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SUMMARY

We develop Bayesian predictive stacking for geostatistical models. Our approach builds an
augmented Bayesian linear regression framework that subsumes the realisations of the spatial
random field and delivers exact analytically tractable posterior inference conditional upon certain
spatial process parameters. We subsequently combine such inference by stacking these individual
models across the range of values of the hyper-parameters. We devise stacking of means and
posterior densities in a manner that is computationally efficient without the need of iterative
algorithms such as Markov chain Monte Carlo (MCMC) and can exploit the benefits of parallel
computations. We offer novel theoretical insights into the resulting inference within an infill
asymptotic paradigm and through empirical results showing that stacked inference is comparable
to full sampling-based Bayesian inference at a significantly lower computational cost.

Some key words: Bayesian inference; conjugate spatial models; Gaussian processes; Geostatistics; stacking.

1. INTRODUCTION

Geostatistics (Cressie, 1993; Chilés & Delfiner, 1999; Zimmerman & Stein, 2010; Banerjee,
2019) refers to the study of a spatially distributed variable of interest, which in theory is de-
fined at every point over a bounded study region of interest. Customary geostatistical modelling
proceeds from a latent stochastic process over space that specifies the probability law for the
point-referenced measurements on the variable as a partial realisation of the process over a finite
set of locations. Inference is sought for the underlying spatial process posited to be generating
the data, which is subsequently used for spatial predictions over the domain (“kriging” Stein,
1999) to better understand the scientific phenomenon under study. The spatial process, is often
assumed to be stationary and empirically estimated from measurements at sampled locations us-
ing the “variogram” and characterised by parameters representing the sill, the nugget, the range
and, possibly, the smoothness of the process. We collectively refer to these as process parameters.
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Formal likelihood-based inference for this process is, however, thwarted by the absence of
classical consistent estimators of the process parameters in a customarily preferred infill asymp-
totic paradigm (see, e.g., Stein, 1999; Zhang, 2004; Zhang & Zimmerman, 2005; Kaufman &
Shaby, 2013; Tang et al., 2021). Bayesian inference for geostatistical processes (Handcock &
Stein, 1993; Berger et al., 2001; Banerjee et al., 2014; Li et al., 2023), while not relying upon
asymptotic inference, is also not entirely straightforward. Specifically, irrespective of how many
spatial locations yield measurements, the likelihood does not mitigate the effect of the prior dis-
tributions on the inference. This is undesirable since proper prior elicitation for spatial process
parameters is challenging. Objective priors for spatial process models have also been pursued,
but interpreting such information in practice and their implications in scientific contexts are not
uncontroversial. The related question of how effectively (or poorly) the realised data can identify
these process parameters (in an exact sense from finite samples) has also been the subject of
commentary (see, e.g., Hodges, 2013; Bose et al., 2018; De Oliveira & Han, 2022).

The aforementioned, rather substantial, literature has focused extensively on inference for
geostatistical parameters and their sensitivity to modelling assumptions from diverse perspec-
tives. It is, therefore, not unreasonable to pursue methods that will yield robust inference for
the spatial process and for spatial predictions of the outcome at arbitrary points (“kriging”) while
circumventing inference on the weakly identified parameters. Instead of seeking families of prior
distributions for such parameters, recent efforts at computationally efficient algorithms for geo-
statistical models have proposed multi-fold cross-validation methods (Finley et al., 2019) to fix
the values of weakly identified parameters. However, the metrics for ascertaining optimal val-
ues of such parameters are somewhat arbitrary and may not offer robust inference. Instead, our
current contribution develops Bayesian predictive stacking of geostatistical models.

Stacking is a model averaging procedure for generating predictions (Wolpert, 1992; Breiman,
1996a; Clyde & Iversen, 2013). Stacking methods and algorithms in diverse data analytic appli-
cations are rapidly evolving and a comprehensive review is beyond the scope of this manuscript.
Significant developments of stacking methodology in Bayesian analysis have been achieved in
recent years (Le & Clarke, 2017; Yao et al., 2018, 2020, 2021), but, to the best of our knowledge,
developments in the context of spatial data analysis are lacking. Stacking can be regarded as an
alternative to Bayesian model averaging (Madigan et al., 1996; Hoeting et al., 1999). Assume

Bayesian model comparison customarily considers three settings: (i) M-closed where a true data
generating model exists and is included in M; (ii) M-complete where a true model exists but
is not included in M; and (iii)) M-open where we do not assume the existence of a true data
generating model. While Bayesian model averaging is often the preferred solution in the first
setting, predictive stacking has advantages in the M-complete and M-open settings. Given the
complex nature of spatial dependence, the M-closed assumption is rarely tenable in practical
geostatistics and we prefer stacking to model averaging.

Much of the theoretical properties of conventional stacking rely upon properties of exchange-
able models that are not enjoyed by geostatistical models. Inferential behaviour of posterior
distributions is, therefore, studied within an infill asymptotic paradigm. We absorb spatial pro-
cess realisations into a convenient augmented Bayesian linear regression framework (Section 2).
We offer some novel theoretical insights into the consistency of the posterior and posterior pre-
dictive distributions. Each model Mg 2 M is indexed according to fixed values of certain spa-
tial covariance parameters so that the exact posterior distribution is analytically tractable. Sec-
tion 3 develops geostatistical predictive stacking by combining the exact inference across the G
models in M. We develop (i) stacking of means, which combines posterior predictive means,
Eg(¥(S0) j Yobs; Mg), from each of the G models; and (ii) stacking of posterior predictive den-
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sities (Yao et al., 2018), which combines posterior predictive densities P(¥(So) j Yobs; Mg) for
g=1;2;:::;G, where ¥(Sp) is the random variable denoting model predictions of the outcome
at an arbitrary point Sg and Yqps denotes the observed data on the outcome. We obtain exact
Bayesian inference by exploiting exact distribution theory and avoiding iterative algorithms such
as Markov chain Monte Carlo (MCMC). These methods are evaluated theoretically as well as
empirically through simulation experiments (Section 4) demonstrating that stacked inference is
comparable to full Bayesian inference using MCMC at significantly less computational expense.
An illustrative data analysis is presented in Section 5 to further corroborate results seen in the
simulations. We conclude with some discussions and pointers to future work in Section 6.

2. BAYESIAN HIERARCHICAL SPATIAL PROCESS MODELS
2.1. Conjugate Bayesian spatial model

We explore a regression model for a spatially indexed outcome Yy(S) at a location S in a
bounded region D RY,

y(s) =X(s)T +z(s) +"(s); 2.0

where X(S) is a p 1 vector of spatially referenced predictors, isap 1 vector of slopes
measuring the trend, z(s) GP(0; 2R (;)) is a zero-centred spatial Gaussian process on RY
with spatial correlation function R (; ) depending on spatial range parameter , and 2 is a
scale (spatial variance) parameter. The white noise process "(s) N (0; 2) with variance 2
captures measurement error.

Let =1Ts1;:::;sng be a set of n spatial locations, each sj 2 D, yielding measurements
y = (y(s1);:::;Y(sn))" with known values of predictors at these locations collected inthen p
matrix X = (X(S1);  ;X(Sn))". We also define the finite-dimensional realisation of the spatial

process as Z = (z(S1);:::;2(sn))", and let R () = (R (Si;Sj))1 i;j n bethe N n spatial
correlation matrix constructed from the correlation function. A customary Bayesian hierarchical
model is constructed as

yizi 5 2 N(X +2z % %la); zj 2 N(O; 2R ()

] 2.2)
% NC ) % IG@h):;
where we fix the spatial correlation parameters and the noise-to-spatial variance ratio 2 := é,

and ,V ,a,andb are fixed hyper-parameters specifying the prior distributions for and

2 This ensures closed-form conjugate marginal posterior and posterior predictive distributions
(Finley et al., 2019; Banerjee, 2020). In order to harness familiar results from conjugate Bayesian
linear regression, we cast the spatial model in (2.2) into an augmented linear system:

O 1 O 1 0O 4
y X 1 1

@ A=0Q1,0A  +0 A (2.3)
0 01y 14z

AR I AR U C
Yy X

o) 1
2,00
where  N(0; 2Vy ),V =@ 0 V0 Aandp(; ?)/ZIG( ja;b).
0 OR()
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LEMMA 1. The posterior distribution of ( ; ?2) from (2.2) is

PC: Py =6 Cja by NCi%, "My (2.4)

p( 2jy) pC j 2y)

wherea =a +n=2b =b +1(y XNV Yy XM =XV IX and”=
M XTV 1y . The posterior distribution p( jy) is a multivariate Student’s t with degrees of
freedom 2a , location ™ and scale matrix (b =a )M .

