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1. Introduction
In this paper we develop new staffing algorithms for many-
server queueing systems with time-varying arrivals, focus-
ing on the challenging case in which service times are
relatively long and there is customer abandonment from
queue; see Green et al. (2007) for background. Specifi-
cally, we develop formula-based algorithms to stabilize the
time-dependent abandonment probability and the expected
(potential) delay (the delay before starting service for a
customer arriving at time t with infinite patience) at any
(necessarily related) fixed targets, across a wide range of
possible targets, in the Mt/GI/st + GI queueing model.
This model has a nonhomogeneous Poisson arrival pro-
cess (the Mt), a large number st of homogeneous servers
working in parallel (a function of time t, which is to be
determined), independent and identically distributed (i.i.d.)
service times with a general distribution (the first GI),
unlimited waiting space, the first-come first-served (FCFS)
service discipline, and customer abandonment from the
queue of customers waiting to start service, with i.i.d. times
to abandon having a general distribution (the second GI).

Our results extend Feldman et al. (2008), which intro-
duced a simulation-based iterative staffing algorithm (ISA)
to stabilize the time-dependent delay probability (the prob-
ability that an arrival must wait in queue before start-
ing service). As illustrated by Figure 3 in that paper, the
ISA was shown to be remarkably effective at stabilizing

the delay probability in the fully Markovian Mt/M/st +M
model, for all possible quality-of-service (QoS) levels, pro-
vided that the arrival rate is suitably large, so that a large
number of servers (e.g., 100) is actually required. The
target delay probability was allowed to range from 001
(high QoS) to 009 (low QoS). Indeed, as illustrated by Fig-
ures 5 and 6 of that paper, with ISA staffing the delay prob-
ability becomes essentially the same as in a corresponding
stationary model with constant arrival rate, and thus also
showing that the analytically based modified-offered-load
(MOL) approximation (reviewed here in §2) succeeds in
stabilizing delays for this Mt/M/st +M model. Thus, from
the perspective of the delay probability, the effect of the
time-varying arrival rate can be eliminated by applying the
ISA (or the MOL) to choose the staffing level appropriately.

Because the ISA is based on simulation, it can easily
be applied to associated non-Markovian models and even
to much more general models. Indeed, experiments showed
that the ISA is also effective for stabilizing the delay proba-
bility in the more general Mt/GI/st +GI model considered
here. The ISA also has the advantage of providing auto-
matic verification: because ISA is based on simulation, we
can confirm that ISA achieves its goal in the final simula-
tion results.

Even though the ISA can stabilize the delay probabil-
ity, it is unable to eliminate the effect of the time-varying
arrival rate entirely. When ISA is applied to stabilize the
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delay probability, the ISA also stabilizes other performance
measures to some extent, but as illustrated by Figure 4
of Feldman et al. (2008) and Figure 6 of the accompa-
nying e-companion, significant fluctuations are seen in the
time-varying abandonment probability and average delay
with a sinusoidal arrival-rate function when the target QoS
is relatively low (the target delay probability is high). An
open problem posed in of Feldman et al. (2008, §8) was
to develop a way to stabilize the abandonment probability
across the full range of target abandonment probabilities.

We address that open problem in this paper. Moreover,
we do so with a formula-based algorithm instead of simu-
lation. Our formula-based algorithm applies to the general
Mt/GI/st +GI model. Because all performance measures
tend to be stabilized together at customary targets with
higher QoS, we succeed in obtaining an effective formula-
based algorithm for staffing to meet all the standard perfor-
mance measures at customary targets with higher QoS.

