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The Vervaat transform of Brownian bridges
and Brownian motion
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Abstract

For a continuous function f ∈ C([0, 1]), define the Vervaat transform V (f)(t) :=
f(τ(f) + t mod 1) + f(1)1{t+τ(f)≥1} − f(τ(f)), where τ(f) corresponds to the first
time at which the minimum of f is attained. Motivated by recent study of quantile
transforms of random walks and Brownian motion, we investigate the Vervaat trans-
form of Brownian motion and Brownian bridges with arbitrary endpoints. When the
two endpoints of the bridge are not the same, the Vervaat transform is not Markovian.
We describe its distribution by path decomposition and study its semi-martingale
property. The same study is done for the Vervaat transform of unconditioned Brownian
motion, the expectation and variance of which are also derived.
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1 Introduction and main results

In recent work of Assaf et al. [4], a novel path transform, called the quantile transform
Q has been studied both in discrete and continuous settings. Inspired by previous works
in fluctuation theory, see e.g. Wendel [52] and Port [45], the quantile transform of simple
random walks is defined as follows. For w a simple walk of length n with increments of
±1, the quantile transform associated to w is defined by:

Q(w)j :=

j∑
i=1

w(φw(i))− w(φw(i)− 1) for 1 ≤ j ≤ n,

where φw is the quantile permutation on [1, n] defined by lexicographic ordering on
pairs (w(j − 1), j − 1), that is for 1 ≤ i < j ≤ n, w(φw(i) − 1) < w(φw(j) − 1), or
w(φw(i)− 1) = w(φw(j)− 1) and φw(i) < φw(j).
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The Vervaat transform

As shown in Assaf et al. [4, Theorem 8.16], the scaling limit of this transformation of
simple random walks is the quantile transform of Brownian motion B := (Bt; 0 ≤ t ≤ 1):

Q(B)t :=
1

2
L
a(t)
1 + (a(t))+ − (a(t)−B1)+ for 0 ≤ t ≤ 1, (1.1)

where (·)+ := max(·, 0) is the positive part of any real number, La1 is the local time of B
at level a up to time 1, and a(t) := inf{a ∈ R;

∫ 1

0
1Bs≤ads > t} is the quantile function of

the occupation measure of Brownian motion. We refer readers to Dassios [22, 23, 24],
Embrechts et al. [28], Yor [56], Bertoin et al. [10], Chaumont [17] for further discussions
on the quantile function a(t) for 0 ≤ t ≤ 1. See also the thesis of Forman [32] for a
detailed account of the quantile transform Q.

From the definition (1.1), it is not quite clear what the quantile transform of Brownian
motion looks like, and which properties it inherits from Brownian motion. The key result
of Assaf et al. [4] is to identify the distribution of the somewhat mysterious Q(w) with
that of the Vervaat transform V (w) defined as:

V (w)(i) :=

{
w(τV + i)− w(τV ) for i ≤ n− τV ,

w(τV + i− n) + w(n)− w(τV ) for n− τV ≤ i ≤ n,

where τV := min{0 ≤ j ≤ n;w(j) ≤ w(i) for 0 ≤ i ≤ n} is the first time at which the
simple random walk reaches its global minimum. Consequently,

(Q(B)t; 0 ≤ t ≤ 1)
(d)
= (V (B)t; 0 ≤ t ≤ 1) (1.2)

with

V (B)t :=

{
B1−A+t −B1−A for 0 ≤ t ≤ A,

Bt−A +B1 −B1−A for A ≤ t ≤ 1,

where A is the almost sure arcsine split such that 1−A := argmint∈[0,1]Bt. As a result
of the identity (1.2), to understand the quantile transform of Brownian motion, it is
equivalent to study its substitute, the Vervaat transform V (B).

Historically, Vervaat [50] showed that if B is conditioned to both start and end at 0,
then V (B) is normalized Brownian excursion:

Theorem 1.1. [50] (V (B0,br); 0 ≤ t ≤ 1)
d
= (Bex; 0 ≤ t ≤ 1), where (B0,br

t ; 0 ≤ t ≤ 1)

is Brownian bridge of length 1 starting at 0 and ending at 0, and (Bext ; 0 ≤ t ≤ 1) is
normalized Brownian excursion.

For usual definitions of Brownian bridge/excursion, we refer readers to Revuz and
Yor [47]. Furthermore, Biane [11] proved a converse theorem to Vervaat’s result, that is
to recover standard Brownian bridge from normalized Brownian excursion by uniform
sampling:

Theorem 1.2. [11] Let Bex be normalized Brownian excursion, and U be uniformly
distributed random variable independent of Bex. Then the shifted process θ(Bex, U)

defined by

θ(Bex, U)t :=

{
BexU+t −BexU for 0 ≤ t ≤ 1− U,
BexU+t−1 −BexU for 1− U ≤ t ≤ 1,

is standard Brownian bridge.

See also Pitman [41] as well as his monograph [42, Exercise 6.1.1 and 6.1.2] for a
simpler proof of these results using the cyclic lemma.

Chaumont [18] extended Theorem 1.1 to stable Lévy processes. Chassaing and Jason
[16] considered a similar path transform of a reflected Brownian bridge conditioned
on its local times at 0. Miermont [39] proved a version of the theorem in the case of
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The Vervaat transform

spectrally positive Lévy processes, those are Lévy processes with no negative jumps.
Fourati [33] established the result for general Lévy processes under mild hypotheses,
where a connection was made by Uribe [49] to Lévy bridges conditioned to stay positive.
Le Gall and Weill [37] studied a Vervaat-like transform of Brownian trees in terms of
re-rooting. Theorem 1.1 was extended to Markov processes by Fourati [33] and Vigon
[51], and to diffusion processes by Lupu [38].

By considering random times other than argmin, Bertoin et al. [9] studied the
cyclic shift of Brownian bridges with non-zero endpoint. The more general case of
CEI processes, those are cyclically exchangeable increment processes, was treated by
Chaumont and Uribe [19]. As far as we are aware, there has not been previous study
of the Vervaat transform of unconditioned Brownian motion B, or of Brownian bridges
Bλ,br ending at λ 6= 0.

The contribution of the current paper is to provide path decomposition results of
Vervaat transform of Brownian bridges, for simplicity, call them Vervaat bridges, with non-
zero endpoint. Then we use the path decomposition to derive a collection of properties
of the Vervaat transform of Brownian bridges and Brownian motion. The main result is
stated as follows:

Theorem 1.3. Let λ < 0. Given Zλ the time of the first return to 0 by V (Bλ,br), whose
density is given by

fZλ(t) :=
|λ|√

2πt(1− t)3
exp

(
− λ2t

2(1− t)

)
, (1.3)

the path is decomposed into two (conditionally) independent pieces:

• (V (Bλ,br)u; 0 ≤ u ≤ Zλ) is Brownian excursion of length Zλ;

• (V (Bλ,br)u;Zλ ≤ u ≤ 1) is first passage bridge through level λ of length 1− Zλ.

Fig 1. Vervaat bridge = Excursion + First passage bridge.

Recall that Brownian excursion of length l > 0 is defined by
(
Bex,lt := 1√

l
Bext/l; 0 ≤ t ≤ l

)
,

where (Bext ; 0 ≤ t ≤ 1) is normalized Brownian excursion. For λ < 0, first passage bridge
through level λ of length l > 0 is regarded as (Bt; 0 ≤ t ≤ l) conditioned on Tλ = l, where
Tλ := inf{t > 0;Bt < λ} is the first time at which Brownian motion hits λ < 0.

Patrick Fitzsimmons points that Theorem 1.3 is closely related to Williams’ decom-
position of Brownian paths [53, 54]. Actually, the result is a local version of Williams’
decomposition, see e.g. Fitzsimmons [30] for further discussions. Note that Bλ,br con-
verges weakly to B0,br as λ → 0− and the Vervaat transform V is continuous at point
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The Vervaat transform

B0,br. Applying the continuous mapping theorem, Theorem 1.1 is recovered as a weak
limit λ→ 0− of Theorem 1.3.

The parametric family of densities (fZλ)λ<0 appeared earlier in the work of Aldous
and Pitman [3, Corollary 5], when they studied the standard additive coalescent. For B1

normally distributed with mean zero and unit variance,

Zλ
(d)
=

B2
1

λ2 +B2
1

, (1.4)

which corresponds to the mass of the size-biased tree component in the Brownian forest
when the cutting intensity of the Brownian CRT is |λ| > 0. We refer readers to Pitman
[42, Chapter 4 abd 10] for further development.

For Vervaat bridges with positive endpoint V (Bλ,br) where λ > 0, it is not hard to
derive the following duality relation:(

V (Bλ,br)t; 0 ≤ t ≤ 1
) (d)

=
(
V (B−λ,br)1−t + λ; 0 ≤ t ≤ 1

)
for λ > 0. (1.5)

In other words, looking backwards, we have the first piece of Brownian excursion above
level λ > 0, concatenated by the second one of first passage bridge from λ to 0. It is
well-known that a first passage bridge from λ > 0 to 0 has the same distribution as the
three dimensional Bessel bridge from λ > 0 to 0, see e.g. Biane and Yor [12]. We obtain
the following decomposition of Vervaat bridges with positive endpoint:

Corollary 1.4. Let λ > 0. Given Ẑλ the time of the last exit from λ by V (Bλ,br), whose
density is given by fẐλ(t) := fZ−λ(1 − t) as in (1.3), the path is decomposed into two
(conditionally) independent pieces:

• (V (Bλ,br)u; 0 ≤ u ≤ Ẑλ) is the three dimensional Bessel bridge of length Ẑλ,
starting from 0 and ending at λ;

• (V (Bλ,br)u; Ẑλ ≤ u ≤ 1) is Brownian excursion above level λ of length 1− Ẑλ.

Fig 2. Vervaat bridge = Bessel bridge + Excursion.

Organization of the paper:

• In Section 2, we provide two different proofs of Theorem 1.3. The first proof is
based on the weak limit approach, where we make use of a bijection lemma proved
by Assaf et al. [4] (Subsection 2.1). The second proof relies on excursion theory,
where the agreement formula by Pitman and Yor [44] is employed (Subsection 2.2).
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The Vervaat transform

• In Section 3, we give a thorough study of V (Bλ,br) where λ 6= 0 using Theorem
1.3 and Corollary 1.4. We prove that these processes are not Markov (Subsection
3.2). However, they are semi-martingales and the canonical decompositions are
given (Subsection 3.3). Further we relate such processes to more elementary
ones (Subsections 3.1 and 3.4). The convex minorant of V (Bλ,br) is also studied
(Subsection 3.5).

• In Section 4, we focus on studying the Vervaat transform of Brownian motion.
We prove that V (B) is not Markov as well (Subsection 4.1). We show that it is
semi-martingale and the canonical decomposition is given (Subsections 4.2 and
4.3). Finally, we provide explicit formulae for the first two moments of the Vervaat
transform of Brownian motion (Subsection 4.4).

