
Brownian local minima, which reveals the diffuse nature of U � S.
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Fig. 3 Structure of local minima in Brownian motion

3.3 No Vervaat Transform of Brownian Motion in a Brownian
Path

In the current section, we aim to prove Theorem 4(3). That is, there is no random
time T such that

.BTCu � BT I 0 � u � 1/ 2 VB�:

A similar argument shows that there is no random time T such that

.BTCu � BT I 0 � u � 1/ 2 VBC;

where VBC WD fw 2 CŒ0; 1�I w.t/ > 0 for 0 < t � 1 and supft < 1I w.t/ <

w.1/g < 1g. Observe that .VuI 0 � u � 1/ is supported on VBC [ VB�. Thus, the
Vervaat transform of Brownian motion cannot be embedded into Brownian motion.

In Sect. 3.1, we showed that for each fixed � < 0, there is no random time T
such that .BTCu � BT I 0 � u � 1/ 2 VB�. However, there is no obvious way to
pass from the non-existence of the Vervaat bridges to that of the Vervaat transform
of Brownian motion, due to an uncountable number of possible final levels.

To get around the problem, we make use of an additional tool–potential theory
of additive Lévy processes, developed by Khoshnevisan et al. [43, 44, 47–49]. We
now recall some results of this theory that we need in the proof of Theorem 4(3).
For a more extensive overview of the theory, we refer readers to the survey of
Khoshnevisan and Xiao [45].
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Definition 1 An N-parameter, Rd-valued additive Lévy process .ZtI t 2 R
NC/ with

Lévy exponent .
 1; : : : ; 
 N/ is defined as

Zt WD
NX

iD1

Zi
ti

for t D .t1; : : : ; tN/ 2 R
NC; (37)

where .Z1
t1 I t1 � 0/; : : : ; .ZN

tN I tN � 0/ are N independent Rd-valued Lévy processes
with Lévy exponent 
 1; : : : ; 
 N .

The following result regarding the range of additive Lévy processes is due to
Khoshnevisan et al. [49, Theorem 1:5], [47, Theorem 1:1], and Yang [89, 90,
Theorem 1:1].

Theorem 9 ([47, 49, 89]) Let .ZtI t 2 R
NC/ be an additive Lévy process defined as

in (37). Then

EŒLeb.Z.RNC//� > 0 ”
Z
Rd

NY
iD1

Re

�
1

1 C 
 i.�/

�
d� < 1;

where Leb.�/ is the Lebesgue measure on R
d, and Re.�/ is the real part of a complex

number.

The next result, which is read from Khoshnevisan and Xiao [46, Lemma 4:1],
makes a connection between the range of an additive Lévy process and the polarity
of single points. See also Khoshnevisan and Xiao [45, Lemma 3.1].

Theorem 10 ([43, 46]) Let .ZtI t 2 R
NC/ be an additive Lévy process defined as in

(37). Assume that for each t 2 R
NC, the distribution of Zt is mutually absolutely

continuous with respect to Lebesgue measure on R
d. Let z 2 R

d n f0g, then

P.Zt D z for some t 2 R
NC/ > 0 ” P.Leb.Z.RNC/ > 0/ > 0:

Note that P.Leb.Z.RNC/ > 0/ > 0 is equivalent to EŒLeb.Z.RNC//� > 0.
Combining Theorems 9 and 10, we have:

Corollary 1 Let .ZtI t 2 R
NC/ be an additive Lévy process defined as in (37).

Assume that for each t 2 R
NC, the distribution of Zt is mutually absolutely continuous

with respect to Lebesgue measure on R
d. Let z 2 R

d n f0g, then

P.Zt D z for some t 2 R
NC/ > 0 ”

Z
Rd

NY
iD1

Re

�
1

1 C 
 i.�/

�
d� < 1:
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Proof of Theorem 4(3) We borrow the notations from the proof of Theorem 4(1) in
Sect. 3.1. It suffices to show that

P.
�t1 C ��t2 D 1 for some t1; t2 � 0/ D 0; (38)

where .
�t1 I t1 � 0/ is the first passage process of Brownian motion with drift �1,
and .��t2 I t2 � 0/ is a stable. 1