There are two important steps here. The first is to intro-
duce an entirely new offered-load (OL) framework, involv-
ing two infinite-server (IS) queues in series, which we call
the delayed-infinite-server (DIS) approximating model. (We
give background on OL approximations in §2.) The first
IS queue represents the waiting room (queue), while the
second represents the service facility. The mean number of
busy servers in the second IS queue represents the new OL.
When the targeted QoS is relatively low (the abandonment
probability is high), the OL itself directly yields a good
staffing function, called DIS staffing. Moreover, when we
use DIS staffing, the entire DIS model serves as a use-
ful approximation for the original Mt/GI/st +GI model,
so we obtain useful formulas approximating other perfor-
mance measures, such as the time-varying mean queue
length; see Theorem 1 below. We thus see that the mean
queue length cannot be stabilized at the same time as
the abandonment probability under higher abandonment-
probability targets, and we can quantify the fluctuations in
the mean queue length.

We substantiate the good performance of the DIS ap-
proximation for heavily loaded systems by establishing a
heavy-traffic limit theorem. In particular, we apply our
recent heavy-traffic fluid limits for many-server models
with time-varying arrival rate and staffing in Liu and Whitt
(2012a, b, c) to show that the DIS approximation is asymp-
totically correct in the overloaded or efficiency-driven
(ED) many-server heavy-traffic regime; see Garnett et al.
(2002) for background. (Related limits appear in Kang and
Ramanan 2010, Kaspi and Ramanan 2011, Mandelbaum
et al. 1998, Whitt 2006; Mandelbaum et al. 1998 is restricted
to the Markovian special case, while the others assume fixed
staffing.) As a corollary, we deduce that it is not possible for
any algorithm to simultaneously stabilize all performance
measures across the full range of target values in the many-
server heavy-traffic regime.

Unfortunately, however, the simple DIS approximation
does not perform well in the common case in which the

target QoS is high (the abandonment probability target
is low), which tends to take the system out of the ED
regime. In the second step we treat that case by introducing
a new modified-offered-load (MOL) approximation, which
uses the new DIS offered load; we call this the DIS-MOL
approximation. We will show that the DIS-MOL approxi-
mation is not too dismal!

Paralleling previous MOL approximations in Jennings
et al. (1996) and Feldman et al. (2008) (also see Jagerman
1975, Massey and Whitt 1994, 1997), our MOL approx-
imation uses steady-state performance formulas from the
associated stationary M/GI/s + GI model in a time-
varying manner, using an arrival rate determined by the
DIS OL. This second step is not immediate, either, because
the M/GI/s + GI model tends to be intractable. In
this step, we apply the approximation for all steady-state
performance measures in this model by an associated
M/M/s +M4n5 model from Whitt (2005), which uses an
exponential service time with the same mean and a state-
dependent Markovian abandonment process. We conduct
simulations to show that this new formula-based DIS-MOL
staffing algorithm stabilizes the abandonment probability
and the expected waiting time effectively across a wide
range of targets. As indicated above, we actually achieve
more: because all performance measures tend to be stabi-
lized together when the target QoS is high, in that case we
actually achieve a formula-based staffing algorithm for both
the delay probability and the abandonment probability, plus
several other performance measures as well.

Here is how the rest of this paper is organized. We start
in §2 by reviewing the analytical OL and MOL approaches
to the staffing problem. Next, in §3 we develop the
DIS model and give explicit expressions for all the key
performance measures. In §4 we show that the DIS approx-
imation achieves its goal of stabilizing abandonment proba-
bilities and expected delays as the scale increases. There we
also prove that it is impossible to simultaneously asymptot-
ically stabilize all performance functions. In §5 we develop
the new MOL approximation for normally loaded systems.

In §6 we perform simulation experiments to validate the
approximations, considering the Markovian Mt/M/st +M
examples with sinusoidal arrival-rate function. We also con-
sider corresponding many-server service systems with non-
exponential service times and abandonment times in the
e-companion and a longer version available on the authors’
Web pages. Our simulations add real system constraints,
including the discretization issues and specified staffing
intervals.