2 Path decomposition of Vervaat bridges

This section is devoted to proving Theorem 1.3. First, we use a discrete approximation
to obtain the path decomposition of V (Bλ,br) where λ < 0. We obtain an analog to
Theorem 1.2 as a by-product. In the second part, we recover the same result via
excursion theory.

2.1 Path decomposition via the weak limit approach

2.1.1 Random walks analysis

We begin with the discrete time analysis of random walks, which is based on com-
binatorial principles. For a simple random walk w of length n with increments ±1, we
would like to describe the law of V (wa) := (V (w)|w(n) = a), where a < 0 has the same
parity as n.

Recall that τV (w) = min{j ∈ [0, n];w(j) ≤ w(i) for 0 ≤ i ≤ n} is the first time at which
the simple walk w attains its minimum, and K(w) = n− τV (w) is the distance from the
position of the first minimum to the end. Following Assaf et al. [4, Theorem 7.3], the
mapping w → (V (w),K(w)) is a bijection between walk(n), the set of simple walks of
length n and the set

{(v, k); v ∈ walk(n), v(j) ≥ 0 for 0 ≤ j ≤ k and v(j) > v(n) for k ≤ j < n},

where k, called a helper variable, records the splitting position in the original path. The
following result is a direct consequence of this theorem related to Vervaat bridges.

Lemma 2.1. [4] Let a < 0 have the same parity as n. Then wa → (V (wa),K(wa)) forms
a bijection between {w ∈ walk(n) : w(n) = a} (simple bridges ending at a < 0) and the
set

{(v, k); v ∈ walk(n), v(j) ≥ 0 for 0 ≤ j ≤ k, v(j) > a for k ≤ j < n and v(n) = a}. (2.1)

Observe that, to each pair (v, k) in the set given by (2.1), one can associate a unique
triple (Za, f br,1Za , f

br,2
Za ), where

• Za is the first time at which the path hits level −1;

• f br,1Za is the path of first passage bridge of length Za through level −1;

• f br,2Za is the path of first passage bridge of length n− Za from −1 to a < 0.

Note that one may have the same triple (Za, f br,1Za , f
br,2
Za ) for different pairs (v, k), since

the mapping wa → V (wa) is not injective.
Now we compute the distribution of Za by counting paths. The total number of simple

bridges ending at a < 0 is given by
( n
n+|a|

2

)
. Fix l > 0 an odd integer, the number of first
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The Vervaat transform

passage bridges of length l through level −1 is 1
l

(
l
l+1
2

)
, and the number of first passage

bridges of length n− l starting from −1 to a < 0 is |a|−1n−l
( n−l
n−l+|a|−1

2

)
, see e.g. Feller [29,

Chapter III]. Given Za = l, the total number of the Vervaat transform configurations is
given by

|a| − 1

l(n− l)

(
l
l+1
2

)(
n− l

n−l+|a|−1
2

)
.

By Lemma 2.1, each Vervaat transform configuration V (wa) is counted Za times. Hence,

P(Za = l) =
|a| − 1

n− l

(
l
l+1
2

)( n−l
n−l+|a|−1

2

)( n
n+|a|

2

) . (2.2)

Combining the above arguments, we obtain the following path decomposition result
for discrete Vervaat bridges with negative endpoint:

Theorem 2.2. Let a < 0 have the same parity as n. Given Za := min{j ≥ 0;V (wa)j =

−1}, whose distribution is given by (2.2), the path is decomposed into two (conditionally)
independent pieces:

• V (wa)|[0,Za] is discrete first passage bridge of length Za through level −1;

• V (wa)|[Za,n] is discrete first passage bridge of length n− Za, starting from −1 and
ending at a .

Fig 3. Discrete Vervaat bridge = First passage bridge + First passage bridge.

2.1.2 Passage to the weak limit

We derive the path decomposition Theorem 1.3 from its discrete analog Theorem 2.2
by appealing to invariance principles.

For λ < 0 and 0 < t < 1, fix two sequences (λn)n∈N and (tn)n∈N such that λn ∼ λ
√
n

has the same parity as n, and tn := 2[ tn2 ]+1. Let Sλn be a simple random walk of length n
with increments ±1 which ends at λn, V (Sλn) be the associated discrete Vervaat bridge,
and Zλn := inf{j ≥ 0 : V (Sλn)j = −1}.

Define
(
Sλn(u); 0 ≤ u ≤ n

)
to be the linear interpolation of the discrete bridge Sλn ,

and
(
V (Sλn)(u); 0 ≤ u ≤ n

)
to be that of the discrete Vervaat bridge V (Sλn). In the next

lemma, we recall some invariance principles in the metric space C[0, 1], that is the space
of continuous paths on [0, 1]. For background on the weak convergence in C[0, 1], we
refer readers to Billingsley [15, Chapter 2].
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The Vervaat transform

Lemma 2.3.

1. ( 1√
n
V (Sλn)(nu); 0 ≤ u ≤ 1) converges weakly to (V (Bλ,br)u; 0 ≤ u ≤ 1) in C[0, 1].

2. Given Zλn = tn, ( 1√
n
V (Sλn)(nu); 0 ≤ u ≤ t) converges weakly to Brownian excur-

sion of length t in C[0, 1], and ( 1√
n
V (Sλn)(nu); t ≤ u ≤ 1) converges weakly to first

passage bridge through level λ of length 1− t in C[0, 1], (conditionally) independent
of the excursion.

Proof. It is well-known that ( 1√
n
Sλn(nu); 0 ≤ u ≤ 1) converges weakly to (Bλ,bru ; 0 ≤

u ≤ 1) in C[0, 1]. Note that the Vervaat transform V : C[0, 1] → C[0, 1] is continuous at
point Bλ,br, which has a unique minimum on [0, 1] with probability 1. The assertion (1)

follows readily from the continuous mapping theorem, see e.g. Billingsley [15, Theorem
5.1]. According to Theorem 2.2, given Zλn = tn, the path of V (Sλn) is split into two
(conditionally) independent pieces of discrete first passage bridges. Following from
Iglehart [35] and Bertoin et al. [9], the scaled first passage bridge through level −1

converges weakly to Brownian excursion in C[0, 1], and the scaled first passage bridge
from −1 to λn converges weakly to first passage bridge through level λ in C[0, 1]. This
proves (2).

From (2.2), we obtain:

nP(Zλn = tn) =
n|λn|
n− tn

( tn
tn+1

2

)( n−tn
n−tn+|λn|−1

2

)( n
n+|λn|

2

) . (2.3)

Using Stirling’s formula, we have that(
n

n+|λn|
2

)
∼
√

2

πn
2n exp

(
−λ

2

2

)
;

(
tn
tn+1

2

)
∼
√

2

πnt
2nt;

and (
n− tn

n−tn+|λn|−1
2

)
∼

√
2

πn(1− t)
2n(1−t) exp

(
− λ2

2(1− t)

)
.

Injecting these terms in (2.3), we deduce the limiting distribution as n → ∞ given by
(1.3) . By a local limit argument, see e.g. Billingsley [14, Exercise 25.10], we conclude
that Zλ has density fZλ given as in (1.3).

The next theorem is a direct consequence of Theorem 1.3 and should be called a
corollary at best. Because of its importance, however, we give it status of a theorem.

Theorem 2.4. Let λ < 0. Given Zλ the time of the first return to 0 by V (Bλ,br), the split
position Aλ := 1 − argmint∈[0,1]B

λ,br
t is (conditionally) independent of V (Bλ,br), and is

uniformly distributed on [0, Zλ], In particular, its density is

fAλ(a) :=

∫ 1

a

fZλ(t)

t
dt,

where fZλ is given by (1.3).

Proof. Given a Vervaat bridge configuration V (wλn), the helper variable K(wλn) takes
values in {0, ..., Zλn − 1}, where Zλn is the first time at which the path hits −1. This
implies that given Zλn , the distance from the minimum position of the original bridge to
the end is uniformly distributed on [0, Zλn ]. The results are obtained by passing to the
weak limit.
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Corollary 2.5. Let λ < 0. Let Zλ be the time of the first return to 0 by V (Bλ,br) and Aλ

be uniformly distributed on [0, Zλ]. Then the shifted process θ(V (Bλ,br), Aλ) defined as
in Theorem 1.2 is Brownian bridge ending at λ, which attains its minimum at 1−Aλ.

Again by the weak convergence of Bλ,br to B0,br as λ→ 0− and the continuity of V
at point B0,br, Theorem 1.2 is recovered as a weak limit λ → 0− of Corollary 2.5. The
above corollary is extended to λ ≤ 0.

2.2 Path decomposition via excursion theory

In the current subsection, we provide an alternative proof of Theorem 1.3 using
excursion theory. The proof relies on the decomposition of bridges at their minimum, a
variant of the decomposition at the maximum that appeared in Pitman and Yor [44]. Fix
λ < 0, we begin with some notations.

For w ∈ C[0,∞), that is the space of continuous paths on [0,∞), define the lifetime of
the path w by ζ(w) := inf{t ≥ 0;wt = ∆}, where ∆ is a cemetery point. Let

Cf := {w ∈ C[0,∞); ζ(w) <∞}

be the space of continuous paths of finite length. Given a distribution Q on Cf , Q∧ is the
image by time reversal: for F Borel measurable,

Q∧[(ws; 0 ≤ s ≤ ζ(w)) ∈ F ] := Q[(wζ(w)−s; 0 ≤ s ≤ ζ(w)) ∈ F ].

Given Q and Q′ two distributions on Cf , Q ◦Q′ is the distribution obtained by concatenat-
ing two independent paths, one distributed as Q and the other as Q′: for F ′, F ′′ Borel
measurable and F = F ′ ⊗ F ′′,

Q ◦Q′(w1 ⊗ w2 ∈ F ) := Q(w1 ∈ F ′)×Q(w2 ∈ F ′′),

where w1⊗w2(s) := w1
s10≤s≤ζ(w1)+w

2
s−ζ(w1)1ζ(w1)<s≤ζ(w1)+ζ(w2) for 0 ≤ s ≤ ζ(w1)+ζ(w2),

is the concatenation of two paths.
Let pt(x, y) be the heat kernel defined as

pt(x, y) :=
1√
2πt

exp

(
− (y − x)2

2t

)
,

and PT0,λ be the distribution of Brownian bridge of length T from 0 to λ, and P
Ty
x be the

distribution of Brownian motion starting from x until the first time at which it hits y for
y < x.