Proof. The proof follows from a straightforward adaptation of familiar results from the
Normal-Gamma family of distributions (see (Murphy, 2015) and Section 3.1 in (Banerjee, 2020))
to the setting in (2.3).

m  p matrix that carries the values of predictors at ~ and let J (~) = (R (S;5"))s2 512 ~g
Then, spatial predictive inference follows from the posterior distribution

z
Pz Yiy) = pyiz ; DpEiz; Dp(; Zjy)d d ?; (2.5)

which is again a multivariate t distribution with degrees of freedom 2a , location ~ and scale
matrix (b =a )M where

SEWALNISWM WM M=l ITR 13 ()

0 J'(M)R 1() M1 iz|m+M11 %Im
X JT(R () 2 Llm Sln

Specifically, the predictive distributions p(z(Sp)jy) and p(y(So)]jy) are also available in an-
alytic form as non-central t distributions for any single point Sp 2 D. Bayesian inference can
proceed from exact posterior samples obtained from (2.4) as follows. We first draw values of

2 1G(a ;b ) followed by a single draw of N(”; 2M ) for each drawn value of 2.
This yields samples f ; 2g from (2.4). Predictive inference for the latent process z(Sg) and the
outcome Y(Sp) is obtained by sampling from (2.5) by drawing a value of 2 N ( 2( ); ZVZJ- )
with 2( ):=J3"(-)R () 'zand V;; =R (=) JI"(~)R () I (~) for each value of
f ; 2g drawn above (see Section 3.4 in Banerjee (2020)), then drawing a value of ¥
N(X +2 2 2ly,) for each drawn value of (extracted from ), 2 and 2.

This tractability is only possible if the range decay and the noise-to-spatial variance ratio

2 are fixed. While the data can inform about these parameters, they are inconsistently estimable
(Zhang, 2004) often resulting in poorer convergence. Alternate approaches using K-fold cross-
validation have been explored with limited success (Finley et al., 2019). Therefore, our approach
will conduct the exact inference using (2.4) and (2.5) and stack the inference over the different
fixed values of ¥ ; 2g. Next, we investigate the concentration of the posteriors and the effect of
incorrectly specified hyperparameters on the posterior inference.
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2.2.  Posterior inference for spatial process models
Let L be the Cholesky decomposition of V' such thatV =L LT, and L a non-singular
square matrix such that R ( ) 1 = LTL . The linear model (2.3) can be rewritten as

o, 1 o,_, 1 o 1
sy =X ’In y;1

@' A=@L ' 0A , +@ LA, (2.6)
0 0 L _|{z 3

——) I —m
Yy Xy y

where y  N(0; 2] on+p). To explore posterior concentrations within an in-fill paradigm,
where we assume a fixed size of our spatial domain D and an increasing number of spatial
locations inside D, we will use the concept of equivalence of probability measures.

Assumption 1 (Equivalence). Let Py be the probability distribution of the process y(S) de-
fined by the model (2.1) with true parameter values T o; (2); 0, 59. For each > 0, there is

%2 > 0 such that the probability distribution of the process y(S) defined by the model (2.1) with
parameter values f o; ?; ; 029 is equivalent to Py.

Note that the above Assumption holds when the latent process z(S) follows a Matérn
model in dimension d 2 f1;2; 39, which we provide more details in Section 2.3. In this case,

{he probability dgstribution of the process y(s) defined by the model (2.1) with parameters
2 2

0, %% 02 , with a smoothness parameter of the Matérn model, is equivalent to Pg (see
e.g. Tang et al. (2021, Section 2.1)). The following theorem explores the posterior (in)consistency
of parameter inference.

THEOREM 1 (POSTERIOR INFERENCE (IN)CONSISTENCY). Let Pg be the probability mea-
sure of the model (2.1) with parameter values T ¢; (2,; 0, gg, and let Assumption 1 hold.
Let H = Xy(XyT Xy) lXyT be the (2n +p) (2n + p) orthogonal projector onto the column
Hi1 Hi
H{; Hzo
right N n block formed by rows and columns indexed from n + p + 1 to 2n + p. Assume that
Tr(Hx)=n ¥ asn ¥ 1. Then under P,

H 2 — .
limp( “jy( )= 2 2.7

space of Xy and let H = be a 2 2 partition of H so that Hyy is the lower

y( n) = (Y(s1);y(s2);:::;y(sn)", 2= —é + 21 ) and  denotes the Dirac mea-
sure at .

Proof. See Section A in the Appendix.

Theorem 1 suggests that the posterior distribution of the scale parameter 2 in the spatial
process does not necessarily concentrate to the true generating value. We also provide conditions
for the posterior consistency of in the following corollary.

COROLLARY 1. Let Pg be the probability distribution of the model (2.1) with parameter val-

ues T o; (2); 0 59 under Assumption 1. Define U = (XyTXy) 1= UlTl U1z , where Uyq
U, U2z
T T
isp p,B=U XXX U= Bi1 Ba , where B11 isp  p, C =UpV 'Uqq, and
X In B21 B2

D = UpR ( n) UL and assume the following additional conditions:

Tr(Up); Tr(B11); Tr(C); Tr(D) %0 asn ¥ 1 : (2.8)
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Then, limphu 1 p( Jy( n)) = , under Po, where n andy( n) are defined as in Theorem 1.

Proof. See Section B in the Appendix.

Figure 1 summarises some numerical experiments to empirically explore Tr(H22)=n ¥  and
(2.8) for some typical examples. The study domain D is [0; 1], and locations in  are chosen uni-
formly on D. We generate data using the Matérn covariogram for z(S) (see (2.12) in Section 2.3).
We consider two types of predictors X(S). For the first type, titled “with intercept”, X(S) consists
of an constant 1 for intercept and a predictor generated by a standard normal. For the second
type, labelled “without intercept”, X(S) is composed of two predictors sampled from a standard
normal. We explore the trends of the target quantities with different hyper-parameter values in
the covariogram of z(S) and different types of X(S) as sample size increases. Figure 1 reveals
clearly that Tr(H22)=n increases as sample size increases for all examples. Since Tr(Hz2)=n is
bounded above by 1, the condition Tr(H22)=n ¥  for some constant is likely to hold for all
examples. On the other hand, condition (2.8) is observed to be more sensitive to the choice of
X(8). It does not seem to hold for the cases when contains an intercept. Examples on the one-
dimensional [0; 1] exhibit similar behaviour. Moreover, we prove in Theorem 3 that in the special
case where there is no trend term X(S)" , and the latent process z(S) follows a Matérn model in
dimension d 2 F1; 2; 3g, the posterior distribution of 2 converges to the degenerate distribution
at 2= 2. Hence, in general, this result will be inconsistent unless the noise-to-spatial variance
ratio 2 is fixedtobe 3= 2= 2.

Next, we consider Bayesian posterior predictive inference at a new location Sp 2 D. Let
Zn(Sp) be a random variable distributed as p(z(So)jy( n)) and Yn(Sp) be distributed as
P(Y(s0)jY( n)). We study the prediction error Eq(Zn(So)  Z(So))? for the latent process, and
Eo(Yn(S0)  Y(So))? for the response variable. Let Xy and yy be as in (2.6) and U is as in Corol-
lary 1. The following theorem quantifies these posterior prediction errors.

THEOREM 2 (POSTERIOR PREDICTIVE CONSISTENCY). Consider Sg 2 D. For any given

> 0, denote Cov(z;2(s0)j 2)andR ( n) by 2J .nandR .p, respectively. Let Zn(So) have
the density p(z(So) jY( n)), and Yn(So) have the density p(y(So) jY( n)), and let

Fn=J3"R L(UnX]Yy)p+1pen) and
Gh=1 J',R ;%](R :n + Unp+1:p+n; p+1p+n) R ;%1‘] ins

where we use the suffix N to highlight the dependency of n, and we remove the suffix n of Xy
and Yy when there is no confusion. Under the assumptions in Theorem 1, we have

Eo(Zn(S0)  2(S0))* = Evn + Egin + 0(1); (2.9)

where Eqg on the left side supports 2(Sp), Y( n) and the external randomisation of
P(z(S0)jy( n)), and Ex;n = Eo(z(s0) Fn)2 and Ez:n = 2Gn. Moreover, fEyniE2n ¥ 0
as N ¥ 1 then posterior inference for the latent process is consistent in the sense that
Eo(Zn(so) z(s0))? ¥ Oasn ¥ A, while posterior predictive inference for Y(So) satisfies

Eo(Yn(S0) Y(s0))> ¥ &+ 22 asn ¥ 1: (2.10)

Proof. See Section C in the Appendix.