In §7 we present extra details for the asymptotic results
in §4. Finally, in §8 we draw conclusions. We present addi-
tional material in the e-companion and a longer version
available on the authors’ Web pages; the contents are spec-
ified in §EC.1. An electronic companion to this paper is
available as part of the online version at http://dx.doi.org/
10.1287/opre.1120.1104.
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2. Background on Offered
Load Approximations

The general idea of an OL approximation is to initially
assume that there are as many resources (here servers) as
needed and then see how many are actually used. After
we have determined how many servers would be needed
if there were no constraint on their availability, we staff to
provide the number of servers needed. Because the model
is stochastic, the time-dependent number of servers used
itself is random, so we must use some deterministic time-
dependent partial characterization of this time-dependent
distribution, such as the time-dependent mean or that time-
dependent mean plus some multiple of the associated time-
dependent standard deviation, as in the staffing algorithm
proposed by Jennings et al. (1996).

As a consequence, the basic OL approximation is
an IS approximation: the time-dependent number in the
Mt/GI/st + GI system is approximated by the time-
dependent number of busy servers in the corresponding
Mt/GI/� model, having the same arrival processes and
service times. This step is effective because the IS model
is remarkably easy to analyze. The number of busy servers
in the Mt/GI/� model at time t has a Poisson distribution
with the mean

m04t5≡

∫ t

−�

�4s5P4S > t − s5ds1 (1)

where ≡ denotes “equality by definition” and S is a generic
service time; see Eick et al. (1993a, b). (The subscript 0
will be explained later.)

The IS approximation leads to the classical square-root-
staffing (SRS) formula

s�4t5=m04t5+��

√

m04t51 (2)

where � is the target level of performance, s�4t5 is the
required staffing level at time t for that target, �� is an
associated QoS parameter, and m04t5 is the mean number of
busy servers in the IS model. This mean m04t5 serves as the
appropriate notion of offered load (OL) at time t, which is
independent of both � and the abandonment-time cdf. The
SRS in (2) is based on a normal approximation for the exact
Poisson distribution. If � is the target delay probability,
then �� is chosen to satisfy P4N40115 > ��5= �.

The MOL approximation is a refinement of the OL
approximation above, which is needed because in real-
ity there are not infinitely many servers, so the number
in system is not actually so well approximated by a nor-
mal distribution. For the Mt/GI/st +GI model, the MOL
approximation for the performance at time t is the steady-
state performance in the associated stationary M/GI/s +

GI model with constant arrival rate

�MOL
0 4t5≡

m04t5

E6S7
1 (3)

where m04t5 is the offered load and S is a random ser-
vice time. The MOL staffing at time t is the smallest
staffing level s4t5 such that the performance target is met.
Because performance is difficult to analyze in the general
M/GI/s +GI model, here we propose using the approxi-
mation in Whitt (2005). For further discussion, see §5.

An alternative to using the exact M/GI/s +GI steady-
state formula for the delay probability in the MOL approx-
imation is to use a heavy-traffic approximation for it. That
leads to a direct application of the SRS but with a new
formula for the QoS parameter �� . This approach was
used with the delay probability target in Jennings et al.
(1996, §4) for the M/M/s model and in Feldman et al.
(2008) for the more general M/M/s +M model. For the
M/M/s + M model, the Garnett function approximating
the delay probability obtained from Garnett et al. (2002) is

P4Delay5≈�4−�1
√

�/�5≡G14�51 (4)

where

�4x1 y5≡

[

1 +h4−xy5

yh4x5

]−1

1 h4x5≡
�4x5

ê4x5
1

�4x5≡
1

√
2�

e−x2/21 ê4x5≡

∫ x

−�

�4y5dy0

To stabilize the delay probability at target �, it suffices
to obtain a �� by inverting the Garnett function, letting
P4Delay5≡ �.

3. The Delayed-Infinite-Server (DIS)
Approximation

Here we use IS models in a new way. Instead of directly
replacing the Mt/GI/st +GI model by its Mt/GI/� coun-
terpart, which ignores the customer abandonment, we rep-
resent our model as two IS facilities in series: first the
waiting room (or the queue), and then the service facility,
as depicted in Figure 1.