The following agreement formula is read from Pitman and Yor [44, Corollary 3]:∫ +∞

0

dT pT (0, λ)PT0,λ = 2

∫ λ

−∞
dyP

Ty
0 ◦ P

Ty∧
λ , (2.4)

where the LHS of (2.4) follows from Lévy-Itô’s description of Brownian excursions, and
the RHS of (2.4) stems from Williams’ decomposition of Brownian paths. We also refer
readers to Yen and Yor [55, Chapter 6] for details. Furthermore, P

Ty
0 can be decomposed

as:
P
Ty
0 = P

Ty−λ
0 ◦ PTyy−λ.

Therefore, ∫ +∞

0

dT pT (0, λ)PT0,λ = 2

∫ λ

−∞
dyP

Ty−λ
0 ◦ PTyy−λ ◦ P

Ty∧
λ . (2.5)

Now we extend the definition of the Vervaat transform to Cf : given a continuous
function f on [0, T ] and τ(f) the first time at which it attains its minimum, define

VT (f)(t) := f(τ(f) + t mod T ) + f(T )1{t+τ(f)≥T} − f(τ(f)).
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The Vervaat transform

Applying the Vervaat transform VT to (2.5), we obtain:∫ +∞

0

dT pT (0, λ)VT (PT0,λ) = 2

∫ λ

−∞
dyPT0∧

λ−y ◦ P
T0

λ−y ◦ P
Tλ
0

= 2

(∫ +∞

0

dyPT0∧
y ◦ PT0

y

)
◦ PTλ0 . (2.6)

By taking λ = 0 in (2.6), we see that∫ +∞

0

dT pT (0, 0)VT (PT0,0) = 2

∫ +∞

0

dyPT0∧
y ◦ PT0

y .

Let QT0,0 be the distribution of Brownian excursion of length T , i.e. the three dimen-
sional Bessel bridge from 0 to 0. A slight modification of Vervaat’s result [50] gives that
VT (PT0,0) = QT0,0. Thus,

2

∫ +∞

0

dyPT0∧
y ◦ PT0

y =

∫ +∞

0

dT pT (0, 0)QT0,0. (2.7)

Injecting (2.7) into (2.6), we have that∫ +∞

0

dT pT (0, λ)VT (PT0,λ) =

(∫ +∞

0

ds ps(0, 0)Qs0,0

)
◦ PTλ0 . (2.8)

By disintegrating (2.8) with respect to the lifetime of paths, we see that VT (PT0,λ) is a
concatenation of Brownian excursion and Brownian first passage bridge.

Let gt(λ) be the density of the first hit to λ by Brownian motion starting from 0:

gt(λ) :=
|λ|√
2πt3

exp

(
−λ

2

2t

)
. (2.9)

It follows from (2.8) that the density of the splitting position Zλ between the excursion
and the first passage bridge in V (P1

0,λ) is given by

pt(0, 0)g1−t(λ)

p1(0, λ)
= fZλ(t) defined as in (1.3).

3 The Vervaat transform of Brownian bridges

In this section, we study thoroughly Vervaat bridges with non-zero endpoint. First,
we give an alternative construction of V (Bλ,br) where λ 6= 0 via Brownian bridges
conditioned on its local times at 0. Next we show that these processes are not Markovian.
They are semi-martingales and canonical decompositions are given in both positive and
negative endpoint cases. We further relate Vervaat bridges to drifting excursion by
additional conditioning. To close the section, we study some properties of the convex
minorant of V (Bλ,br) where λ < 0.

3.1 Construction of Vervaat bridges via Brownian bridge conditioned on its
local times

In this subsection, we provide an alternative construction of Vervaat bridges with
negative endpoint in terms of Brownian bridge which ends at 0. It is straightforward
that Vervaat bridges with positive endpoint can be treated similarly by time reversal.

Let λ < 0. By Theorem 1.3, conditioned on Zλ the time of the first return to 0,
V (Bλ,br) is split into Brownian excursion of length Zλ, followed by first passage bridge
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The Vervaat transform

of length 1−Zλ through λ, independent of each other. Note that V (Bλ,br) looks like first
passage bridge of length 1 through λ, except that it starts with a piece of excursion.

Recall that first passage bridges of length 1 can be constructed via standard Brownian
bridge by conditioning on its local times. Let (Fλt ; 0 ≤ t ≤ 1) be a first passage bridge of
length 1 through λ < 0. Following from Bertoin et al. [9], Fλ has the same distribution
as

(|B0,br
t | − L0

t (B
0,br); 0 ≤ t ≤ 1) conditioned on L0

1(B0,br) = |λ|, (3.1)

where L0
t is the local times of Brownian bridge B0,br at level 0 up to time t. We refer

readers to Aldous [2], and Chassaing and Janson [16] for discussions of Brownian bridge
conditioned on its local times. In light of the above construction, we obtain:

Theorem 3.1. Let X be the process whose distribution is that of B0,br conditioned on
L0
1(B0,br) = |λ|, U be uniformly distributed on (0, 1) independent of X, and (GU , DU )

be the signed excursion interval which contains U . Let X̃ be the process obtained by
exchanging the position of the excursion of X straddling time U and the path along
[0, GU ], namely:

X̃t =


Xt+GU for 0 ≤ t ≤ DU −GU

Xt−DU+GU for DU −GU ≤ t ≤ DU

Xt for DU ≤ t ≤ 1.

Then for λ < 0, (V (Bλ,br)t; 0 ≤ t ≤ 1) has the same distribution as

(|X̃(t)| − L0
t (X̃); 0 ≤ t ≤ 1) conditioned on L0

1(X̃) = |λ|. (3.2)

Fig 4. Construction of Vervaat bridges via standard Brownian bridge.

Proof. By Theorem 1.3, V (Bλ,br) is entirely characterized by the distribution of the

triple (Zλ, Bex,Z
λ

, Fλ,1−Z
λ

). It suffices to show that the distribution of the process
defined as in (3.2) is determined by the same triple. Following from Perman et al. [40,
Theorem 3.1], and Aldous and Pitman [3, Corollary 5], conditioned on ∆ := DU − GU ,

(X̃t; 0 ≤ t ≤ ∆) and (X̃t; ∆ ≤ t ≤ 1) are independent, and ∆
(d)
= Zλ with density given by

(1.3). Since L0
t (X̃) = 0 on (0,∆), (|X̃(t)|−L0

t (X̃); 0 ≤ t ≤ ∆) conditioned on L0
1(X̃) = |λ| is

Brownian excursion of length ∆, conditionally independent of (|X̃(t)| −L0
t (X̃); ∆ ≤ t ≤ 1)

conditioned on L0
1(X̃) = |λ|, which is a first passage bridge of length 1−∆ through λ by

the construction (3.1).

3.2 Vervaat bridges are not Markov

We ask if Vervaat bridges with non-zero endpoint are Markov processes. In the case
of negative endpoint, the main problem is the lack of information on Zλ: for s ≤ t ≤ 1,
V (Bλ,br)t depends not only on V (Bλ,br)s but also on the event {Zλ ≤ s}. The following
result gives a negative answer.
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Proposition 3.2. (V (Bλ,br)t; 0 ≤ t ≤ 1) where λ < 0 is not Markov with respect to the
induced filtration.

Before proving the proposition, we introduce some notations that are used in the
current section, and in the rest of the paper. For x, y > 0, denote

q̃t(x, y) :=
1

xy
√

2πt

(
exp

(
− (x− y)2

2t

)
− exp

(
− (x+ y)2

2t

))
,

q̃t(0, y) = lim
x→0+

q̃t(x, y) =
2√

2πt3
exp

(
−y

2

2t

)
=

2

y
gt(y) and q̃t(0, 0) =

2√
2πt3

,

where gt(y) is the density of the first hit to y by Brownian motion given as in (2.9). Note
that q̃t(x, y)y2 dy is the transition kernel of the three dimensional Bessel process. In the
sequel, we aisely make use of conditioning and splicing Markov bridges, of which we
refer to Fitzsimmons et al. [31] for justifications.

Proof of Proposition 3.2. Fix t0 ∈ (0, 1) and x0 > 0. Let Tt0 be the time of the first return
by V (Bλ,br) to 0 after time t0. Consider the distribution of Tt0 given V (Bλ,br) t0

2
= 0 and

V (Bλ,br)t0 = x0. Given Tt0 , (V (Bλ,br)t; t0 ≤ t ≤ Tt0) and (V (Bλ,br)t;Tt0 ≤ t ≤ 1) are two
independent first passage bridges from x0 > 0 to 0, and respectively from 0 to λ < 0.
Therefore, the conditional density of Tt0 is given by

f1(t) =
gt−t0(x0)g1−t(|λ|)
g1−t0(x0 + |λ|)

1t>t0

=
C1(t0, x0, λ)√

(t− t0)3(1− t)3
exp

(
− x20

2(t− t0)
− λ2

2(1− t)

)
1t>t0 , (3.3)

for some C1(t0, x0, λ) > 0. Next we consider the distribution of Tt0 given that ∀u ∈
(0, t0), V (Bλ,br)u > 0 and V (Bλ,br)t0 = x0. Given Tt0 , (V (Bλ,br)t; 0 ≤ t ≤ Tt0) is Brownian
excursion, and the conditional density is computed via Bayes recipe:

f2(t) = C2(t0, x0, λ)
q̃t0(0, x0)q̃t−t0(x0, 0)

q̃t(0, 0)
x20fZλ(t)1t>t0

= C
′

2(t0, x0, λ)
t√

(t− t0)3(1− t)3
exp

(
− x20

2(t− t0)
− λ2

2(1− t)

)
1t>t0 , (3.4)

for some C2(t0, x0, λ) > 0 and C
′

2(t0, x0, λ) > 0. Comparing (3.3) to (3.4), we see that
f2(t) = C1,2(t0, x0, λ)tf1(t) for some C1,2(t0, x0, λ) > 0. The two conditional densities of
Tt0 fail to be equal, which yields the desired result.

It is well-known that the time reversal of any Markov process is still Markov. The
result leads to the following corollary:

Corollary 3.3. (V (Bλ,br)t; 0 ≤ t ≤ 1)) where λ > 0 is not Markov with respect to the
induced filtration.

3.3 Semi-martingale decomposition of Vervaat bridges

The section is devoted to the canonical decomposition of Vervaat bridges with non-
zero endpoint. Note that the splitting position in the case of negative endpoint (i.e. the
first return to 0) is a stopping time, while that of Vervaat bridges with positive endpoint
(i.e. the last exit from λ > 0) is a cooptional time but not a stopping time. The treatments
in two cases are different.
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3.3.1 Semi-martingale decomposition of V (Bλ,br) where λ < 0

Recall from Theorem 1.3 that V (Bλ,br) is split into Brownian excursion, followed by
first passage bridge from 0 to λ. The density of Zλ is given by (1.3). We start by studying
the canonical decomposition of (V (Bλ,br)t;Z

λ ≤ t ≤ 1).