2
/ subordinator independent of .
�t1 I t1 � 0/. Let

Zt D Z1
t1

C Z2
t2

WD 
�t1 C ��t2 for t D .t1; t2/ 2 R
2C. By Definition 1, Z is a 2-

parameter, real-valued additive Lévy process with Lévy exponent .
 1; 
 2/ given
by


 1.�/ D 4
p

1 C 4�2 exp



�i

arctan.2�/

2

�
� 1 and 
 2.�/ D

p
j�j.1 � i sgn�/

for � 2 R, which is derived from the formula in Cinlar [16, Chap. 7, Page 330] and
Lemma 3(2). Hence,

Re

�
1

1 C 
 1.�/

�
D 1

4
p

1 C 4�2

vuut1

2

 
1 C 1p

1 C 4�2

!

and

Re

�
1

1 C 
 2.�/

�
D 1 Cpj�j

1 C 2
pj�j C 2j�j :

Clearly, 	 W � ! Re
�

1
1C
1.�/

�
Re
�

1
1C
2.�/

�
is not integrable on R since 	.�/ �

1
4j�j as j�j ! 1. In addition, for each t 2 R

2C, Zt is mutually absolutely continuous
with respect to Lebesgue measure on R. Applying Corollary 1, we obtain (38). �

3.4 No First Passage Bridge in a Brownian Path

We prove Theorem 4(4), i.e. there is no first passage bridge in Brownian motion by
a spacetime shift. The main difference between Vervaat bridges with fixed endpoint
� < 0 and first passage bridges ending at � < 0 is that the former start with an
excursion piece, while the latter return to the origin infinitely often on any small
interval Œ0; ��, � > 0. Thus, the argument used in Sect. 3.1 to prove the non-existence
of Vervaat bridges is not immediately applied in case of first passage bridges.
Nevertheless, the potential theory of additive Lévy processes helps to circumvent
the difficulty.
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Fig. 4 No first passage bridge of length 1 in a Brownian path

Proof of Theorem 4(4) Suppose by contradiction that P.T < 1/ > 0, where T is
a random time that some first passage bridge through a fixed level appears. Take �

exponentially distributed with rate 1
2
, independent of .BtI t � 0/. We have then

P.T < � < T C 1/ > 0: (39)

Now .T; T C1/ is inside the excursion of Brownian motion below its past-maximum
process, which straddles �. See Fig. 4. Define

• .��xI x � 0/ to be the first passage process of .B�Ct � B� I t � 0/.

By strong Markov property of Brownian motion, .B�Ct �B� I t � 0/ is still Brownian
motion. Thus, .��xI x � 0/ is a stable. 1

2
/ subordinator. Let M WD argmaxŒ0;��Bt. By

a variant of Theorem 7, .B��t � B� I 0 � t � � � M/ is Brownian motion with drift
1 running until it first hits the level BM � B� > 0, independent of .��xI x � 0/.

As a consequence, (39) implies that

P.��x D l and B"
1�l D j�j � x for some .x; l/ 2 RC 	 Œ0; 1�/ > 0; (40)

where .B"
t I t � 0/ is Brownian motion with drift 1, independent of 1

2
-stable

subordinator .��xI x � 0/. By setting t1 WD x and t2 WD 1 � l, we have:

P.��x D l and B"
1�l D j�j � x for some .x; l/ 2 RC 	 Œ0; 1�/

D P.��t1 C t2 D 1 and B"
t2 C t1 D j�j for some .t1; t2/ 2 RC 	 Œ0; 1�/

� PŒ.��t1 ; t1/ C .t2; B"
t2 / D .1; j�j/ for some .t1; t2/ 2 R

2C� (41)
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Let Zt D Z1
t1 C Z2

t2 WD .��t1 ; t1/ C .t2; B"
t2 / for t D .t1; t2/ 2 R

2C. By Definition 1,
Z is a 2-parameter, R2-valued additive Lévy process with Lévy exponent .
 1; 
 2/

given by


 1.�1; �2/ WD
p

j�1j � i.
p

j�1jsgn�1 C �2/ and 
 2.�1; �2/ WD �2
2

2
� i.�1 C �2/;

for .�1; �2/ 2 R
2. Hence,

Re

�
1

1 C 
1.�1; �2/

�
Re

�
1

1 C 
2.�1; �2/

�

D
.1 Cpj�1j/

�
1 C �2

2

2

�
h
.1 Cpj�1j/2 C .