We start by assuming that our goal is to have every
arrival that does not elect to abandon wait exactly time w

Figure 1. The delayed infinite-server (DIS) approxima-
tion for the Mt/GI/st +GI queueing model.

Waiting
room

(wait w)

Service
facility

G

�(t)

Abandonment F

Q(t) B(t)

�(t)

�(t) �(t − w) F(w) � (t)

Note. The contents Q4t5 and B4t5 are independent Poisson random vari-
ables for each t; the three flows are Poisson processes. See (11) and (12)
for the abandonment rate �4t5 and departure rate �4t5.
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before entering service. To achieve that goal in our approx-
imation, we require that all external arrivals enter the wait-
ing room that has infinite capacity and spend the fixed time
w there before they move on to the service facility. (That is
done in the approximation, not in the actual system.) While
in the waiting room, each customer may abandon instead
of entering service, after which the customer is lost. As in
the original model, the abandonment times of successive
arrivals to the queue are i.i.d. random variables with cumu-
lative distribution function (cdf) F . The resulting model is
the approximating DIS model.

In the DIS model with parameter w, the customer always
enters service after spending time w in the queue, if the cus-
tomer has not yet abandoned. That rule is possible because
the service facility (the second IS queue) has infinitely
many servers. We assume the system starts empty at time 0,
and we let the first customer enter service after time w.
Thus, for t ¾w, customers enter the service facility at rate
�4t −w5F̄ 4w5, where �4 · 5 is the arrival-rate function and
F̄ ≡ 1 − F .

Because all arrivals wait precisely the target duration
w before entering service, if they do not elect to aban-
don, the approximate abandonment probability is always
F 4w5. Hence we can initially specify either the target aban-
donment probability � ≡ P4Ab5 or the target delay w.
If F is continuous, then there always is a w such that
F 4w5= � for any given �. If F is also strictly increas-
ing, then w = F −14�5. We assume that F is continuous and
strictly increasing. Hence we can work with either � or w
in the DIS model.

We now describe the performance in the approximating
DIS model depicted in Figure 1. We start with a targeted
waiting time w and the original Mt/GI/st + GI model,
specified by the arrival-rate function �, the service-time
cdf G, and the abandonment-time cdf F . Let S and A be
generic service-time and abandonment-time random vari-
ables; i.e., G4x5 ≡ P4S ¶ x5 and F 4x5 ≡ P4A ¶ x5 for
x¾ 0. Assume that E6S7 <�. (We do not need to assume
that E6A7 <� because in our approximation abandonments
can occur only before time w.) Because F is continuous,
F has no point mass at w, i.e., P4A = w5 = 0, so there is
no ambiguity about customer action after waiting in queue
for time w.

The approximating model thus becomes a network of
two Mt/GI/� queues in series. The waiting room has
arrival-rate function � and service times distributed as T ≡

A ∧ w ≡ min 8A1w9, while the service facility has arrival
rate �4t −w5F̄ 4w5, where F̄ 4x5≡ 1 − F 4x5, and the given
service-time cdf G. Let FT be the associated cdf of the
truncated random variable T , i.e.,

FT 4x5≡ P4T ¶ x5= F 4x51 0 ¶ x <w1

FT 4x5= 11 x¾w0
(5)

We see that T has a point probability mass at w, because
P4T =w5= P4A¾w5= F̄ 4w5.

As in Eick et al. (1993a), we assume that the system
starts in the infinite past (at t = −�), with the policy above
(customers entering service after waiting w if they have
not yet abandoned). With this convention, all processes are
defined on the entire real line. That is convenient both for
some formulas and for representing the dynamic steady
state associated with periodic arrival-rate functions, as in
Eick et al. (1993b). If we want the system to start empty
at time 0, then we can simply let �4t5= 0 for all t < 0.