Proposition 3.4. Let λ < 0 and V λ := V (Bλ,br). Given Zλ := inf{t > 0;V (Bλ,br)t = 0},(
V λt −

∫ t

Zλ

1

V λs + |λ|
− V λs + |λ|

1− Zλ − s
ds

)
Zλ≤t≤1

is Brownian motion.

Proof. Conditional on the value of Zλ, (V λt + |λ|)Zλ≤t≤1 is the three dimensional Bessel
bridge from |λ| to 0. This follows from Theorem 1.3, and the following identity due to
Biane and Yor [12]:

Fλ,l
(d)
= BES(3)|λ|→0,l + λ,

where Fλ,l is first passage bridge of length l from 0 to λ, and BES(3)|λ|→0,l is the three
dimensional Bessel bridge from |λ| to 0. The proposition follows from the semi-martingale
decomposition of Bessel bridges, see e.g. Revuz and Yor [47, Chapter XI.3)].

We deal with the canonical decomposition of (V (Bλ,br)t∧Zλ ; 0 ≤ t ≤ 1). The process
is Brownian excursion of length Zλ, absorbed at 0 after time Zλ.

Proposition 3.5. Let λ < 0 and

Jλt (y) :=

∫ 1

t

q̃s−t(0, y)

q̃s(0, 0)
fZλ(s)ds,

J̊λt (y) :=

∫ 1

t

1√
s− t

q̃s−t(0, y)

q̃s(0, 0)
fZλ(s)ds.

Let V λ := V (Bλ,br), then

(Y λt )0≤t≤1 :=

(
V λt∧Zλ −

∫ t∧Zλ

0

ds

V λs
+

∫ t∧Zλ

0

V λs J̊
λ
s (V λs )

Jλs (V λs )
ds

)
0≤t≤1

is Brownian motion with respect to the filtration of V (Bλ,br), stopped at time Zλ.

Proof. Let ε ∈ (0, 1). Introduce (Bλ,εt ; t ≥ 0) Brownian motion with the starting point

Bλ,ε0

(d)
= V (Bλ,br)ε∧Zλ . The density of this distribution is:

µλε (x) = q̃ε(0, x)x2Jλε (x) for x > 0 and µλε (0) =

∫ ε

0

fZλ(s)ds.

Let Tλ,ε0 be the first time at which Bλ,ε hits 0. For ε ≤ t ≤ 1, the distribution of
(V (Bλ,br)s∧Zλ ; ε ≤ s ≤ t) is absolutely continuous with respect to that of (Bλ,ε

(s−ε)∧Tλ,ε0

; ε ≤
s ≤ t). In fact, conditionally on Zλ > t and the value of V (Bλ,br)t, (V (Bλ,br)s∧Zλ ; ε ≤
s ≤ t) has the same distribution as a three dimensional Bessel bridge. It is the same
for (Bλ,ε

(s−ε)∧Tλ,ε0

; ε ≤ s ≤ t) conditionally on Tλ,ε0 > t − ε and the value of Bλ,εt−ε. The

corresponding density Dλ,ε
t equals

1Bλ,ε0 =0 + 1Bλ,ε0 >0,Tλ,ε0 ≤t−ε + 1Tλ,ε0 >t−ε
q̃ε(0, B

λ,ε
0 )(Bλ,ε0 )2q̃t−ε(B

λ,ε
0 , Bλ,εt−ε)(B

λ,ε
t−ε)

2Jλt (Bλ,εt−ε)

µλε (Bλ,ε0 )Bλ,ε0 Bλ,εt−εq̃t−ε(B
λ,ε
0 , Bλ,εt−ε)

= 1Bλ,ε0 =0 + 1Bλ,ε0 >0,Tλ,ε0 ≤t−ε + 1Tλ,ε0 >t−ε
Bλ,εt−εJ

λ
t (Bλ,εt−ε)

Bλ,ε0 Jλε (Bλ,ε0 )
.
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In addition,
∂Jλt (y)

∂y
= −yJ̊λt (y) for t ∈ (0, 1). We get the quadratic covariation

d
[
log(Dλ,ε

t∧Tλ,ε0

), Bλ,ε
(t−ε)∧Tλ,ε0

]
= 1Tλ,ε0 >t−ε

Jλt (Bλ,εt−ε)− (Bλ,εt−ε)
2J̊λt (Bλ,εt−ε)

Bλ,εt−εJ
λ
t (Bλ,εt−ε)

dt,

where [·, ·] is the quadratic covariation of two processes. Applying Girsanov’s theorem, we
obtain that (Y λt )t≥ε is a continuous martingale relative to the filtration of (V (Bλ,br)t; ε ≤
t ≤ 1) with quadratic variation (t− ε) ∧ (Zλ − ε)+. Since this holds for all ε sufficiently
small, we have proved the proposition.

Following from Proposition 3.4 and Proposition 3.5, we obtain:

Theorem 3.6. Let λ < 0 and V λ := V (Bλ,br). Then(
V λt −

∫ t∧Zλ

0

ds

V λs
+

∫ t∧Zλ

0

V λs J̊
λ
s (V λs )

Jλs (V λs )
ds−

∫ t

Zλ

1

V λs + |λ|
− V λs + |λ|

1− Zλ − s
ds

)
0≤t≤1

is Brownian motion.

3.3.2 Semi-martingale decomposition of V (Bλ,br) where λ > 0

Recall from Corollary 1.4 that V (Bλ,br) is decomposed into the three dimensional
Bessel bridge from 0 to λ, followed by Brownian excursion above λ. The density of Ẑλ is
given by fẐλ(t) = fZλ(1− t), as in (1.3).

For x, y ≥ 0, let Qtx,y be the distribution of the three dimensional Bessel bridge of
length t from x to y. Let (Rt)t≥0 be the three dimensional Bessel process starting from 0.
The key idea is to show that for any t ∈ [0, 1), the distribution of (V (Bλ,br)s; 0 ≤ s ≤ t) is
absolutely continuous with respect to that of (Rs; 0 ≤ s ≤ t), identify the corresponding
density Dλ

t , and deduce by applying Girsanov’s theorem the canonical decomposition of
V (Bλ,br).

Let θλt := sup{s ∈ [0, t];Rs ≤ λ}. Note that if Rt ≤ λ then θλt = t. We start with a
lemma computing the joint distribution of (Rt, θt) in the case where the last exit from λ

has not been occurred.

Lemma 3.7. On the event Rt > λ, the joint distribution of (Rt, θ
λ
t ) is:

q̃t(0, y)
gt−s(y − λ)gs(λ)

gt(y)
10<s<t ds 1y>λy

2 dy.

Conditionally on Rt > λ, the value of Rt and of θλt , (Rs; 0 ≤ s ≤ θλt ) and (Rθλt +s − λ; 0 ≤

s ≤ t− θλt ) are independent and follow the law Q
θλt
0,λ respectively Q

t−θλt
0,Rt−λ.

Proof. Let y > λ. Conditionally on Rt = y, (Rt−s; 0 ≤ s ≤ t) is first passage bridge from
y to 0, and t− θλt is the first time where it hits λ. Thus conditionally on Rt = y, t− θλt is
distributed as

gs(y − λ)gt−s(λ)

gt(y)
10<s<t ds.

Moreover, conditionally on Rt = y and the value of θλt , (Rt−s; 0 ≤ s ≤ t − θλt ) and
(Rθλt −s; 0 ≤ s ≤ θλt ) are two independent first passage bridges, from y to λ and from λ to
0.

In the next proposition, we establish the absolute continuity between the distribution
of (V (Bλ,br)s; 0 ≤ s ≤ t) and that of (Rs; 0 ≤ s ≤ t). The Radon-Nikodym density Dλ

t is
expressed as a deterministic function of t, Rt and θλt .
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Proposition 3.8. For any t ∈ [0, 1), the distribution of (V (Bλ,br)s; 0 ≤ s ≤ t) is absolutely
continuous with respect to that of (Rs; 0 ≤ s ≤ t). The corresponding density is:

Dλ
t =

∫ 1

t

q̃s−t(Rt, λ)

q̃s(0, λ)
fẐλ(s) ds+ 1Rt>λ

(1− θλt )(Rt − λ)√
(1− t)3Rt

exp

(
λ2

2

)
exp

(
− (Rt − λ)2

2(1− t)

)
:= Φλ(t, Rt, θ

λ
t ). (3.5)

In particular, (Dλ
t ; 0 ≤ t < 1) is continuous and there is no discontinuity as Rt crosses λ.

Proof. Write Dλ
t = D1,λ

t + D2,λ
t , where D1,λ

t := 1Ẑλ>tD
λ
t and D2,λ

t := 1Ẑλ<tD
λ
t . On the

event Rt < λ, we have Dλ
t = D1,λ

t . Conditionally on Ẑλ > t and the value of V (Bλ,br)t,
(V (Bλ,br)s; 0 ≤ s ≤ t) is the three dimensional Bessel bridge from 0 to V (Bλ,br)t, i.e. the
same distribution as that of (Rs; 0 ≤ s ≤ t) conditioned on the value of Rt. Conditionally
on Ẑλ > t and the position of Ẑλ, V (Bλ,br)t is distributed as

q̃t(0, y)q̃Ẑλ−t(y, λ)

q̃Ẑλ(0, λ)
1y>0 y

2dy.

Therefore,

D1,λ
t =

∫ 1

t

q̃s−t(Rt, λ)

q̃s(0, λ)
fẐλ(s) ds.

Conditionally on Ẑλ < t, the position of Ẑλ and the value of V (Bλ,br)t, (V (Bλ,br)s; 0 ≤ s ≤
Ẑλ) and (V (Bλ,br)Ẑλ+s − λ; 0 ≤ s ≤ t− Ẑλ) are independent and follow the distribution

QẐ
λ

0,λ respectively Qt−Ẑ
λ

0,V (Bλ,br)t−λ. These are the same conditional distributions as in

Lemma 3.7. On the event Ẑλ < t, the joint distribution of (V (Bλ,br)t, Ẑ
λ) is given by

fẐλ(s)
q̃t−s(0, y − λ)q̃1−t(y − λ, 0)

q̃1−s(0, 0)
1y>λ (y − λ)2dy 10<s<t ds.

We have then,

D2,λ
t =1Rt>λ

fẐλ(θλt )
q̃t−θλt (0, Rt − λ)q̃1−t(Rt − λ, 0)

q̃1−θλt (0, 0)
(Rt − λ)2

q̃t(0, Rt)
gt−θλt (Rt − λ)gθλt (λ)

gt(Rt)
R2
t

=1Rt>λ
(1− θλt )(Rt − λ)√

(1− t)3Rt
exp

(
λ2

2

)
exp

(
− (Rt − λ)2

2(1− t)

)
.

Lemma 3.9. For any t ∈ (0, 1) and a ≥ 0:∫ 1

t

ds√
(1− s)(s− t)

exp

(
− a

s− t

)
=
√
π

∫ +∞

a
1−t

e−u
du√
u
.