pj�1jsgn�1 C �2/2
i 
�

1 C �2
2

2

�2

C .�1 C �2/2

� WD 	.�1; �2/:

Observe that � ! 	.�1; �2/ is not integrable on R
2, which is clear by passage to

polar coordinates .�1; �2/ D .� cos �;
p

� sin �/ for � � 0, � 2 Œ0; 2�/. In addition,
for each t 2 R

2C, Zt is mutually absolutely continuous with respect to Lebesgue
measure on R

2. Applying Corollary 1, we know that

P.Zt D .1; j�j/ for some t 2 R
2C/ D 0:

Combining with (41), we obtain:

P.��x D l and B"
1�l D j�j � x for some .x; l/ 2 RC 	 Œ0; 1�/ D 0;

which contradicts (40). �

It is not hard to see that the above argument, together with those in Sect. 3.2
works for Bessel bridge of any dimension.

Corollary 2 (Impossibility of Embedding of Reflected Bridge Paths/Bessel
Bridge) For each fixed � > 0, almost surely, there is no random time T such that

.BTCu � BT I 0 � u � 1/ 2 RBR�

WD fw 2 CŒ0; 1�I w.t/ � 0 for 0 � t � 1 and w.1/ D �g:

In particular, there is no random time T � 0 such that .BTCu � BT I 0 � u � 1/ has
the same distribution as Bessel bridge ending at �.
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3.5 Meander, Co-meander and 3-d Bessel Process
in a Brownian Path

We prove Theorem 2 in this section using Itô’s excursion theory, combined with
Rost’s filling scheme [13, 75] solution to the Skorokhod embedding problem.

The existence of Brownian meander in a Brownian path is assured by the
following well-known result, which can be read from Maisoneuve [58, Sect. 8],
with explicit formulas due to Chung [15]. An alternative approach was provided
by Greenwood and Pitman [35], and Pitman [70, Sects. 4 and 5]. See also Biane and
Yor [9, Theorem 6:1], or Revuz and Yor [74, Exercise 4:18, Chap. XII].

Theorem 11 ([9, 35, 58]) Let .ei/i2N be the sequence of excursions, whose length
exceeds 1, in the reflected process .Bt � BtI t � 0/, where Bt WD inf0�u�t Bu is
the past-minimum process of the Brownian motion. Then .ei

uI 0 � u � 1/i2N is
a sequence of independent and identically distributed paths, each distributed as
Brownian meander .muI 0 � u � 1/.

Let us recall another basic result due to Imhof [38], which establishes the
absolute continuity relation between Brownian meander and the three-dimensional
Bessel process. Their relation with Brownian co-meander is studied in Yen and Yor
[91, Chap. 7].

Theorem 12 ([38, 91]) The distributions of Brownian meander .muI 0 � u � 1/,
Brownian co-meander . QmuI 0 � u � 1/ and the three-dimensional Bessel process
.RuI 0 � u � 1/ are mutually absolutely continuous with respect to each other. For
F W CŒ0; 1� ! R

C a measurable function,

1. EŒF.muI 0 � u � 1/� D E

hp
�
2

1
R1

F.RuI 0 � u � 1/
i
;

2. EŒF. QmuI 0 � u � 1/� D E

h
1

R2
1

F.RuI 0 � u � 1/
i
.

According to Theorem 11, there exist T1; T2; � � � such that

mi WD .BTiCu � BTi I 0 � u � 1/ (42)

form a sequence of i.i.d. Brownian meanders. Since Brownian co-meander and the
three-dimensional Bessel process are absolutely continuous relative to Brownian
meander, it is natural to think of von Neumann’s acceptance-rejection algorithm
[86], see e.g. Rubinstein and Kroese [77, Sect. 2:3:4] for background and var-
ious applications. However, von Neumann’s selection method requires that the
Radon-Nikodym density between the underlying probability measures is essentially
bounded, which is not satisfied in the cases suggested by Theorem 12. Nevertheless,
we can apply the filling scheme of Chacon and Ornstein [13] and Rost [75].

We observe that sampling Brownian co-meander or the three-dimensional Bessel
process from i.i.d. Brownian meanders .mi/i2N fits into the general theory of Rost’s
filling scheme applied to the Skorokhod embedding problem. In the sequel, we
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follow the approach of Dellacherie and Meyer [22, Sects. 63–74, Chap. IX], which
is based on the seminal work of Rost [75], to construct a stopping time N such that
mN achieves the distribution of Qm or R. We need some notions from potential theory
for the proof.