In the decomposition (2.9), the term Ej.p arises in the deviation from the posterior mean, while
the term Ej., is from the posterior uncertainty. The conditions E1.n; Eo.n ¥ 0 is analytically
intractable in the general case. If, however, is we detrend the outcome so that X(s)T =0, then
E1:n and Ey:y are simplified to inherit a rich structure under the Matérn covariance model for
the latent process z(S). In this case, we provide evidence to support the posterior predictive
consistency for the latent process in the next subsection.
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Fig. 1: The top row (a) provides plots of Tr(H22)=n when X(S) consists of an intercept only
(left), and with additional covariates (right) for different parameter values. The bottom row (b)
plots the quantities Tr (Uy1), Tr (B11), Tr(C), and Tr(D) with an intercept only (left) and with
covariates (right)

2.3.  Conjugate Bayesian model without trend
We now consider a zero-centred spatial process for y(S) at a location s 2 D modelled as

y(s) = z(s) +"(s): (2.11)

LetD R%bea compact domain with d 2 F1; 2; 3g. We also assume that the correlation func-
tion R (; ) is specified by the isotropic Matérn covariogram

o
R (s;9"):= (J(S)ZSQK Cis sY%); (2.12)

where > 0 is a smoothness parameter, () is the Gamma function, and K () is the modified
Bessel function of the second kind of order (Abramowitz & Stegun, 1965, Section 10). It is
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known that the spectral density of the (isotropic) Matérn model without nugget is
2 2

meém(U) = CW for some C > 0: (213)

Fix the smoothness parameter > 0, call the process (2.11) the Matérn model with parameter
values T 2; ; 2g. Since there is no X™ term, the conjugate Bayesian model (2.2) simplifies to

yi 2 N (R ()+ 2ln); 2 1IG(a;b); (2.14)

and the corresponding augmented linear regression becomes

g = :” 7+ i : (2.15)
14z} 142} 142}
y X

L PR
0 R() "~

The following theorem shows the posterior inconsistency of the scale
model (2.14).

THEOREM 3 (POSTERIOR INFERENCE FOR THE MATERN MODEL). Assume that the loca-
tion set = Ts1;:::;Sng satisfies

where N(©; 2Vy)andVy =

2 under the conjugate

max min j ij n a: 2.1
52% 11 nJS Sil (2.16)
Let Py be the probability distribution of the Matérn model (2.11) with the true parameter values
( 3 0, &). Under Py,
: 2 — .

Jim p( “jy( n)) = 2-2: (2.17)

Consequently, limnx 1 p( 2jy( n)) = 2.
Proof of Theorem 3. See Section D in the Appendix.

Note that the posterior inference of 2 is independent of the range decay  chosen in the con-
jugate Bayesian model (2.14). The scale 2 is posterior inconsistent unless the noise-to-spatial

variance ratio 2 = g= S, while the nugget 2 is posterior consistent.

Posterior prediction for Z( ) and y(): Recall the decomposition (2.9) for the posterior prediction

error for the latent process z(S). The following proposition simplifies the two sources of error

E1.n and Ep.n, when the outcome y(S) follows a Matérn model in the presence of a nugget.
THEOREM 4 (POSTERIOR PREDICTIVE CONSISTENCY FOR THE MATERN MODEL). Let

So 2 D. Then, we have the decomposition (2.9), where Ej1.ny is the prediction error of the best

linear predictor for a Matérn model with parameters ¥ 2; ; g satisfying 2 = % and
§ 2 1 1
Exn'=—5 1+J3%, (In+ “R ( n)) In R(n) "Jin: (2.18)

Moreover, if E1:n;Eon @ 0 as N X 1, then the latent process z(S) is posterior predictive
consistent in the sense that Eq(Zn(So) 2(S0))> ¥ 0 as n' ¥ A and, hence, Eo(Yn(So)
y(s0))? ¥ 2 &asn ¥ 1.
Proof. See Section E in the Appendix.
Theorem 4 reveals that the posterior mean of the conjugate Bayesian model (2.14) is iden-
tified as the best linear predictor of any Matérn model with parameters ¥ %; ; %g provided
2= 2= 2 This observation connects the Bayesian modelling to a frequentist approach in
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that the deviation error Ej., is viewed as the prediction error of the best linear predictor of a
Matérn model in the presence of a nugget. Next we provide evidence to support the posterior
predictive consistency for the latent process in the sense that E1.n; Eon ¥ Oasn ¥ 1.

The deviation error Ej.n: It is expected that the prediction error of the best linear predictor of a
Matérn model in the presence of a nugget tends to O as long as the fill distance condition (2.16)
holds. However, it is hard to prove this statement in the general case. To provide some ideas, we
consider a particular one-dimensional example.

We assume without loss of generality that D =[ 1;1],and =Tfi=n; n i ng so the
fill distance condition (2.16) is satisfied. Also let 1 = fi=n; 1 < i< 1 be the infinite
evenly spaced grid. Define

b:=E(z(0)jy(s);s2 nf0g) (resp. b1 :=E(z(0)jy(s);s2 2 nf0g));

be the best linear predictor of z(0) based on the observations y(s) on n f0g (resp. 1 n f0g).
Note that b (resp. b1 ) may well be computed using misspecified parameter values ¥ ; 2g. Let

e:=Eo(z(0) b)? (resp.e1 := Eo(z(0) b1)?); (2.19)

be the prediction error of the best linear predictor based on the observations on the finite grid

n fOg (resp. the infinite grid 4 n T0g). We make the following assumption which relates e to
eqasn ¥ 1.

Assumption 2 (Infinite approximation). The differencee eq ¥ Oasn ¥ 1.

Basically, this assumption suggests that as the grid becomes finer and finer, observations out-
side any fixed bounded interval have little impact on the prediction of z(0). However, it is not
easy to prove such a statement which is conjectured in (Stein, 1999, page 97). The plan is to
prove eq ¥ 0, and by Assumption 2 it implies thate ¥ Oasn ¥ 7. This program is recorded
in the following proposition.

PROPOSITION 1 (PREDICTION ERROR FOR THE MATERN MODEL). Let D =[ 1;1] and

=Tfi=n; n i ng. Under Assumption 2, we have

e "0 agsn ¥ 1; (2.20)

where € is the prediction error of the best linear predictor defined as in (2.19).
Proof. See Section F in the Appendix.

The posterior variance Ep.n: The error term Ej.n defined by (2.18) is also analytically in-
tractable. Here, we provide a numerical study to investigate the behaviour of E.n, whenn ¥ 1
in the general case. We first generate the location set by uniformly sampling n locations in
[0; 1] or [0; 1]?, then we compute Ep., for every location in ~ with 2 =1; 2 = 1 and different
values of and . We expand the location set sequentially to sets with larger sample sizes
by adding locations that are uniformly sampled in the study domain. For each expanded set |,
we recompute the Eo.y for all locations in . Figure 2 plots the median, the 2.5th and 97.5th
percentiles of Ej., for different sample sizes. The values of E:n for points in a fixed domain,
shown in Figure 2, decrease rapidly as the sample size increases, although the rate diminishes
when d increases from 1 to 2. This suggests that the decreasing rate is related to dimension.

3. STACKING ALGORITHMS FOR SPATIAL MODELS
3.1. Stacking of means

¥(S0)P(¥(So0) jY; Mg)dy(so), where Eq(¥(So) j ¥) is the expectation of the posterior predictive
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Fig. 2: The median of Ep.p, for locations uniformly sampled on [0; 1] (a) and [0; 1]? (b). The error
bars indicate the 97.5th and 2.5th percentiles. The sample size n ranges from 100 to 3,200 and
from 100 to 24,300 for the experiments on [0; 1] and [0; 1], respectively.

mean computed from My. Stacking methods will combine the G Bayes predictors as a weighted
average

X -
WyEqg(¥(S0)Y):; (3.1)
g=1
where Twy;:::;wgg are the weights for combination. Define the leave-one-out (LOO) Bayes
predictor for y(sj) under model My as
ZZ
Yy(si) = Eg(¥(si)jy isMg) = y(si)P(¥(si)j :Mg)p( jy i:Mg)d dy(si)
where y j is the data without the ith observation. Stacking determines the optimal weights as
O 1,
X x
argmin,,  @y(s)) Wo¥y(S)A (3.2)

i=1 g=1
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The following proposition studies the posterior prediction error using the stacking predictor,
where we only require that the weights be bounded.

PROPOSITION 2. Let Sg 2 D, and W := (Wy;:::;Wg) be the stacking weights defined by
(3.2) such thatngj is bounded for eachl g  G. Let the assumptions in Theorem 2 or Theo-
rem 4 hold for each model My. We have

o) 1,

X
Eo @y(so) WeEg(Y(s))jy)A ¥ § asn ¥ 1 (3.3)
g=1

Proof. See Section G in the Appendix.