Proof. By change of variables z :=
1− s
1− t

, we obtain:

∫ 1

t

ds√
(1− s)(s− t)

exp

(
− a

s− t

)
=

∫ 1

0

dz√
z(1− z)

exp

(
− a

(1− t)z

)
:= ϕ(

a

1− t
),

Note that

ϕ(x) :=

∫ 1

0

dz√
z(1− z)

exp
(
−x
z

)
(#)
=

∫ +∞

1

dv

v
√
v − 1

e−xv,
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where (#) is obtained by taking z = v−1. Following from Gradshteyn and Ryzhik [34,

3.363(2)], we have ϕ(x) =
√
π
∫ +∞
x

e−u
du√
u

.

Let

Φ1,λ(t, y) :=
1

2
√

2y
exp

(
λ2

2

)∫ (y+λ)2

2(1−t)

(y−λ)2

2(1−t)

e−u
du√
u
,

Φ2,λ(t, y) :=
(y − λ)√
(1− t)3y

exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
.

According to the formula (3.5) and Lemma 3.9:

Φλ(t, y, θ) = Φ1,λ(t, y) + (1− θ)(0 ∨ Φ2,λ(t, y)). (3.6)

Observe that Φ2,λ is of class C1. Φ1,λ and the partial derivative ∂1Φ1,λ are continuous as
functions of (t, y). However, ∂2Φ1,λ(t, y) is not defined at y = λ:

∂2Φ1,λ(t, λ+)− ∂2Φ1,λ(t, λ−) = − 1√
1− tλ

exp

(
λ2

2

)
,

∂2Φλ(t, λ+, θ)− ∂2Φλ(t, λ−, θ) = ∂2Φ1,λ(t, λ+)− ∂2Φ1,λ(t, λ−) + (1− θ)∂2Φ2,λ(t, λ)

=
(t− θ)√
(1− t)3λ

exp

(
λ2

2

)
.

For t > 0, let Wt := Rt −
∫ t
0

ds

Rs
, where (Wt; t ≥ 0) is Brownian motion starting from 0,

predictable with respect to the filtration of (Rt; t ≥ 0).

Lemma 3.10. For all t ∈ [0, 1) and λ > 0,

Dλ
t = 1 +

∫ t

0

∂2Φλ(s,Rs, θ
λ
s ) dWs.

Proof. Remark that we cannot apply directly Itô’s formula to Φλ(t, Rt, θ
λ
t ), since Φλ is

not regular enough. It is easy to check that Φ2,λ and Φ1,λ outside {y = λ} satisfy the
PDE:

1

2
∂2,2Φ(t, y) +

1

y
∂2Φ(t, y) + ∂1Φ(t, y) = 0.

Let (Lλt (R); t ≥ 0) be the local times at level λ of (Rt; t ≥ 0). Applying Itô-Tanaka’s
formula, and taking into account the discontinuity of the partial derivative ∂2 at level
y = λ, we get:

Φ1,λ(t, Rt) = 1 +

∫ t

0

∂2Φ1,λ(s,Rs) dWs −
1

λ
exp

(
λ2

2

)∫ t

0

1√
1− s

dLλs (R).

0 ∨ Φ2,λ(t, Rt) =

∫ t

0

1Rs>λ∂2Φ2,λ(s,Rs) dWs +
1

λ
exp

(
λ2

2

)∫ t

0

1√
(1− s)3

dLλs (R).

The process (1− θλt ) is not continuous but it is constant on the intervals of time where
0∨Φ2,λ(t, Rt) is positive. According to the derivation rule in Revuz and Yor [47, Theorem
4.2, Chapter VI],

(1− θλt )(0 ∨ Φ2,λ(t, Rt)) =

∫ t

0

(1− θλs )d(0 ∨ Φ2,λ(s,Rs))

=

∫ t

0

1Rs>λ(1− θλs )∂2Φ2,λ(s,Rs) dWs +
1

λ
e
λ2

2

∫ t

0

(1− θλs )√
(1− s)3

dLλs (R)

=

∫ t

0

1Rs>λ(1− θλs )∂2Φ2,λ(s,Rs) dWs +
1

λ
e
λ2

2

∫ t

0

1√
1− s

dLλs (R).
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on the support of dLλs (R), (1− θλs ) being equal to 1− s. Finally

Φ1,λ(t, Rt) + (1− θλt )(0 ∨ Φ2,λ(t, Rt))

= 1 +

∫ t

0

(∂2Φ1,λ(s,Rs) + (1− θλs )∂2Φ2,λ(s,Rs))1Rs>λ dWs,

which leads to the desired result.

Theorem 3.11. Let λ > 0 and for t ∈ (0, 1),

θ̃λ,brt := sup{s ∈ [0, t]|V (Bλ,br)s ≤ λ}.

Let V λ := V (Bλ,br), then(
V λt −

∫ t

0

ds

V λs
−
∫ t

0

∂2Φλ

Φλ
(s, V λs , θ̃

λ,br
s ) ds

)
0≤t≤1

is Brownian motion.

Proof. For t ∈ [0, 1), let

Xt := V (Bλ,br)t −
∫ t

0

ds

V (Bλ,br)s
.

The distribution of (Xs; 0 ≤ s ≤ t) is absolutely continuous with respect to that of
(Ws; 0 ≤ s ≤ t), with Radon-Nikodym density Dλ

t . By Lemma 3.10, we get the quadratic
covariation

[log(Dλ),W ]t =

∫ t

0

∂2Φλ

Φλ
(s,Rs, θ

λ
s ) ds.

Applying Girsanov’s theorem, we obtain that

Xt −
∫ t

0

∂2Φλ

Φλ
(s, V (Bλ,br)s, θ̃

λ,br
s ) ds

is Brownian motion.

3.4 Relation with drifting excursion

Bertoin [8] studied a fragmentation process by considering normalized Brownian
excursion dragged down by drift λ < 0:

Bex,λ↓t := Bext + λt, for 0 ≤ t ≤ 1.

Note that V (Bλ,br) where λ < 0 looks similar to this process, except that Bex,λ↓

always stays above the line t → λt, while Vervaat bridges do not share this property.
An interesting question is whether conditioned on staying above the dragging line, the
Vervaat bridge is absolutely continuous with respect to drifting excursion. To this end,
we need to justify that the conditioning event has positive probability, as shown in the
next proposition.

Proposition 3.12. Let λ < 0. Then

P(∀t ∈ (0, 1), V (Bλ,br)t > λt) = 1− |λ| exp

(
λ2

2

)∫ ∞
|λ|

exp

(
− t

2

2

)
dt.
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The Vervaat transform

Proof. According to Schweinsberg [48, Proposition 15], fix x ∈ [λ, 0], the probability for
first passage bridge through λ to stay above the dragging line tying x to λ is:

P(∀t ∈ [0, l], Fλ,l(t) > x− (x− λ)t) =
|x|
|λ|
. (3.7)

Therefore,

P(∀t ∈ (0, 1), V (Bλ,br)t > λt) =

∫ 1

0

P
(
∀s ∈ (t, 1), V (Bλ,br)s > λs|Zλ = t

)
fZλ(t)dt

(∗)
=

∫ 1

0

t
|λ|√

2πt(1− t)3
exp

(
− λ2t

2(1− t)

)
dt

= EZλ,

where (∗) follows from (3.7). It suffices to apply Pitman [42, Lemma 4.10]:

EZλ = 1− λ exp

(
λ2

2

)∫ ∞
λ

exp

(
− t

2

2

)
dt.

We know that the Vervaat bridge with negative endpoint conditioned to stay above
the dragging line is well-defined. Moreover, the distribution of the first return to 0 is
given by

fZ̃λ(t) =
t

1− |λ| exp
(
λ2

2

) ∫∞
|λ| exp

(
− t22

)
dt
fZλ(t). (3.8)

Corollary 3.13. Let λ < 0. Given Z̃λ the time of the first return to 0 by (V (Bλ,br)t; 0 ≤
t ≤ 1|∀t ∈ (0, 1), V (Bλ,br)t > λt), whose distribution density is given by (3.8), the path is
decomposed into two (conditionally) independent pieces:

•
(
V (Bλ,br)u; 0 ≤ u ≤ Z̃λ|∀t ∈ (0, 1), V (Bλ,br)t > λt

)
is excursion of length Z̃λ;

•
(
V (Bλ,br)u; Z̃λ ≤ u ≤ 1|∀t ∈ (0, 1), V (Bλ,br)t > λt

)
is first passage bridge of length

1− Z̃λ conditioned to stay above t→ λ(t+ Z̃λ) for t ∈ (0, 1− Z̃λ).

In addition, (V (Bλ,br)t; 0 ≤ t ≤ 1|∀t ∈ (0, 1), V (Bλ,br)t > λt) is absolutely continuous with
respect to (Bex,λ↓t ; 0 ≤ t ≤ 1). The corresponding density is:

H

1− |λ| exp
(
λ2

2

) ∫∞
|λ| exp

(
− t22

)
dt
,

where H := inf{t > 0;Bex,λ↓t < 0}.

Proof. Following from Bertoin [8, Proposition 11], H is distributed as in (1.3). According
to Chassaing and Janson [16, Theorem 2.6], conditioned on H, (Bex,λ↓t ; 0 ≤ t ≤ H) is
Brownian excursion of length H. Moreover, Schweinsberg [48, Proposition 4] states
that given H, (Bex,λ↓t ;H ≤ t ≤ 1) is a first passage bridge of length 1−H conditioned
to stay above the line t → λ(t + H) for t ∈ (0, 1 − H), (conditionally) independent of
the excursion. By change of measures, we obtain the same triple characterization in
distribution.
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The Vervaat transform

3.5 Convex minorant of Vervaat bridges

In this subsection, we study some properties of the convex minorant of Vervaat bridges
V (Bλ,br) where λ < 0. The convex minorant of a real-valued function (Xt; 0 ≤ t ≤ 1) is
the maximal convex function (Ct; t ∈ [0, 1]) such that ∀t ∈ [0, 1], Ct ≤ Xt. We refer to the
points where the convex minorant equals the process as vertices. Note that these points
are also the endpoints of the linear segments. We refer readers to Pitman and Ross [43],
and Abramson et al. [1] for background.

Similar to the computation in Proposition 3.12 , we have an explicit formula for the
distribution of the last segment’s slopes.

Corollary 3.14. Denote sl the slope of the last segment of the convex minorant of
V (Bλ,br). For a ∈ [λ, 0], we have

P(sl ∈ [λ, a]) = 1 + a exp

(
λ2

2

)∫ ∞
|λ|

exp

(
− t

2

2

)
dt.

As discussed in Pitman and Ross [43], first passage bridge of length 1 can only have
accumulations of linear segments at its start point. As mentioned before, the greatest
difference between Vervaat bridges and first passage bridges of length 1 is that the
former starts with a piece of excursion, while the latter returns to 0 immediately. We
expect that almost surely, Vervaat bridges have a finite number of segments.