Definition 2

1. Given a Markov chain X WD .Xn/n2N, a function f is said to be excessive relative
to X if

.f .Xn//n2N is Fn � supermartingale;

where .Fn/n2N is the natural filtration of X.
2. Given two positive measures � and �, � is said to be a balayage/sweeping of �

if

�.f / � �.f / for all bounded excessive functions f :

Proof of Theorem 2 Let �m (resp. �R) be the distribution of Brownian meander
(resp. the three-dimensional Bessel process) on the space .CŒ0; 1�;F/. By the filling
scheme, the sequence of measures .�m

i ; �R
i /i2N is defined recursively as

�m
0 WD .�m � �R/C and �R

0 WD .�m � �R/�; (43)

and for each i 2 N,

�m
iC1 WD .�m

i .1/ � �m � �R
i /C and �R

iC1 WD .�m
i .1/ � �m � �R

i /�; (44)

where �m
i .1/ is the total mass of the measure �m

i . It is not hard to see that the
bounded excessive functions of the i.i.d. meander sequence are constant �m a.s.
Since �R is absolutely continuous with respect to �m, for each �m a.s. constant
function c, �R.c/ D �m.c/ D c. Consequently, �R is a balayage/sweeping of �m by
Definition 2. According to Theorem 69 of Dellacherie and Meyer [22],

�R1 D 0; where �R1 WD# lim
i!1 �R

i :

Now let d0 be the Radon-Nikodym density of �m
0 relative to �m, and for i > 0, di

be the Radon-Nikodym density of �m
i relative to �m

i�1.1/ � �m. We have

�R D .�R � �R
0 / C .�R

0 � �R
1 / C � � �

D .�m � �m
0 / C .�m

0 .1/ � �m � �m
1 / C � � �

D .1 � d0/�
m C d0�

m.1/ � .1 � d1/�
m C � � � : (45)
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Consider the stopping time N defined by

N WD inf

(
n � 0I �

nX
iD0

log di.m
i/ > �

)
; (46)

where .di/i2N is the sequence of Radon-Nikodym densities defined as in the
preceding paragraph, .mi/i2N is the sequence of i.i.d. Brownian meanders defined
as in (42), and � is exponentially distributed with rate 1, independent of .mi/i2N.

From the computation of (45), for all bounded measurable function f and all
k 2 N,

EŒf .mN/I N D k� D EŒf .mk/I �
k�1X
iD0

log di.m
i/ � � < �

kX
iD0

log di.m
i/�

D EŒd0.m
0/ � � � dk�1.m

k�1/f .mk/.1 � dk.m
k//�

D .�m
k�1.1/ � �m � �m

k /f

D .�R
k�1 � �R

k /f ;

where .�m
i ; �R

i /i2N are the filling measures defined as in (43) and (44). By summing
over all k, we have

EŒf .mN/I N < 1� D �Rf :

That is, mN has the same distribution as R. As a summary,

.BTN Cu � BTN I 0 � u � 1/ has the same distribution as .RuI 0 � u � 1/;

where .Ti/i2N are defined by (42) and N is the stopping time as in (46). Thus
we achieve the distribution of the three-dimensional Bessel process in Brownian
motion. The embedding of Brownian co-meander into Brownian motion is obtained
in the same vein. �
Remark 3 Note that the stopping time N defined as in (46) has infinite mean, since

EN D
X
i2N

�m
i .1/ D 1:

The problem whether Brownian co-meander or the three-dimensional Bessel pro-
cess can be embedded in finite expected time, remains open. More generally, Rost
[76] was able to characterize all stopping distributions of a continuous-time Markov
process, given its initial distribution. In our setting, let .Pt/t�0 be the semi-group of
the moving window process Xt WD .BtCu � BtI 0 � u � 1/ for t � 0, and �W be
its initial distribution, corresponding to Wiener measure on CŒ0; 1�. Following Rost
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[76], for any distribution � on CŒ0; 1�, one can construct the continuous-time filling
measures .�t; �W

t /t�0 and a suitable stopping time T such that

� � �t C �W
t D �WPt^T :

Thus, the distribution � is achieved if and only if �1 D 0, where �1 WD#
limt!1 �t. In particular, Brownian motion with drift .# t C BtI 0 � t � 1/ for a
fixed # , can be obtained for a suitable stopping time T C 1.