The following theorem shows that the stacking predictor asymptotically minimises the poste-
rior prediction error.

THEOREM 5. Let So 2 D, and W = (Wy;:::;Wg) be the stacking weights defined by (3.2)
such that j\Wg]j is bounded for eachl g  G. Let

Eigi:=FEo(z(si) WGi)% 1 g Gandl i n;

be the deviation error for the latent process z(S) by leaving the i™ observation out under the

model My. Assume that foreachl g G,

Also, if the assumptions in Theorems 2 or 4 hold for each model Mg, then asn ¥ 1 we obtain
o 1, O O 1,1

3 1 X 3
Eo @y(so) WoEg(Y(s0)i)A  Eo @ @y(s) WY (si)A A 10 (3.5)
g=1 i=1 g=1

Proof. See Section H in the Appendix.
Equation (3.4) implies that for each model My the average deviation error for the latent process
goes to 0 as the sampling resolution becomes finer. This condition is consistent with the fact that

1n &ye one-dimensional grid we typically have Ej.g: min( oi3%7) (see Proposition 1); hence
ﬁ -_1E1g. T0¥Qasn ¥ 1.

Theorem 5 holds for candidate models with a misspecified smoothness parameter in the
Matérn kernel for d = 1. Note that Clyde & Iversen (2013, p.487) proves a similar result, while
the established theoretical results about stacking assume exchangeability which is not available
in geostatistical models. The innovation in our theoretical results emerge from studying the be-
haviour of the posterior and predictive distributions within the infill asymptotic paradigm. The
proof of Theorem 5 can be extended to the case where the LOO Bayes prediction ¥4 (S;) is re-

placed by a much cheaper prediction based on K-fold cross-validation.

3.2.  Stacking of predictive densities
Following the generalised Bayesian stacking framework established in Yao et al. (2018), we
devise a second stacking algorithm for spatial analysis, which we refer to agstacking of predictive
sities. This algorithm finds the distribution in the convex hull C = f ;5:1 wg  p( JMg):
gWg = 1;wg  1g that is optimal according to some proper scoring functions. Here p( jMg)

refers to the distribution of interest under model Mgy. Let SE =fw 2[0;1]°: ;5:1 wg =19
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and p¢( jy) be the true posterior predictive distribution. Using the logarithmic score (correspond-

ing to the KL divergence), we seek W so that
L
1 X X<

vlvggglg;ﬁi:llog k:1ng(Y(5i)Jy iMg) (3.6)

P
The optimal distribution ;3=1 Wgp(y(si) LY i; Mg) provides a “likelihood” of observing y(Si)

on location sj given other data. Therefore, -, ;3:1 Wgp(Y(Si)jY i; Mg)) serves as a pseudo-

likelihood that measures the performance of prediction based on the weighted average of the

LOO predictors for all observed locations. Also, it provides an approximation of the expected

log point-wise predictive density (ELPD)
o 1

> & X

Pe(y(si) log @ wgp(y(si)iy i: Mg)Ady(si) (3.7

i=1 g=1

It is worth pointing out that the weights for stacking of means are not necessarily positive,
while those for stacking of predictive densities must be non-negative. Relaxing this restriction
imparts greater flexibility in prediction and improves prediction accuracy for stacking of means.
On the other hand, we can no longer interpret negative weights as a reflection of our prior beliefs
regarding . In our subsequent experiments, we restrict the stacking weights for both algorithms
to be non-negative so that the diagnostic metric MLPD (the average log pointwise predictive
density, introduced in Section 4) is valid for both algorithms.

3.3.  Predictive stacking in finite sample spatial analysis

A critical step in solving stacking weights is the computation of the Bayes predictor and pre-
dictive density. Computing the exact LOO Bayes predictor and predictive densities for all ob-
model with the number of parameters larger than the sample size N, there are limited choices for
approximating LOO predictors accurately without the onerous computation (see, e.g., Vehtari
et al., 2016). Instead of the LOO cross-validation, we prefer using the much cheaper K-fold
cross-validation to generate the predictions. Using K-fold cross-validation instead of LOO in
stacking is first implemented in Breiman (1996b), where the simulation evinces that 10-fold
cross-validation can provide more efficient predictors than LOO cross-validation. Here, we use
K = 10 in the implementations in Section 4.

We offer the pseudo-code algorithms for stacking of means and stacking of predictive densities
using the conjugate Bayesian spatial regression model in Section L. In the algorithms, we first
partition the data into K-folds based on locations. Letting X = [X(s;) : : X(sn)]" be the
design matrix, we use X[K], Y[K], n[K] to denote the predictors, response and observed locations
from k-th fold, respectively, and X[ K],y[ K] n[ K] to denote the respective data not in K-th
fold. The values of the prefixed hyper-parameters ¥ ; ; g of the conjugate Bayesian spatial
regression model are picked from the grid Gg)j, which is expanded over the grids of candidate
values as the cartesian product G~ G~ G?forf ; ; 2g. For stacking of means, we compute

the expected latent process ng_) . 2y 0N locations in fold k for each ¥ ; ; 2g from Ggy and then

generate the corresponding expectation ygk? .2y 10 obtain the stacking weights.

For stacking of predictive densities, we compute the log point-wise predictive density,
(Ip¢ . ; 2)(8)), of () at location s for locations in each fold for all candidate models to find the
stacking weights. The closed form of the log point-wise predictive density is derived in Section J
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of the Appendix. We also devise a Monte Carlo algorithm for stacking of predictive densities,
which is expounded in Section K of the Appendix. Solving the weights for stacking of means
is a quadratic programming problem. We use the solve.QP() function offered by the quadprog
package in the R statistical computing environment and the solver Mosek to solve the weights
in our R and Julia implementations, respectively. The stacking weights for stacking of predictive
densities are calculated by Mosek in both our R and Julia implementations.

4. SIMULATION
4.1.  Simulation settings

We present two simulations to examine the predictive performance of the proposed stacking
algorithms. The data sets for experiments are generated by model (2.1) on locations sampled
uniformly over a unit square [0; 1]?, where the correlation function R is specified by the Matérn
covariogram (2.12). The sample size n of the simulated data sets ranges from 200 to 900, and
we randomly pick np = 100 observations for checking predictive performance. The vector X(S)
consists of an intercept and a single predictor generated from a standard normal distribution. The

true value of the parameters for generating the data in the first simulation are = (1;2)", =7,
2=1, 2=1and = 1.Inthe second simulation, we alter the hyper-parameters in the Matérn
covariogramto =20, 2=1, 2=0:3and =0:5.

We consider customary values of smoothness in spatial analysis, 2 G = f0:5;1;1:5;1:75g.
The candidate values for are selected so that the “effective spatial range”, which ggfers to
the distance where spatial correlation drops below 0.05, covers 0:1 and 0:6 times = 2 (the
maximum inter-site distance within a unit square) for all candidate values of . Here we set
G = 13;14; 25; 36g. Finally, we specify G 2 = f0:1; 0:5; 1; 29 as the candidate grid for 2 We
assign an IG(a ;b ) prior witha =b =2for 2. The priorof follows a zero centred Gaus-
sian with the covariance matrix equal to a diagonal matrix whose diagonal elements are 4, i.e.,
N( ;V )where =0andV =4 |I.Foreachsimulated data set, we use stacking of means
and stacking of predictive densities to obtain the expected outcome Y(S) based on the held out ob-
served locations. The predictive accuracy is evalugied by the mean squared prediction error over

a set of Ny hold-out locations in set Sp (MSPE = = (55 (($(S) y(s))?)=np). We also compute
the posterior expected values of the latent process 2(s) for z(s)en all of the n sampled locations
in S and evaluate the mean squared error for Z(s) (MSEZ = 55 (2(s) 2(s))?=n). To fur-

ther evaluate the distribution of predicted values,pwe computegthe mean log point-wise predictive
density for the np, held out locations (MLPD = = 55 flog( gzl Wgp(y(s)jy; Mg))g=nnp).