Proposition 3.15. The number of segments of the convex minorant of V (Bλ,br) where
λ < 0 is almost surely finite.

Proof. Consider a sample path of Brownian bridge Bλ,br where λ < 0 and 1 − Aλ :=

argminBλ,br, which is almost surely unique. Note that V (Bλ,br)t > 0 for t ∈ (0, Aλ].
Consequently, the first vertex of the Vervaat bridge α1 > Aλ almost surely. By Pitman and
Ross [43], there can be only a finite number of segments on [α1, 1], since accumulations
can only happen at 0 in the path of Bλ,br restricted to [0, 1− Aλ]. Thus, the number of
segments of the Vervaat bridge is almost surely finite.

4 The Vervaat transform of Brownian motion

In this section, we study the Vervaat transform of Brownian motion. We first prove
that the process is not a Markov process. Next, V (B) is shown to be semi-martingale,
and its canonical decomposition is given. The computation is essentially based on the
results of Subsection 3.3. Finally, we compute the mean and the variance of this process.

4.1 V (B) is not Markov

A crucial property of V (B) is that V (B)1 = B1. We encounter two cases. If B1 > 0,
then V (B) never returns to 0 and stays positive along the path. Otherwise V (B)1 = B1 ≤
0. By path continuity, V (B) has to hit 0 somewhere in the path.

Proposition 4.1. (V (B)t; 0 ≤ t ≤ 1) is not Markov.

Proof. Fix x0 > 0. Given V (B) 1
4

= 0 and V (B) 1
2

= x0, the conditional distribution of
V (B)1 is supported on the negative half line (−∞, 0], since once V (B) hits 0 in the
path, it has to end negatively. On the other hand, given V (B)t > 0 for all t ∈ (0, 12 ] and
V (B) 1

2
= x0, the support of V (B)1 is clearly the whole real line. These two conditional

distributions fail to be equal, which yields the desired result.

In other words, {T̃0 ≤ 1} = {V (B)1 ≤ 0}, where T̃0 := inf{t > 0;V (B)t < 0}. Formally,
it means that we retrieve the information at time 1 from some prior time, which violates
the Markov property.
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The Vervaat transform

4.2 V (B) is semi-martingale – a conceptual approach

When a process is Markov with state space Rd, sufficient and necessary conditions
for it to be semi-martingale are given by Cinlar et al. [21]. But V (B) is not Markov. Thus,
whether it is semi-martingale cannot be judged by classical Markov-semi-martingale pro-
cedures. Here we provide a soft argument to show that V (B) is indeed semi-martingale
using Denisov’s decomposition of Brownian motion together with Bichteler-Dellacherie’s
characterization of semi-martingales.

We recall a path decomposition of Brownian motion, which characterizes the Vervaat
transform. Let A be the almost sure arcsine split such that 1−A := argmint∈[0,1]Bt. The
following theorem is due to Denisov [27]:

Theorem 4.2. [27] Given A, which is arcsine distributed, i.e. fA(a) = 1

π
√
a(1−a)

, the

path is decomposed into two (conditionally) independent pieces:

• (B1−A−t −B1−A; 0 ≤ t ≤ 1−A) is Brownian meander of length 1−A;

• (Bt −B1−A; 1−A ≤ t ≤ 1) is Brownian meander of length A.

We turn to some results of the classical semi-martingale theory. Given a filtration
(Ft)t≥0, a process H is said to be simple predictable if H has a representation

∀t ∈ [0, 1], Ht = H01{0}(t) +

n−1∑
i=1

Hi1(ti,ti+1](t)

where Hi ∈ Fti and |Hi| <∞ a.s. for 0 = t1 ≤ t2 ≤ ... ≤ tn ≤ ∞. Denote S the collection
of simple predictable processes and B = {H ∈ S : |H| ≤ 1}. For a given process, we
define a linear mapping IX : S → L0 by

IX(H) = H0X0 +

n−1∑
i=1

Hi(Xti −Xti−1),

for H ∈ S. The following theorem, proved independently by Bichteler [13] and Del-
lacherie [25], provides a useful characterization of semi-martingales. We refer readers
to Protter [46, Chapter III], and Dellacherie and Meyer [26, Section 4, Chapter VIII] for
further discussions, and to Beiglböck et al. [7, 6] for short proofs.

Theorem 4.3. [13, 25] An adapted, càdlàg process X is semi-martingale if and only if
IX(B) is bounded in probability, that is

lim
η→∞

sup
H∈B

P(|IX(H)| ≥ η) = 0.

Proposition 4.4. (V (B)t; 0 ≤ t ≤ 1) is semi-martingale.

Proof. Fix H ∈ B and η > 0,

P(|IV (B)(H)| > η) =

∫ 1

0

P(|IV (B)|A=a(H)| > η)
1

π
√
a(1− a)

da. (4.1)

Note that (V (B)|A = 1) is Brownian meander of length 1. It has the same distribution
as the three dimensional Bessel bridge from 0 to ρ, which is Rayleigh distributed
P(ρ ∈ dx) = x exp(−x

2

2 )dx. According to Imhof [36], and Azéma and Yor [5], (V (B)|A = 1)

is semi-martingale and so is (V (B)|A = 0). By Theorem 4.3,

lim
η→∞

sup
H∈B

P(|IV (B)|A=1(H)| ≥ η) = 0 and lim
η→∞

sup
H∈B

P(|IV (B)|A=0(H)| ≥ η) = 0.

From (4.1), to prove supH∈B P(|IV (B)(H)| ≥ η) → 0, we need some uniform control on
supH∈B P(|IV (B)|A=a(H)| > η) for all a ∈ [0, 1].
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Lemma 4.5. Let a ∈ (0, 1]. Then

sup
H∈B

P(|IV (B)|A=a(H)| > η) ≤ sup
H∈B

P
(
|IV (B)|A=1(H)| > η

2

)
+ sup
H∈B

P
(
|IV (B)|A=0(H)| > η

2

)
.

Proof. Observe that IV (B)|A=a(H) = Ia1 + Ia2 , where

Ia1 :=
∑
i

Hi(V (B)τi+1∧a − V (B)τi+1∧a) and Ia2 :=
∑
i

Hi(V (B)τi+1∨a − V (B)τi+1∨a).

Then we have,

P(|IV (B)|A=a(H)| > η) ≤ P
(
|Ia1 | >

η

2

)
+ P

(
|Ia2 | >

η

2

)
.

Let Ĩa1 :=
Ia1√
a
, and (Bmet ; 0 ≤ t ≤ 1) be Brownian meander of length 1. By Theorem 4.2,

Ĩa1 =
∑
i

Hi
V (B)τi+1∧a − V (B)τi∧a√

a
=
∑
i

Hi(B
me
τ̃i+1
−Bmeτ̃i ),

where τ̃i := τi∧a
a , and Hi is Fmeτ̃i

-adapted. Consequently,

P
(
|Ia1 | >

η

2

)
≤ P

(
|Ĩa1 | >

η

2

)
≤ sup
H∈B

P
(
|IV (B)|A=1(H)| > η

2

)
.

Similarly, we obtain:

P
(
|Ia2 | >

η

2

)
≤ sup
H∈B

P
(
|IV (B)|A=0(H)| > η

2

)
.

It is straightforward that Proposition 4.4 follows from (4.1) and Lemma 4.5.

As a result, Vervaat bridges are also semi-martingales. This provides an alternative
proof of the semi-martingale property of Vervaat bridges obtained in Subsection 3.3.

Corollary 4.6. For each fixed λ ∈ R, (V (Bλ,br)t; 0 ≤ t ≤ 1) is semi-martingale.

Proof. Fix H ∈ B and η > 0,

P(IV (B)(H) > η) =

∫
R

P(IV (Bλ,br)(H) > η)
1√
2π

exp

(
−λ

2

2

)
dλ. (4.2)

Note that V (B0,br) is Brownian excursion, and is semi-martingale. It suffices to prove
that V (Bλ,br) where λ 6= 0 is semi-martingale. If not the case, then there exists ε > 0

such that for all K > 0, we can find η > K satisfying

sup
H∈B

P(IV (Bλ,br)(H) > η) > ε.

It is not hard to see that (H,λ)→ P(IV (Bλ,br)(H) > η) is jointly continuous in B×(R\{0}),
the full detail of which is left to careful readers. Thus, there existsHλ,ε ∈ B and θ ∈ (0, |λ|)
such that for all λ̄ ∈ (λ− θ, λ+ θ),

P(IV (Bλ̄,br)(H) > η) >
ε

2
. (4.3)

Injecting (4.3) into (4.2), we obtain:

P(IV (B)(H) > η) >
ε

2

∫ λ+θ

λ−θ

1√
2π

exp

(
−λ

2

2

)
dλ,

which violates that fact that V (B) is a semi-martingale.
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Note that one can hardly derive the explicit decomposition by Bichteler-Dellacherie’s
approach. A crucial step of the method is to find Q, which is equivalent to P, such that
X is Q−quasi-martingale, see e.g. Protter [46, Chapter III]. By Rao’s theorem, X is
Q−semi-martingale, which is also P−semi-martingale. However, Rao’s theorem relies
on Doob-Meyer’s decomposition, which in general does not give explicit expressions for
two decomposed terms. Nevertheless, we provide the canonical decomposition of V (B)

in the next section.

4.3 Semi-martingale decomposition of V (B)

In this part, we use extensively the notations defined in Subsection 3.3. Since
V (B)1 = B1 almost surely, there exists ε > 0 such that for all t ∈ (0, ε), V (B)t > 0. Let

T̃0 := inf{t ∈ (0, 1];V (B)t = 0}.

Then P(T̃0 ≤ 1) =
1

2
, and {T̃0 ≤ 1} = {V (B)1 ≤ 0}. Conditional on T̃0 ≤ 1, T̃0 follows

the arcsine distribution 10<t<1
dt

π
√
t(1− t)

. Conditionally on T̃0 ≤ 1 and the value of T̃0,

(V (B)t; 0 ≤ t ≤ T̃0) has the distribution QT̃0
0,0, and is independent of (V (B)t; T̃0 ≤ t ≤ 1).

The joint distribution of (V (B)1, T̃0) on the event T̃0 ≤ 1 is given by

1λ<0 dλ√
2π

exp

(
−λ

2

2

)
|λ|√

2πt(1− t)3
exp

(
− λ2t

2(1− t)

)
10<t<1dt.

Thus, the distribution of V (B)1 conditionally on T̃0 = t̃0 is:

|λ|
1− t̃0

exp

(
− λ2

2(1− t̃0)

)
1λ<0dλ. (4.4)

For the canonical decomposition of V (B), we split the task into two: the decomposi-
tion of (V (B)t; 0 ≤ t ≤ T̃0) and that of (V (B)t; T̃0 ≤ t ≤ 1). We start with the latter. Let
(M̃t; t ≥ 0) be the process defined as

M̃t := min
[0,t]

V (B).