4 Potential Theory for Continuous-Time Patterns

In Question 2, we ask for any Borel measurable subset S of C0Œ0; 1� whether S is
hit by the moving-window process Xt WD .BtCu � BtI 0 � u � 1/ for t � 0,
at some random time T. Related studies of the moving window process appear in
several contexts. Knight [50, 51] introduced the prediction processes, where the
whole past of the underlying process is tracked to anticipate its future behavior. The
relation between Knight’s prediction processes and our problems is discussed briefly
at the end of the section. Similar ideas are found in stochastic control theory, where
certain path-dependent stochastic differential equations were investigated, see e.g.
the monograph of Mohammed [63] and Chang et al. [14]. More recently, Dupire [25]
worked out a functional version of Itô’s calculus, in which the underlying process
is path-valued and notions as time-derivative and space-derivative with respect to a
path, are proposed. We refer readers to the thesis of Fournié [31] as well as Cont
and Fournié [17–19] for further development.

Indeed, Question 2 is some issue of potential theory. In Benjamini et al. [4] a
potential theory was developed for transient Markov chains on any countable state
space E. They showed that the probability for a transient chain to ever visit a given
subset S � E, is estimated by CapM.S/—the Martin capacity of the set S. See
also Mörters and Peres [67, Sect. 8:3] for a detailed exposition. As pointed out
by Steven Evans (personal communications), such a framework still works well
for our discrete patterns. For 0 < ˛ < 1, define the ˛-potential of the discrete
patterns/strings of length n as

G˛.�0; �00/ WD
1X

kD0

˛kPk.�0; �00/

D
n�1X
kD0

�˛

2

�k
1f
k.�

0/ D �k.�
00/g C 1

1 � ˛

�˛

2

�k
;

where �0; �00 2 f�1; 1gn, and P.�; �/ is the transition kernel of discrete patterns/strings
of length n in a simple random walk, and 
k (resp. �k): f�1; 1gn ! f�1; 1gn�k the
restriction operator to the last n � k strings (resp. to the first n � k strings). The
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following result is a direct consequence of the first/second moment method, and we
leave the detail to readers.

Proposition 2 (Evans (personal communications)) Let T be an N-valued random
variable with P.T > n/ D ˛n, independent of the simple random walk. For An a
collection of discrete patterns of length n, we have

1

2

2�n

1 � ˛
Cap˛.An/ � P.T.An/ < T/ � 2�n

1 � ˛
Cap˛.An/;

where for A � f�1; 1gn,

Cap˛.A/ WD
2
4inf

8<
:

X
�0 ;�002f�1;1gn

G˛.�0; �00/g.�0/g.�00/I g � 0; g.Ac/ D f0g

and
X

�2f0;1gn

g.�/ D 1

9=
;
3
5

�1

:

Now let us mention some previous work regarding the potential theory for path-
valued Markov processes. There has been much interest in developing a potential
theory for the Ornstein-Uhlenbeck process in the Wiener space C0Œ0; 1/, defined as

Zt WD U.t; �/ for t � 0;

where U.t; �/ WD e�t=2W.et; �/ is the Ornstein-Uhlenbeck Brownian sheet. Note that
the continuous-time process .ZtI t � 0/ takes values in the Wiener space C0Œ0; 1/

and starts at Z0 WD W.1; �/ as standard Brownian motion. Following Williams [60], a
Borel measurable set S � C0Œ0; 1/ is said to be quasi-sure if P.8t � 0; Zt 2 S/ D 1,
which is known to be equivalent to

CapOU.Sc/ D 0; (47)

where

CapOU.Sc/ WD
Z 1

0

e�t
P.9T 2 Œ0; t� such that ZT 2 Sc/dt (48)

is the Fukushima-Malliavin capacity of Sc, that is the probability that Z hits Sc

before an independent exponential random time with parameter 1. Taking advantage
of the well-known Wiener-Itô decomposition of the Ornstein-Uhlenbeck semigroup,
Fukushima [33] provided an alternative construction of (47) via the Dirichlet form.
The approach allows the strengthening of many Brownian almost sure properties
to quasi-sure properties. See also the survey of Khoshnevisan [42] for recent
development.
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Note that the definition (48) can be extended to any (path-valued) Markov
process. Within this framework, a related problem to Question 2 is