Apart from stacking, we also implemented a fully Bayesian model with priors on the hyper-
parameters using Markov chain Monte Carlo (MCMC) sampling for comparison. In addition,
we carried out exact Bayesian inference using the conjugate model in Section 2.1 with hyper-
parameters fixed at the exact value (denoted as Mgp). We use the same priors for 2and as
those in stacking implementations. For the rest of the priors needed in full MCMC sampling, we
assign uniform priors U(3;36) for and U(0:25;2) for , and an IG(2;2) prior for 2. Sam-
pling is fitted through the spLM function in the spBayes package in R. The diagnostic metrics
are computed based on 1,000 posterior samples retained after convergence was diagnosed over
a burn-in period of 10,000 initial iterations. The algorithm for recovering the expected z and
the log point-wise predictive density based on the output of SPLM is presented in Section L of
the Appendix. We monitor all diagnostic metrics for prediction for all competing algorithms.
To measure uncertainty of the diagnostic metrics, we generate 60 data sets for each sample size
in each simulation, fit each data set with the four competing methods and record the diagnostic
metrics of each model fitting.
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Fig. 3: Distributions of the diagnostic metrics for prediction performance for the first simula-
tion (a) and the second simulation (b). Each distribution is depicted through a violin plot. The
horizontal line in each violin plot indicates the median.

4.2.  Predictive performances

Interestingly, the candidate algorithms exhibit different behaviours in the two simulation stud-
ies. Figure 3 summarises the comparison of the predictive performance. In the first simulation
there seem to be no pronounced distinctions between the prediction performance for all compet-
ing models. In the second simulation, however, we observe that stacking of means outperforms
stacking of predictive densities on having better estimates of the latent process on both the ob-
served and unobserved locations (based on MSEZ), while stacking of predictive densities out-
performs stacking of means in terms of the log point-wise predictive density (based on MLPD).
These results are expected since we optimise the prediction error in the stacking of means, and
we maximise the log predictive densities in the stacking of predictive densities.

Treating the fully Bayesian model with priors on all hyperparameters (fitted using MCMC)
as a benchmark, we find that stacking of predictive densities is very competitive in terms of
MLPD. The performance of latent process estimation for the full Bayesian model falls between
stacking of means and stacking of predictive densities. The prediction accuracy for the response
on unobserved locations for all competing algorithms are very close. Based on the medians of
the MSPEs for all fittings, stacking of means slightly outperforms the full Bayesian model, and
both are slightly better than stacking of predictive densities, The conjugate Bayesian model Mg
provides the best point estimates for both response and latent processes based on MSPE and
MSEZ, while it performs worse in terms of MLPD. These results seem to indicate that, when
choosing stacking algorithms, stacking of means is preferred for point estimation and stacking
of predictive densities is preferable for interval estimation.

In Figure 4, we compare the counts of the non-zero weights in stacking and find that stacking
of means tends to produce a slightly smaller number of non-zero weights than stacking of pre-
dictive densities. The number of non-zero weights is small for both stacking algorithms, and this
phenomenon is also observed and discussed in Breiman (1996b). On average, there are around
3.7 and 4.5 out of 64 weights that are greater than 0.001 in the simulation studies for stacking
of means and stacking of predictive densities, respectively. And the number is relatively consis-
tent when the sample sizes increase. These results suggest that stacking methodology is memory
efficient, which is beneficial for large-scale spatial data analysis.
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Fig. 4: Distributions of the counts of nonzero weights in the first (a) and the second (b) simu-
lation. The distribution of the counts are described through violin plots whose horizontal lines
indicate the medians.

In Section M.1, we pick one run for each simulation study and illustrate the interpolated maps
of the predicted response on held out locations and expected latent processes over all locations
generated by different fitting algorithms. The predicted response resembles the de-noised re-
sponse (X(S)" + z(s), not y(S)), and the estimated latent process shares a similar pattern with
the raw data. The latent process estimated by stacking of predictive densities is observed to be
slightly smoother than those estimated by other algorithms, while the predictions of the response
on unobserved locations fitted by different fitting algorithms are almost indistinguishable.

4.3.  Running time comparisons

We provide both R and Julia code for the two proposed stacking algorithms. The code for
the simulation studies are available from the GitHub repository https://github.com/
LuZhangstat/spatial_stacking. Comparisons in predictive performances presented
above are conducted in R. For the running time comparisons reported here, the stacking al-
gorithms are implemented using Julia-1.6.6 and the MCMC sampling algorithms are run in
R-4.2.0. We report the time for obtaining weights for stacking, and we consider the sampling
time for f ; ; ?; 2g using MCMC (no sampling of f ;zg and no predictions). The timing
comparisons are based upon experiments on a Windows 10 pro platform, with 64 GB of RAM
and a 1-Intel Core i7-7700K CPU @ 4.20GHz processor with 4 cores each and 2 threads per
core—totalling 8 possible threads for parallel computing. Figure 5 summarises the running time
for the three competing algorithms. On average, the stacking of means is 526 times faster than
MCMC in the simulation study. Stacking of predictive densities is slightly slower than stacking
of means but is still around 430 times faster than MCMC sampling. These experiments clearly
establish that predictive stacking algorithms are efficient alternatives to the full MCMC sampling
algorithms for estimating latent spatial processes and predicting geostatistical outcomes.
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Fig. 5: Running time comparison for stacking and MCMC sampling

4.4. Inference of prefixed hyper-parameters

One limitation of stacking, compared to full Bayesian inference (e.g., using MCMC sampling
algorithms), is that it does not provide interval estimates for the prefixed hyper-parameters. More-
over, our experiments show that stacking cannot provide a reliable point estimate of the hyper-
parameters. If we treat the grid of the candidate values for the hyper-parameters in our stacking
algorithms as a discrete uniform prior, then, intuitively, we should be able to achieve point es-
timates for those fixed hyper-parameters by a weighted average based on stacking weights. In
Figure 6, we compare the point estimates of  based on stacking for the simulation studies. It
is clear that stacking of means yields unstable estimates. Stacking of predictive densities has a
smaller variance, but the bias can be large. Meanwhile, since is not identifiable, we observe
that the posterior interval estimates for inferred from MCMC algorithms are wide, showing
that the inference for is relatively unstable for all candidate algorithms in this simulation study.
The comparisons of the other two hyper-parameters are provided in the Section M.2.

5. WESTERN EXPERIMENTAL FOREST INVENTORY DATA ANALYSIS

We illustrate our proposed stacking methodology using the Western Experimental Forest
(WEF) inventory data from a long-term ecological research site in western Oregon. This data set
contains coordinates, species, diameter at breast height (DBH) and other measurements for trees
in the experimental forest. The raw data is provided in the R package spBayes, and the code is
available from the GitHub repository https://github.com/LuZhangstat/spatial _
stacking. In this analysis, we focus on the prediction of DBH for living trees using the loca-
tion and species information. There are 1,954 records in all after cleaning up some of the data.
We randomly hold out 500 points for prediction and use the remaining observations to train the
model and draw posterior inference.

We first fit a Bayesian linear regression model (BLM) using Hamiltonian Monte Carlo algo-
rithms implemented in the Stan Bayesian modelling environment through the R interface rstan-
arm. We run the model fitting with the default settings, where the default priors are described in
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Fig. 6: Distributions of the estimated in the first (a) and the second (b) simulation. The distribu-
tion of the counts are described through violin plots whose horizontal lines indicate the medians.
The red dashed horizontal line indicates the actual value of

Gabry & Goodrich (2020). Then, we use the same prior for in our stacking implementations.
For the prior of 2 in stacking implementations, we set up the hyper-parameters in the inverse-
Gamma to have mean at the square of the mean of the default prior for in BLM. We use the
same candidate values for and ? as our simulation studies in Section 4. The largest and small-
est candidate values for are the maximum and minimum values so that the effective spatial
range covers 0.1 and 0.6 times the maximum inter-site distance for Matérn covariogram with all
candidate smoothness values. We pick four candidate values for in this data analysis. Finally,
we evaluate predictive performance using the root mean squared prediction error (square root
of the MSPE defined in Section 4.1) and the average log point-wise predictive density (MLPD
defined in Section 4.1) for all held out locations. Table 1 summarises the result. Stacking delivers
an RMSPE that is lower by around 9% and yields better MLPD in this data analysis.
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Table 1: Summary Statistics of Western experimental forest inventory data analysis

Bayesian linear regression | stacking of means | stacking of predictive densities
RMSPE 22.86 20.70 20.79
MLPD -4.55 -4.45 -4.44

6. CONCLUSION AND FUTURE WORK

We develop geostatistical inference using Bayesian stacking. We offer theoretical insights for
inferential behaviour of posterior distributions in fixed-domain or infill settings and explore the
performance of our methods through simulations and analysis of a forestry data set. The em-
pirical results reveal that our devised stacking methods deliver predictions comparable to full
Bayesian inference obtained using MCMC samples, but at significantly lower costs. Our pro-
posed stacking algorithm can be implemented in parallel and made storage efficient and, hence,
can become a powerful alternative to full Bayesian inference using MCMC samples. Future
directions can build upon our current framework to extend Bayesian stacking for multivariate
geostatistics using conjugate matrix-variate normal-Wishart families (Zhang et al., 2021) and
conjugate exponential families for non-Gaussian data (Bradley et al., 2020). Another extension
is will be in the direction of stacked Bayesian inference for high-dimensional geostatistics (for
example, building on the conjugate framework in Banerjee, 2020).
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A. PROOF OF THEOREM 1