Lemma 4.7. Let V := V (B). Conditionally on the value of T̃0,(
Vt +

∫ t

T̃0

Vs − M̃s

1− s
ds

)
T̃0≤t≤1

is Brownian motion

Proof. Let t̃0 > 0. Let (B′t)t≥0 be Brownian motion starting from 0, and

M ′t := min
[0,t]

B′.

For any t ∈ [t̃0, 1), the distribution of (V (B)s; t̃0 ≤ s ≤ t) conditioned on T̃0 = t̃0, is
absolutely continuous with respect to that of (B′s; 0 ≤ s ≤ t − t̃0). The corresponding
density is: ∫ M ′

t−t̃0

−∞

g1−t(B
′
t−t̃0
− λ)

g1−t̃0(|λ|)
|λ|

1− t̃0
exp

(
− λ2

2(1− t̃0)

)
dλ. (4.5)
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where gt is defined as in (2.9). Then the expression (4.5) can be simplified as√
1− t̃0

(1− t)3

∫ M ′
t−t̃0

−∞
(B′t−t̃0−λ) exp

(
−

(B′
t−t̃0
− λ)2

2(1− t)

)
dλ =

√
1− t̃0
1− t

exp

(
−

(B′
t−t̃0
−M ′

t−t̃0
)2

2(1− t)

)
.

Applying Girsanov’s theorem, we get the result of the lemma.

Next we deal with the canonical decomposition of (V (B)t∧T̃0
; 0 ≤ t ≤ 1). As an

auxiliary problem, we study the canonical decomposition of (ξt; t ≥ 0) defined as follows.
With probability 1

2 , ξ is the three dimensional Bessel process starting from 0. For t ∈ (0, 1),
with infinitesimal probability dt

2π
√
t(1−t)

, ξ is positive excursion of length t, absorbed at

0 after time t. For any t ∈ (0, 1), the distribution of (V (B)s∧T̃0
; 0 ≤ s ≤ t) is absolutely

continuous with respect to that of (ξs; 0 ≤ s ≤ t). The following lemma is a variant of
Proposition 3.5.

Proposition 4.8. Let T ξ0 := inf{t > 0|ξt = 0}, and

Jt(y) :=

∫
t≤s≤1

ds

π
√
s(1− s)

q̃s−t(0, y)

q̃s(0, 0)
,

J̊t(y) :=

∫
t≤s≤1

ds

π(s− t)
√
s(1− s)

q̃s−t(0, y)

q̃s(0, 0)
.

The process

(Yt)t≥0 :=

(
ξt −

∫ t∧T ξ0

0

ds

ξs
+

∫ t∧T ξ0

0

ξsJ̊s(ξs)

1 + Js(ξs)
ds

)
t≥0

is Brownian motion with respect to the filtration of ξ, stopped at time T ξ0 .

Proof. Let ε ∈ (0, 1). Introduce (Bεt ; t ≥ 0) Brownian motion with the starting point

Bε0
(d)
= ξε∧T ξ0

. The density of this distribution on (0,+∞) (total mass < 1) is:

µε(x) =
q̃ε(0, x)x2

2
(1 + Jε(x)) .

Let T ε0 be the first time Bε hits 0. For any ε ≤ t ≤ 1, the distribution of (ξs; ε ≤ s ≤ t) is
absolutely continuous with respect to that of (Bε(s−ε)∧T ε0

; ε ≤ s ≤ t). The density Dε
t is:

1Bε0=0 +
1T ε0≤t−ε,Bε0>0 · q̃ε(0, Bε0)Bε20 q̃T ε0 (0, Bε0)

q̃T ε0 +ε(0, 0)2π
√
T ε0 (1− T ε0 )µε(Bε0)gT ε0 (Bε0)

+
1T ε0>t−ε

µε(Bε0)Bε0B
ε
t−εq̃t−ε(B

ε
0, B

ε
t−ε)

×
q̃ε(0, B

ε
0)Bε20 q̃t−ε(B

ε
0, B

ε
t−ε)B

ε2
t−ε

2
×

(
1 +

∫ 1

t

ds

π
√
s(1− s)

q̃s−t(0, B
ε
t−ε)

q̃s(0, 0)

)

= 1Bε0=0 +
1T ε0≤t−ε,Bε0>0 · q̃ε(0, Bε0)Bε0

µε(Bε0)π
√
T ε0 (1− T ε0 )q̃T ε0 +ε(0, 0)

+ 1T ε0>t−ε
q̃ε(0, B

ε
0)Bε0B

ε
t−ε

2µε(Bε0)
×
(
1 + Jt(B

ε
t−ε)

)
.

Note that (Dε
t ; t ≥ 0) is continuous, and there is no discontinuity at T ε0 + ε. This follows

from the fact that as y → 0, the convolution kernel
y

2
q̃u(0, y) 1u>0 du is an approximation

to the delta function. Moreover,
∂Jt(y)

∂y
= −yJ̊t(y) for t ∈ (0, 1). We get the quadratic

covariation

d
[
log(Dε

t∧T ε0 ), Bε(t−ε)∧T ε0

]
= 1T ε0>t−ε

q̃ε(0, B
ε
0)Bε0(1 + Jt(B

ε
t−ε)− (Bεt−ε)

2J̊t(B
ε
t−ε))

2µε(Bε0)
.

EJP 20 (2015), paper 51.
Page 22/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3744
http://ejp.ejpecp.org/


The Vervaat transform

Applying Girsanov’s theorem, we obtain that (Yt; t ≥ ε) is a continuous martingale
relative to the filtration of (ξt; t ≥ ε) with quadratic variation (t− ε) ∧ (T ξ0 − ε)+. Since
this holds for all ε sufficiently small, this implies the result.

We introduce the functionals Φ(t, γ) and Φ̊(t, γ) where t is a time and γ a continuous
path:

Φ(t, γ) :=
2√
2π

∫ +∞

0

Φλ(t, γ(t), sup{s ∈ [0, t]|γ(s) ≤ λ}) exp

(
−λ

2

2

)
dλ,

Φ̊(t, γ) :=
2√
2π

∫ +∞

0

∂2Φλ(t, γ(t), sup{s ∈ [0, t]|γ(s) ≤ λ}) exp

(
−λ

2

2

)
dλ,

where Φλ is defined as (3.6). For any t ∈ (0, 1), the distribution of (V (B)s∧T̃0
; 0 ≤ s ≤ t)

is absolutely continuous with respect to that of (ξs; 0 ≤ s ≤ t) with density

Dt = 1T ξ0≤t
+

Φ(t, ξ) + Jt(ξt)

1 + Jt(ξt)
1T ξ0>t

. (4.6)

The following lemma provides estimates on Φλ and its derivatives ∂1Φλ, ∂2Φλ.

Lemma 4.9. There are positive functions c1(t) and c2(t) bounded on intervals of the
form [0, 1− ε], such that for all λ > 0, y > 0, θ ≤ t ∈ [0, 1):

Φλ(t, y, θ) ≤ c1(t) exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
,

and

|∂2Φλ(t, y, θ)| ≤ c2(t)(1 + λ2)

(
y +

1

y

)
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
.

Proof. Note that Φλ(t, y, θ) ≤ Φ1,λ(t, y) + 1y>λΦ2,λ(t, y). For y > λ,

Φ2,λ(t, y) ≤ 1√
(1− t)3

exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
and

Φ1,λ(t, y) ≤ 1

2
√

2y
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)∫ (y+λ)2

2(1−t)

(y−λ)2

2(1−t)

du√
u

=
1√

1− t
min(y, λ)

y
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
.

In addition, for y > λ we obtain,

|∂2Φ2,λ(t, y)| = 1√
(1− t)3

∣∣∣∣ λy2 − (y − λ)2

(1− t)y

∣∣∣∣ exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
≤ 1√

(1− t)3

(
1

y
+
y2 + λ2

(1− t)y

)
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
and

|∂2Φ1,λ(t, y)| ≤ 1

2
√

2
exp

(
λ2

2

)(
1

y2

∫ (y+λ)2

2(1−t)

(y−λ)2

2(1−t)

e−u√
u
du

+

√
2

y
√

1− t

∣∣∣∣exp

(
− (y − λ)2

2(1− t)

)
− exp

(
− (y − λ)2

2(1− t)

)∣∣∣∣
)
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≤ 1 + 2
√

2

2
√

2y
√

1− t
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)
,

which permits to have the desired estimation.

Lemma 4.10. For t ∈ [0, 1),

[Φ(·, ξ), ξ]t =

∫ t∧T ξ0

0

Φ̊(s, ξ) ds.

Proof. It is clear that the quadratic variation [Φ(·, ξ), ξ]t does not increase for t ≥ T ξ0 . We
only need to show that for a three dimensional Bessel process (Rt; t ≥ 0),

[Φ(·, R), R]t =

∫ t

0

Φ̊(s,R) ds. (4.7)

Indeed, given any t < T < 1, the distribution of (ξs; 0 ≤ s ≤ t) on the event T ξ0 >

T is absolutely continuous with respect to that of (Rs; 0 ≤ s ≤ t). For any λ > 0

(Φλ(t, Rt, θ
λ
t ); 0 ≤ t < 1) is a positive martingale with mean 1. Applying Fubini’s theorem,

we obtain that (Φ(t, R); 0 ≤ t < 1) is a positive martingale with mean 1. Let (Wt; t ≥ 0)

be the Brownian motion martingale part of (Rt; t ≥ 0). To prove (4.7) we need to show
that the process (

Φ(t, R)Wt −
∫ t

0

Φ̊(s,R) ds

)
0≤t<1

(4.8)

is a martingale. Lemma 3.10 ensures that for any λ > 0 the process(
Φλ(t, Rt, θ

λ
t )Wt −

∫ t

0

∂2Φλ(s,Rs, θ
λ
s ) ds

)
0≤t<1

(4.9)

is a local martingale. Next we show that (4.9) is a true martingale and not just a local
one. It suffices to bound the expectation of its supremum and dominated convergence
theorem permits to conclude. According to Burkholder-Davis-Gundy’s inequality, ∃C > 0

such that

E

[(
sup

0≤s≤t

∣∣∣∣∣Φλ(t, Rt, θ
λ
t )Wt −

∫ t

0

∂2Φλ(s,Rs, θ
λ
s ) ds

∣∣∣∣∣
)2]

≤ CE
[∫ t

0

(
∂2Φλ(s,Rs, θ

λ
s )2W 2

s + Φλ(s,Rs, θ
λ
s )2
)
ds

]
= C

∫ t

0

(
E
[
∂2Φλ(s,Rs, θ

λ
s )2W 2

s

]
+ E

[
Φλ(s,Rs, θ

λ
s )2
])
ds.