Question 4 Given a Borel measurable set S1 � C0Œ0; 1/, is

CapMW.S1/ WD
Z 1

0

e�t
PŒ9T 2 Œ0; t� such that �T ı B 2 S1�dt

D 0 or > 0‹

where .�t/t�0 is the family of spacetime shift operators defined as

�t ı B WD .BtCu � BtI u � 0/ for all t � 0: (49)

It is not difficult to see that the set function CapMW is a Choquet capacity
associated to the shifted process .BtCu � BtI u � 0/ for t � 0, or the moving-
window process Xt WD .BtCu � BtI 0 � u � 1/ for t � 0. For a Borel measurable
subset S of C0Œ0; 1�, if CapMW.S ˝1 C0Œ0; 1// D 0, where

S ˝1 C0Œ0; 1/ WD f.wt1t<1 C .w1 C w0
t/1t�1/t�0I w 2 S and w0 2 C0Œ0; 1/g (50)

is the usual path-concatenation, then

P.9T > 0 such that XT 2 S� D 0;

i.e. almost surely the set S is not hit by the moving-window process X. Otherwise,

PŒ9T 2 Œ0; t� such that XT 2 S� > 0 for some t � 0;

and an elementary argument leads to PŒ9T � 0 such that XT 2 S� D 1.
As context for this question, we note that path-valued Markov processes have

also been extensively investigated in the superprocess literature. In particular, Le
Gall [54] characterized the polar sets for the Brownian snake, which relies on earlier
work on the potential theory of symmetric Markov processes by Fitzsimmons and
Getoor [30] among others.

There has been much progress in the development of potential theory for
symmetric path-valued Markov processes. However, the shifted process, or the
moving-window process, is not time-reversible and the transition kernel is more
complicated than that of the Ornstein-Uhlenbeck process in Wiener space. So
working with a non-symmetric Dirichlet form, see e.g. the monograph of Ma and
Röckner [57], seems to be far from obvious.
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Open Problem 2

1. Is there any relation between the two capacities CapX and CapMW on Wiener
space?

2. Propose a non-symmetric Dirichlet form for the shifted process .�tıB/t�0, which
permits to compute the capacities of the sets of paths E , M, BR� : : :etc.

This problem seems substantial already for one-dimensional Brownian motion.
But it could of course be posed also for higher dimensional Brownian motion, or
a still more general Markov process. Following are some well-known examples of
non-existing patterns in d-dimensional Brownian motion for d � 2.

• d D 2 (Evans [28]): There is no random time T such that .BTCu �BT I 0 � u � 1/

has a two-sided cone point with angle ˛ < �;
• d D 3 (Dvoretzky et al. [27]): There is no random time T such that .BTCu �

BT I 0 � u � 1/ contains a triple point;
• d � 4 (Kakutani [39], Dvoretzky et al. [26]): There is no random time T such

that .BTCu � BT I 0 � u � 1/ contains a double point.

We refer readers to the book of Mörters and Peres [67, Chaps. 9 and 10] for historical
notes and further discussions on sample path properties of Brownian motion in all
dimensions.

Finally, we make some connections between Knight’s prediction processes
and our problems. For background, readers are invited to Knight [50, 51] as
well as the commentary of Meyer [59] on Knight’s work. To avoid heavy mea-
sure theoretic discussion, we restrict ourselves to the classical Wiener space
.C0Œ0; 1/;F ; .Ft/t�0;P

W/, where .Ft/t�0 is the augmented Brownian filtrations
satisfying the usual hypothesis of right-continuity.

The prediction process is defined as, for all t � 0 and S1 a Borel measurable set
of C0Œ0; 1/,

ZW
t .S1/ WD P

WŒ�t ı B 2 S1jFt�;

where �t ı B is the shifted path defined as in (49). Note that .ZW
t /t�0 is a strong

Markov process, which takes values in the space of probability measure on the
Wiener space .C0Œ0; 1/;F/. In terms of the prediction process, Question 2 can be
reformulated as

Question 5 Given a Borel measurable set S � C0Œ0; 1�, can we find a random time
T such that

EZW
T .S ˝1 C0Œ0; 1// D 1‹

where S ˝1 C0Œ0; 1/ is defined as in (50).
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