Proof. For ease of presentation, we denote Y( ) by Yn in the proofs. By Assumption 1, there is
a probability distribution P’  Pg, which corresponds to the model with parameters ( o; %; ; &) for
some 2. Under PY, there exists a g such that

Yy Xyoi 2 N@V); (A1)
O . 1
<2lh 0
where Vi=@ g ’l, 0 A Consider the sequence n P( 2jyn). Under P°,
o o0 2,

IG(a .,;b .,), wherea ., =a +n=2and

1
b n — b + E(yy Xy O)T(|2n+p H)(yy Xy 0)

00

1 (A2)
= +E[Q(yy Xy o)I" 01, [Qlyy Xy o)l;
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The expectation under P’ for b :n is

1
E'b .n)=h + EEO(y;(I2n+p H)yy)

1
=b +> X7 (lznsp H)Xy o+ Tr((ln+p H)VY)

DN

: . (A.3)
=b +5Tr((Iznep HV') Gince (lnvp  H)Xy =0)
L |

1 . S, O S
=b + 5 Tr Q3,Q2 o 2| + > Tr(Q2,Q22) ;
p
where Q = Qu1 Qu is an orthogonal matrix such that H = QT In+p O Q with Q2 being the
Q21 Q22 00

lowerright N nblockof Qina2 2 partition. Using Q21Q25; = In  Q22Q3J, and some further sim-
plification we obtain

n o2 2
E'G m)=b +3 5@ TrQRQem)+ ZTrQRQzm) +5 2 S i (A4
3
o(n)
Since EO( n) = Eo(b ;n):(a n 1) and Tr(Q%,Q22) = n  Tr(Hzz), where Tr(Hz2)=n ¥ asn X
1., we obtain limp s 1 E°( n) = 2. The variance of ,, under P’ is given by
V() = E'IV( njyn)] + VIE( niyp)l
— EO b ;2n + VO b n . (AS)
@n 1°@n 2 a, 1
Further note that
" 2#

3 2
VDb ) = ZTr —g(ln Q5Q2) + “QI,Qz +0(n) (A6)

C n+Tr(Q3Q2) +Tr (Q3Q2)° ;

for some C >0 independent of n. Since Q21Q3; + Q22Q3, = In, we have Tr(Q7,Q22) and
Tr (Q2,Q22)? are bounded from above by n. Hence,

V(b ) E'b 2,)
~ T 0 and r

¥ 0 forany >0: (A.7)

Combining (A.5) and (A.7) yields limp » 1 V’( 1) = 0. By Chebyshev’s inequality, p, converges in prob-
ability under P’, and hence under Pg, to 2.

B. PROOF OF COROLLARY 1

Proof. Again we denote Y( ) by yn. The conditional posterior distribution p( j 2;yn)
can be derived from Lemma 1 as N( j(M M )p.qp; 2(M )iL:p:1:p)): Where M l=v 1+

XTR(n)+ 2l "Xandm =V 1 +XT 2R () +1n ‘yn.Let n p( jyn). Some
straightforward algebra yields

2
Ekn ok’ =5 Tr(Bu) +E(n)Tr(C)+ “Tr(D)+E'(n)Tr(Un): (B.1)

Since E'( n) ¥ 2 < A from Theorem 1, the proof follows from (2.8) and (B.1).
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Derivation of (B.1)

E’ n Ok2 =E [E0 f(hn 0) ' (n 0)jynd]
=F [E0 f(n EO( niyn) + EO( njyn) 0)'(n EO( njyn) + EO( niyn)
=F [EO f(é\ 8EO( ni¥Yn) (n EO( nJYn))iynd]

93
pot =

+2E 4 _(ECaiyn) O (0 Eglyn)iy.
=0

+E [EO f(EO( njyn) O)T(EU( njyn) 0)jynd]
= EO [TerO( n J Yn)g] + EO [(EO( n J yn) O)T(EO( n J yn) 0)]

Let » p( 2jyn). By the definition of p, we have

VO( niyn) = VO[EO( j 2;yn)an] + EO(VO[ j Z;Vn]j)’n)
=\I/0[(M miz)[l:p]jyn;"'Eo( 2(M )[1:p];[1:p]an)
=E"( njyn)M dipprpsp; = E'C ni¥Yn)Vas;

EO( niyn) = EOfEO( j Z;Yn)jyng =(Mm )[1:p]:

With M = (X Xy) l=uUum = XYy, under P?,

i 2 . 0
(M m )] N 0;[M XV XyM Jp1:p:11:p)
éXTX + 2y 1 éXT
2 2 0o 1
4X S%lh+ “R “(n)

™
H

N(o U

Therefore, EX[E’( hjyn)] = o,and

EO [(EO( njyn) O)T(EO( njyn) 0)]
= TrfV'[E'( njyn)lg
=TrfV'[(M m )p1plg
=TffY°[E° M " diwpri 2 ;+E° VI(M m )i 21 9

=0

0)jynd]

)

[1:pL;[2:p]

We separate the variance V/[(M m dizpl ) 2] as presented in (B.4) into the following three parts

2 1
XTX XT \% 0 0 0
0 2 + 02

T U X 1, U U 0 0) U )

OR *( n)

u

21

(B.2)

(B.3)

(B.4)

(B.5)

[1:p];[1:;rj> .

+
| {z [1:p];[l:p} | i [1:p];[1:;1 | Iy
D

B11 C

Then

2
E'[(E'(niyn) )" (E'(niyn) o)]= -5 Tr(Bu)+E( n)Tr(C)+ "Tr(D):

Together with (B.2), (B.3), we can obtain (B.1).

(B.6)
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C. PROOF OF THEOREM 2

Proof. For ease of presentation, we denote y( n) by yn. Observe that

Eo(Zn(So) Z(S0))% = Eo FZn(S0) E(z(S0)jyn) + E(z(S0)jyn) z(S0)g”
= Eofz(S0) E(z(S0)jyn)d® + EofV(2(S0) jyn)g:

where the second equality follows from the fact that z(sg)  E(z(So) j Yn) is independent of Y. Note that
z

P(z(s0)iyn) = P@E(S0)iyn; %) pCiyns 2 p( %jyn)d 2d : (C2)

(C.1)

By standard Gaussian conditioning (see e.g. (Rasmussen & Williams, 2006, Section 2.2)),
P(z(s0)jyn; % )=N@T,R 1z; 2(1 JI74R 1J 0 (C3)
By (C.2), (C.3) and Lemma 1, the posterior predictive mean is
E(z(s0)jyn) = Fn: (C4)
Further by the law of total variance and Theorem 1, we get
V(z(s0)jyn) = EFV(z(s0)jyn; 2 )9+ VFE(Z(So)jyn; % )9
P21 IR LI )+ 2ITR AUnpripenpripenR md in = ZGn: (C.5)

Combining (C.1), (C.4) and (C.5) yields the decomposition (2.9), and hence the posterior predictive con-
sistency for z(Sp) holds if E1.n; Eo.n ¥ Oasn ¥ 1.
Further, let , have the density p( jYn). Under conditions (2.8), by Corollary 1 we have Egjj n

0jj> ¥ Oasn ¥ 1. Asaresult,
Eo(Yn(S0)  ¥(S0))®> = Eo(X(S0)"(n  0))* +Epn+Ezn+ §+ “Eo( ?jyn);
which clearly convergesto &+ 2 2asn ¥ 1.

D. PROOF OF THEOREM 3

The proof of this theorem breaks into several lemmas. Recall the definition of b from Lemma 1. The
lemma below provides a simple expression for b ..., which is specific to the conjugate model (2.14).

LEMMA 2. We haveb ., =b + %y( D2l +R ( D)Y( n).

Proof. Note that

M*=xV,'x = ?Ip+R () and m =x"V, 'y = 2y (D.1)
By the Woodbury matrix identity,
mMm = ZyT(ln+ 2R *( ) 'y
= Ay y(h+R () Yy=yVyly y(Cla+R () Yy

which yields the desired result.