From Lemma 3.10 and the bound in Lemma 4.9 follows that (Φλ(t, Rt, θ
λ
t ); 0 ≤ t < 1) is a

square integrable martingale, and

1+E

[∫ s

0

∂2Φλ(u,Ru, θ
λ
u)2 du

]
= E

[
Φλ(s,Rs, θ

λ
s )2
]
≤ c1(s)2 exp

(
λ2
)
E

[
exp

(
− (Rs − λ)2

(1− s)

)]
,

which is integrable on (0, t) for any 0 ≤ t < 1. Moreover, by Cauchy-Schwarz’s inequality,

E[∂2Φλ(s,Rs, θ
λ
s )2W 2

s ] ≤ E[∂2Φλ(s,Rs, θ
λ
s )4]

1
2E[W 4

s ]
1
2 .

The problem of integrability may only occur at 0. However, by the bound of ∂2Φλ in
Lemma 4.9, we know that E[∂2Φλ(s,Rs, θ

λ
s )4] = O( 1

s2 ) as s→ 0. Thus the above term is
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also integrable on (0, t) for 0 ≤ t ≤ 1. We have proved that (4.9) is a martingale for any
λ > 0. Again by Cauchy-Schwarz’s inequality,

E

[∣∣∣∣Φλ(t, Rt, θ
λ
t )Wt −

∫ t

0

∂2Φλ(s,Rs, θ
λ
s ) ds

∣∣∣∣] ≤ 2
√
tE

[∫ t

0

∂2Φλ(s,Rs, θ
λ
s )2 ds

] 1
2

≤ 2
√
tc1(t) exp

(
λ2

2

)
E

[
exp

(
− (Rt − λ)2

(1− t)

)] 1
2

<∞.

Thus, the expectation of the absolute value of the martingale (4.9) is integrable with

respect to
2√
2π

exp

(
−λ

2

2

)
1λ>0 dλ. By Fubini’s theorem, it follows that (4.8) is a mar-

tingale.

Theorem 4.11. Let M̃t := min[0,t] V (B), T̃0 := inf{t > 0;V (B)t = 0} and V := V (B).
Then (

Vt −
∫ t∧T̃0

0

ds

Vs
+

∫ t∧T̃0

0

Φ̊(s, V ) + VsJ̊s(Vs)

Φ(s, V ) + Js(Vs)
ds+

∫ t

T̃0

Vs − M̃s

1− s
ds

)
0≤t≤1

is Brownian motion.

Proof. Note that (Dt)0≤t≤1 given by (4.6) is time-continuous. In particular it follows from
Lemma 4.9 that on the event T ξ0 < 1, as t converges to T ξ0 from below and ξt converges
to 0, Φ(t, ξ) remains bounded. In addition, Jt(ξt) tends to +∞ at T ξ0 . Hence

lim
t→T ξ0

Φ(t, ξ) + Jt(ξt)

1 + Jt(ξt)
= 1,

and Dt is continuous at t = T ξ0 . Using the canonical decomposition of (ξt; t ≥ 0) given by
Lemma 4.8, and applying Girsanov’s theorem combined with Lemma 4.10, we obtain
that (

V (B)t∧T̃0
−
∫ t∧T̃0

0

ds

V (B)s
+

∫ t∧T̃0

0

Φ̊(s, V (B)) + V (B)sJ̊s(V (B)s)

Φ(s, V (B)) + Js(V (B)s)
ds

)
t≥0

is a martingale with quadratic variation t∧T̃0. Finally, Lemma 4.7 describes the canonical
decomposition of V (B) after the stopping time T̃0.

4.4 Expectation and variance of V (B)

In this subsection, we calculate the first two moments of the Vervaat transform of
Brownian motion.

Proposition 4.12. ∀t ∈ [0, 1], we have:

EV (B)t =

√
8

π
(
√
t+
√

1− t− 1); (4.10)

E(V (B)2t ) = 3t+
4− 8t

π
arcsin

√
t− 4

π

√
t(1− t). (4.11)

The computation is based on Denisov’s decomposition of Brownian motion, Theorem
4.2, together with the following identities of Brownian meander, the proof of which is
reported to the Appendix:
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Proposition 4.13. Let (Bmet , t ∈ [0, 1]) be Brownian meander of length 1. We have:

EBmet =

√
2

π
(
√
t(1− t) + arcsin

√
t). (4.12)

E(Bmet )2 = 3t− t2. (4.13)

EBmet Bme = 2
√
t. (4.14)

4.4.1 Expectation of V (B)

Recall that A is the almost sure arcsine split such that 1−A := argmint∈[0,1]Bt. We
have:

EV (B)t = E(V (B)t1A>t) + E(V (B)t1A≤t).

Lemma 4.14.

∀t ∈ [0, 1], E(V (B)t1A>t) =

√
2

π
(
√

1− t+ 2
√
t− t− 1). (4.15)

Proof. Note that

E(V (B)t1A>t) =

∫ 1

t

√
aEBme( ta )

π
√
a(1− a)

da
(4.12)

=

√
2

π
3
2

(α1 + α2),

where α1 :=
√
t
∫ 1

t

√
a−t

a
√
1−ada and α2 :=

∫ 1

t

arcsin
√

t
a√

1−a da. Using integration by parts, we get:

α2 = π
√

1− t−
√
t

∫ 1

t

√
1− a

a
√
a− t

da.

Therefore,

α1 + α2 = π
√

1− t+ 2
√
t

∫ 1

t

da√
1− a

√
a− t

−
√
t(t+ 1)

∫ 1

t

da

a
√

1− a
√
a− t

= π
√

1− t+ 2π
√
t− π(t+ 1). �

Observing the duality (1−A, (V (B)1−t − V (B)1; 0 ≤ t ≤ 1))
(d)
= (A, (V (B)t; 0 ≤ t ≤ 1)),

we obtain the following result as a corollary:

Corollary 4.15.

∀t ∈ [0, 1], E(V (B)t1A≤t) =

√
2

π
(
√

1− t+ t− 1). (4.16)

It is not hard to see that (4.10) follows from Lemma 4.14 and Corollary 4.15.

4.4.2 Variance of V (B)

Similarly, we split EV (B)2t into E(V (B)2t1A>t) and E(V (B)2t1A≤t). The formula (4.11)
follows readily from the next lemmas.

Lemma 4.16.

∀t ∈ [0, 1], E(V (B)2t1A>t) = 3t− 6t

π
arcsin

√
t− 2

π

√
t3(1− t). (4.17)

EJP 20 (2015), paper 51.
Page 26/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3744
http://ejp.ejpecp.org/


The Vervaat transform

Proof. Note that

E(V (B)2t1A>t) =

∫ 1

t

aE(Bme)2( ta )

π
√
a(1− a)

da

(∗)
=

3t

π

∫ 1

t

1√
a(1− a)

da− t2

π

∫ 1

t

1√
a3(1− a)

da

= 3t− 6t

π
arcsin

√
t− 2

π

√
t3(1− t),

where (∗) follows from (4.13).

Lemma 4.17.

∀t ∈ [0, 1], E(V (B)2t1A≤t) =
4− 2t

π
(arcsin

√
t−
√
t(1− t)). (4.18)

Proof. Note that

E(V (B)2t1A≤t) = E((V (B)t − V (B)1)21A≤t) + E(V (B)211A≤t)

+ 2E((V (B)t − V (B)1)V (B)11A≤t).

Denote β1, β2 and β3 the three terms on the RHS of the above equation. β1 can be easily
derived from Lemma 4.16 by change of variables:

β1 =
2(1− t)

π

(
3 arcsin

√
t−
√
t(1− t)

)
. (4.19)

By Theorem 4.2, for 0 ≤ a ≤ t,

β2 =

∫ t

0

E(V (B)21|A = a)
da

π
√
a(1− a)

=

∫ t

0

(2−π
√
a(1− a))

da

π
√
a(1− a)

=
4 arcsin

√
t

π
−t,

(4.20)
and

β3 =

∫ t

0

(γ1 + γ2)
da

π
√
a(1− a)

,

where

γ1 := E ((V (B)t − V (B)1)V (B)a|A = a)

=
√
a(1− a)

(√
1− t
1− a

(1− 1− t
1− a

) + arcsin

√
1− t
1− a

)
,

and

γ2 := E ((V (B)t − V (B)1)(V (B)1 − V (B)a)|A = a)

= −2
√

(1− t)(1− a),

which are derived from Proposition 4.13. Thus,∫ t

0

γ1
da

π
√
a(1− a)

=
1

π

∫ 1

1−t

(√
1− t
a

(1− 1− t
a

) + arcsin

√
1− t
a

)
da

=
t

2
+

2t− 3

π
arcsin

√
t+

3

π

√
t(1− t), (4.21)

and ∫ t

0

γ2
da

π
√
a(1− a)

= − 4

π

√
t(1− t). (4.22)

Combining (4.19), (4.20), (4.21) and (4.22), we obtain (4.18).
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5 Appendix: Computations of Brownian meander

Let (Bmet , t ∈ [0, 1]) be Brownian meander of length 1. From Chung [20], we derive
the marginal distribution of meander:

P(Bmet ∈ dx) = t−
3
2x exp

(
−x

2

2t

)
erf

(
x√

2(1− t)

)
dx. (5.1)

where erf is the error function defined as erf(x) := 2√
π

∫ x
−∞ exp(−t2)dt.

Proof of Proposition 4.13. (1). We compute EBmet , which relies on the following well-
known identity found in Gradshteyn and Ryzhik [34]:

∀a > 0,

∫ ∞
0

x2 exp(−ax2) erf(x)dx =

√
a+ (a+ 1) arcsin

√
1
a+1

2
√
πa

3
2 (a+ 1)

. (5.2)

By change of variables, we obtain:

EBmet
(∗)
=

∫ ∞
0

t−
3
2 y2 exp

(
−y

2

2t

)
erf

(
y√

2(1− t)

)
dy

(#)
=
√

8

(
1− t
t

) 3
2
∫ ∞
0

x2 exp

(
−1− t

t
x2
)

erf(x)dx

(∗∗)
=

√
2

π
(
√
t(1− t) + arcsin

√
t), (5.3)

where (∗) (resp. (∗∗)) follows from (5.1) (resp. (5.2)), and (#) is obtained by taking
x = y√

2(1−t)
.

(2). To calculate E(Bmet )2, we make use of the following identity:

∀a > 0,

∫ ∞
0

x3 exp(−ax2) erf(x)dx =
2 + 3a

4a2(a+ 1)
3
2

, (5.4)

which is also found in Gradshteyn and Ryzhik [34]. The rest is the same as in (1).
(3). Finally, the value of EBmet Bme1 , i.e. the formula (4.14), can be easily derived

from Imhof’s relation [36] between Brownian meander and the three dimensional Bessel
process.
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