The next lemma studies the asymptotic behaviour of b in the case where the range decay = o, that
is is fixed at the true value.
. . . 1
LEMMA 3. Let = o, and assume that MaXspop MiN1 § nJS Sijj N d. Then
b., D e
—— ¥ — Pg-almost surely: (D.2)

n 22
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1
Q)
1
Proof. Let Qp, be the orthogonal matrix such that QnR ,( n)Qf = g §, where §”) is
(n)
n
the i-th largest eigenvalue of matrix R (). Thus, under P,
OO ™ 11
§1 + 6
Qny( n) N 50;5 §§
G0 g
By Lemma 2, we get

X 2 M4 2
2b ., b)y= i 042 (D.3)
’ R (n) + 2
i=1 i
where Uj SN (0; 1) fori =1;:::;n.By Tangetal. (2021, Corollary 2), there exists C > 0 independent
of n such that i(n) Cni @ i

foralll i n.Thisimplies that
X 2 gn) + 2

n¢
i=1 i

| (D.4)
By the law of large numbers, (D.2) follows from (D.3) and (D.4).

Proof of Theorem 3. Let % := 2 %2 = 2  and let P’ be the probability distribution of the Matérn
model with parameters ( %?; ; 2). By Tang et al. (2021, Theorem 1), P is equivalent to P. Further by
Lemma 3,

b N b '] 3 . PO 1 t ly:
? 2 272, -almost surely.
which also holds Pp-almost surely. Now by Lemma 1,

Eo( 2iy( n)) =

b n é 2; b %
: — and Vo( “jy( n)) = '
a .,

1

—; D.5
@n Dany » n P
which yields (2.17) by Chebyshev’s inequality. This implies the posterior consistency of 2 =

2 2_
E. PROOF OF THEOREM 4
Proof. By (D.1), we have

pzjy; H=N(Un+ R () H 'y X

Combining with (C.4), we get the posterior predictive mean

lh+R () H Y
E(z(s0)jyn) =J7.nR ( n) 'E(zjyn)

=J"R (n) '+ R () Y 1yn:‘JT;n( In+R ( n) ‘yni

which is the best linear predictor corresponding to a Matérn model with parameter values f %; ; %g
satisfying 2 = %= 2, Further by Theorem 3, the formula (C.5) reduces to

2
V(z(so)jyn) ¥ %(1 JTLR (1 n) 1J :n) + OZ*JT;n( I, +R (n) 'R (n) N ;s
which gives (2.18). The rest of the theorem easily follows.
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F. PROOF OF PROPOSITION 1

Proof. To simplify the notation, we denote by ~ := = the inter-spacing of the grid. Let fo (resp. T)
be the spectral density of the Matérn model with true parameter values f 3; o; &g and the smoothness
parameter g (resp. possibly misspecified parameter values ¥ 2; ; 2g the smoothness parameter ).
Define

X X
Bw= "* fo u*zk and B (U= ! f u+2k

k= 1 k= 1

By (Stein, 1999, Chapter 3, (13)), the prediction error of y(0) based on y(s),s 2 4 nT0gis

z 2
£ (u) du ;

Z
4 2 B (v du
£ (u)?

and hence the prediction error of z(0) based on y(s),s 2 1 nf0gis

42R 1?O(U)du

f (u? 2.
0 .

2
£ (u) du

eq =

Recall from (2.13) the spectral density of the Matérn model without nugget. We write

R ()= égo(u)"'zj and € (U)= g (u)+2i;

so that

4 2R 390 (U)"'%g du

(29 (W+z 22

(2g (W+L 2) du

eq = F.D)

Note thatg (u) cu 2 1 forsomec > 0. It is known that (see e.g. (Tang et al., 2021, Section 2.3))

z 1

1 4 2
2 2 .
u) + — ———— forsome C > 0: F.2
9 (W+5 Py (F2)
Furthermore, g (u) 2 forulargeandg (u) 1 for u small. We prove thateq ¥ Oasn ¥ 1.
Further by Assumption 2, we gete ¥ Oasn ¥ 1. Therefore,
£ B wrrg 423 2 o2 1
du = +O( M=oy F.3
(7g @+ T ) 9
Combining (F.1), (F.2) and (F.3) yields
1
2
eq = g+ O( min(2 o;2 ;l)) 1+ C 22+1 g min(2 0;22—+1):

Thus, we haveeq ¥ Oasn ¥ 1, and by Assumption 2 we get (2.20).
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G. PROOF OF PROPOSITION 2

Proof. For ease of presentation, we give the proof in the setting of Theorem 4. Note that

X Lp) LIPS
Eo Y(So0) WyEq(y(s0)jy) = §+Eo Wq (z(S0)  Eg(z(s0)iy))
g=1 g=1
X X o
E+  wy?  Eo(z(so) Eg(z(s)iy))?:  (G.D)
g=1 g=1

where we apply the Cauchy-Schwarz inequality in (G.1). For each 1 g G, the term
Eo (z(so) Eg (Z(So)jy))2 corresponds to the deviation error E;;n for the model My, which goes to
Oasn ¥ 1. Since jng is bounded for each g, the bound (3.3) follows readily from (G.1).

H. PROOF OF THEOREM 5
Proof. By Proposition 2, it suffices to prove that

o 1,1
1 X X 2 .
Eo@ﬁ y(si) Wy ¥q(si) At o asn ¥ 1: (H.T)

i=1 g=1

For ease of presentation, we prove (H.1) in the setting of Theorem 4. Note that

(@] !2]- LIPS

1 X =X , 1 X X

EO@H y(si) Wo(si) A= F+ HEO Wg (z(si)  Wy(si))
i=1 g=1 | i=1 g=1 {7 }
B
21 x 2 X
0 + ﬁ Wg El;g;i: (H2)
g=1 i=1

By the boundedness of jng and the condition (3.4), the limit (H.1) follows easily from (H.2).
Taking a closer look at (H.2), we can see that B summarises the average squared prediction errors for

the average squared prediction errors for the latent process over the observed locations.
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I. PSEUDO-CODES FOR STACKING ALGORITHMS

Algorithm 1. Stacking of means.

Data: X,y, p:Design matrix, outcome and location set
,V ,a ,b :Prior parameters
G :G ;G 2:Gridsof ; ; 2
Result: Gy: Grid spanned by G ;G ;G 2
w: Stacking weights

Compute XS% qa= XT[ KIX[ K], X§k) = XT[ K]y[ K] and record the number of observations

observations not in fold k;
foreach T ; g in grid expanded by grid of and do
for k = 1 to K do

Calculate R e o = TR USSS 5 sz ol K o((n nk)3);
Store Rge; k) = FR(S; % 5 )9s2 nikis?2 nl K] O(n nk);
for 2 in the grid of 2 do
Compute the Cholesky decomposition L of #
2X(k) +v 1 ZXT[ K]
Mi=LL = prod L ) ond);
" X[ k] R(#k; k) + In nk
v i o+ 2x®
Computeu=m = Y o p);
?y[ Kl
Updateu = L lu;
Updateu =L Tu,whereu=( T; ,7)7 o(n?);
Compute the expected latent process on locations in fold k
7® =R R 1 .
(:: 7 Nk Bk k2
Compute expected outcome on locations in fold k ygk? 2y = X[kl + ng? C2y3

Compute Stacking weights W based on fyék) ) z)gl((:.lf::é;)geall;
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Algorithm 2. Stacking of predictive densities
Data: X,y, p: Design matrix, outcome and location set
,V ,a ,b :Prior parameters
G :G ;G 2:Cridsof ; ; 2
J: number of samples for log point-wise predictive density estimation
Result: Gyj;: Grid spanned by G ;G ;G 2
w: Stacking weights

Compute xlg';z) 4= X1 KIXT KL X0 = X[ Kly[ K, ky[ kJk2=y"[ Kly| k]and record

predictors and response for observations not in fold k;
foreach T ; g in grid expanded by grid of and do
fork=1to K do

Calculate R % ) = TR X(si8% ; Msis2 o K o((n nk)3);
Store Re: ky = FR(S; " § )Os2s[K:s02 n[ K] O(n nk);
for 2 in the grid of 2 do
Compute the Cholesky decomposition L of #
k
IoL e XdtV D XK -
M1=L L= yod” . ) omnd) ;
" X[ ] R(# k; k) + In nk
1 2vy¢ (K)
Compute U =m = v roXy O(n p);

2yl K
Updateu = L lu;
Computeb =b +0:5( 2ky[ klk2+ TV 1! uTu) and
a =a +05(N ny);
Updateu=L Tu,whereu=( T; ,)7 o(n?);
Generate the posterior expected outcome on locations in fold k
9I((; 2y = X[K] R 1 R 1k; kK z
Compute Ipc = 0:5log(2 )+1log (@ +1=2) log (a)+a logh ;
foreach s 2 S[k] do
Generate hs = X(S) Rik: k)(s) RU™) where Rik: 1y(S) is the row with
elements fR(S;SO; i )0s02 nl Kl in R(k; K)
Compute Vs = kL thIk?+ 2.
Compute the log point-wise predictive density of y(S) at location S, by
Ipc ; ; 2)(s) =
Ipc  0:5log(Vs) (a +1=2)logfb +(y(s) ¥ . . 2)())°=(2Vs)g U.1);

Compute Stacking weights w based on flp . . 2)(5)9?2; " 2)2Gan’

J. DERIVE THE CLOSED FORM OF POINT-WISE PREDICTIVE DENSITY

In this subsection, we derive the posterior predictive density of the outcome y(Sg) on location Sg. We
follow the notations in Section 2. First, we know that y(So)j ; 2;y; follows a Gaussian with mean
x(so) +U( )R ( n)zand variance 2 2. Since the conditional posterior distribution j 2;y; fol-

lows N(M m ; 2M ), the conditional posterior distribution y(sg)j 2;y; still follows a Gaussian
N( s,; 2Vs,) where

s = Ix(so) U({;R 3 n)}M m ; Vs, =hg,M hl + 2:

hso
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Next, through equation (2.4)

z
pP(Y(S0)iy; )= pyGo)i %y p( 2 ;y)d 2
Z
= NY(S0)j so; 2Vso)IG( 2ja ;b )d 2
Z
— 1 (y(so) s)  b? 2( a 1) b 2
T @ Vs, D2 ezxp 2 2V, @) op
_ b? 2( a 1=2 1) L (y(so) s0)° 2
T2 V) (a) =P = b d
_ @1 ) s O
(2 V)72 (a) 2Vs,

The log point-wise predictive density is

(Y(s0)  s0)?

I jy; )= 05log(2 Vs,) +a logh +1=2)log b +
p(y(so)jy: ) 09(2 Vs,) +a log (a ) log Ve, a1

+log (a +1=2) log (a)

K. STACKING OF PREDICTIVE DENSITIES ALGORITHM (MONTE CARLO VERSION)

We present a Monte Carlo algorithm to estimate the log of point-wise predictive density for outcome in
fold k given observations not in fold K. For each k, we generate J posterior samples of 2and( T;zZN)T =
, (e, F 20); (g forj=1;::::7), using data not in fold k. Then we calculate the corresponding
expected outcome for location s in fold k, 9'{ L 2 (s) for j = 1;:::;J. Next, we compute the predictive
density of y(s) conditional on the prediction 9?“_. . 2)(s) and the nugget (variance of the noise process,

which equals the product of 2 and the j-th posterior sample 20Y) for each j. The conditional predictive
distribution of y(S) follows

pY©)i 2P ) =Ny ()jy . . 2 20 (K.1)

Finally, the log point-wise predictive density (LPD) of y(S) at location S is estimated by

z
I »)=log  py(s)i % Ip( % jyl KDd “d
2 x 2 (K2)
log _ 5 pc;in(®)i 2P D).

Jj=1

and we can compute the stacking weights based on the estimated LPDs. The following is the Monte Carlo
version of the stacking of predictive densities algorithm.
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Algorithm 3. Stacking of predictive densities (Monte Carlo Version)

Data: X,y, p: Design matrix, outcome and location set
,V ,a ,b :Prior parameters
G :G ;G 2:Cridsof ; ; 2
J: number of samples for log point-wise predictive density estimation
Result: Gyj;: Grid spanned by G ;G ;G 2
W: Stacking weights
Compute xpro 4= X1 KIX[ K, X = XT[ Kly[ K], ky[ kIk?2 =yT[ Kly[ k] and record
the number of observations Ny in fold k fork = 1;:::; K, where X[ k]y[ K] denotes the
predictors and response for observations not in fold k,
foreach T ; g in grid expanded by grid of and do
fork=1to K do

Calculate R % ) = TR X(si8% ; Msis2 o K o((n nk)3);
Store Re: ky = FR(S; " § )Os2s[K:s02 n[ K] O(n nk);
for 2 in the grid of 2 do
Compute the Cholesky decomposition L of #
K
IoL e XdtV D XK -
Mi=LL = N Kk 1 2 O(n®):
" X[ ] R(# k; k) + In nk
1 23y¢ (K)
Computeu=m = v 2_;[ k]xy o(n p);

Updateu = L lu;
Computeb =b +0:5( 2ky[ klk2+ TV 1! uTu) and
a =a +05(N ny);

Generate 2M::::: 20 Inyverse-Gamma(a ;b );
Generate @) N(M m ; 200M )by takingv®  N(0; 2G1, nip) and
computing @ =L T(v® +u)forj=1;:::;7;

Generate the posterlor samples of the expected outcome on locations in fold k
k;
9( J) _X[k] +R(k k) R( k; K) (J)’le;:::;J;

foreach S 2 Sk] do
Compute the posterior samples of the log-density of observation y(S) at location

S, P ;; 2y(Y(9)] 2); @) by taking the density of N(y(kj) (S); 2 2y at

y(s) forj =1;:::;J3 (K.1);
Compute the expecteﬁi IOI% point-wise predictive density of y(s) at location s, by

) =log 3 iipc ()] 2P 9) (K2
Compute Stacking weightswbased on flp ;. 2)(S)g( - 2y26.

L. RECOVER EXPECTED Z AND LOG POINT-WISE PREDICTIVE DENSITY FOR MCMC SAMPLING

The package spBayes doesn’t record the posterior samples of the latent process z(S). In this subsection,
we illustrate how to recover the expected z(S) for both observed and unobserved location and compute
MLPD for the simulation studies based on the outputs returned by spLM. To achieve our goal, we need to
recover the posterior samples of z(S) on all locations given the recorded MCMC samples of parameters
2; 2 and . Denote z(S) on observed and unobserved locations as z, and z,,, respectively, and

[ ] )
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denote z(S) on all locations as z . Based on (2.2),

PO Jy; 5 % 5 )/NWIX + 10 25 21) N(Z jo; 2R, ()
u u u
123
1 n o)
7 exp > 21,0z (y X )ND(1h0z (y X )ND+z" 2R 1 )z

2 -2
/EXp % z T ZR ;1( )+ Olng 7 z T (y )é)_ (y X )T: 20 z

/N jM,m,;M,);
where  combines the observed and unobserved location sets and

2l,0 7 X )=2
Mz= ZR;l( )+ Ono : m, = (y O)

Let £ @); 20); 2G); (): (g for j =1;:::;J denote the recorded MCMC samples. We generate

posterior samples for z using the above full conditional posterior distribution for each iteration j and
then compute the average as the expected z . We further compute the LPD of y(S) any held out location

S by

z
Ip(s) = log o p(y(s)j ;z(s); ?p( ;z(s); 2jy)d dz(s)d ?
s z(s); 2 o
< =
=log :% pY(©)] Piz(5)P; 2D)
=1 >
8 o
< X =
= log - % N (y(s)jx(s)” @ +z(s)d; 20)y
Jj=1 >

M. FIGURES FOR SIMULATION STUDIES

M.1. Interpolated maps for the simulation studies
M.2. Distributions of the estimated —and ?

N. COMPUTE THE STACKING WEIGHTS FOR STACKING OF MEANS (IN R CODE)

Let us format the expected outcome fygk) . z)gl((:.lf::z:;)éea" computed in Algorithm 1 by an N G

matrix ¥ . Each column of ¥ stores the expected outcome fygk) . z)gk_l;””K for each candidate model,

stacking weights, we need to find the weights that satisfy
argminf(ly Yw)™(y Yw)g;
w
- Pg T . ,
under the constrain " Wg = 1. Now we modify it into a quadratic programming (QP) problem.
v Wy fw

=< S < S
=f(y Wy ?G) Wy (?g ?G)ng(y Wy ?G) Wy (?g ?G)g
g g g g

= Yw)'(y Yw)
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(c-f) the expected y(S) on the Ny = 100 held out locations generated by all competing algorithms
for one data set in the first simulation.

wherey =y ?G’YPz (¥ Yo):

lem has constrains

G 1
g=1 Wy

1 and wy

:(‘?G 1
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Fig. 9: Interpolated maps of (a) the response y(S), (b) the denoised response X(S) + z(s) and
(c-f) the expected y(S) on the N, = 100 held out locations generated by all competing algorithms
for one data set in the second simulation.
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Fig. 10: Interpolated maps of (a) the latent process z(S) and (b-g) the expected z(S) on all n =
900 sampled locations generated by all competing algorithms for one data set in the second
simulation. The N = 900 locations include both observed and unobserved locations
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Fig. 11: Distributions of the estimated in the first (a) and the second (b) simulation. The dis-
tribution of the counts are described through violin plots whose horizontal lines indicate the
medians. The red dashed horizontal line indicates the actual value of