We can split the arrival process into two independent
Poisson processes, one for the customers who will even-
tually be served and the other for the customers who will
eventually abandon. Each customer is eventually served
with probability F̄ 4w5. We can further modify these two
Poisson processes to obtain independent Poisson processes
for the process counting customers entering service (at the
times they enter service) and the process counting cus-
tomers abandoning (at the times they abandon). Each can
be represented as the departure process from an Mt/GI/�
queue, which corresponds to the original Poisson arrival
process modified by having its points translated to the
right by i.i.d. random variables; that is well known to
preserve the Poisson property. For the counting process
counting customers entering service, the service time is the
constant value w; for the counting process counting cus-
tomers abandoning, the service time is by the random value
4T � T <w5. By this construction, we have proved that the
arrival process to the service facility is indeed a nonhomo-
geneous Poisson process with rate �4t−w5F̄ 4w5 at time t.
We can thus apply established results for the Mt/GI/�
model, in particular Eick et al. (1993a, Theorem 1).

Let Q4t1 y5 denote the number of customers in queue at
time t that have remaining time before abandonment greater
than y, and let Q4t5 ≡ Q4t105 denote the total number of
customers in queue at time t. The random variable Q4t1 y5
is depicted in Figure 2, which parallels Eick et al. (1993a,
Figure 1). We put a point at 4x1 y5 in the plane if there is

Figure 2. The random variable Q4t1 y5 representing the
queue content at time t that has remaining
time before abandonment greater than y, in
the DIS approximation.
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an arrival at x with abandonment time y. Thus Q4t1 y5 will
be the shaded region above the interval 6t−w1 t7 as shown.
All arrivals with abandonment times greater than w will be
served. All arrivals before time t − w with abandonment
times greater than w will have entered service before time t.

Let B4t1 y5 denote the number of customers in the ser-
vice facility at time t that have remaining service time
greater than y and let B4t5≡ B4t105 denote the total num-
ber of busy servers (number of customers in the service
facility) at time t. Let X4t5≡Q4t5+B4t5 be the number of
customers in the system at time t. Let W4t5 be the poten-
tial waiting time at time t, i.e., the virtual waiting time
before entering service of a customer with infinite patience
arriving at time t.

We now summarize the main structural results for the
approximation. For a nonnegative random variable Z with
finite mean E6Z7 and cdf H , let Ze denote a random vari-
able with the associated stationary-excess cdf (or residual-
lifetime cdf) He, defined by

He4y5≡ P4Ze ¶ y5≡
1

E6Z7

∫ y

0
H̄4x5dx1 y ¾ 00 (6)

The moments of Ze can be easily expressed in terms of the
moments of Z via

E6Zk
e 7=

E6Zk+17

4k+ 15E6Z7
1 k¾ 10 (7)

Both B4t1 y5 and Q4t1 y5 are functions of the model
parameter � (or w = F −14�5), but in this section we drop
the subscript for simplicity.

Theorem 1. Consider the DIS approximation for the
Mt/GI/st +GI model specified above, starting in the dis-
tant past with specified delay target (parameter) w¾ 0 or
abandonment probability target �= F 4w5. The approxima-
tion makes W4t5=w with probability 1 and the probability
of abandonment F 4w5 for all arrivals. Moreover, Q4t1 y15
and B4t1 y25 are independent Poisson random variables for
each t and each pair 4y11 y25 with y1 > 0 and y2 > 0, hav-
ing means

E6Q4t1 y57 =

∫ t

t−w
�4x5F̄ 4t + y− x5dx

=

∫ w

0
�4t − x5F̄ 4y+ x5dx1

E6B4t1 y57 = F̄ 4w5
∫ t

−�

�4x−w5Ḡ4t + y− x5dx

= F̄ 4w5
∫ �

0
�4t −w− x5Ḡ4y+ x5dx0

(8)

The total numbers of customers in queue and in service
at time t, Q4t5, and B4t5, respectively, are independent
Poisson random variables with means

E6Q4t57=E6Q4t1057

=

∫ t

−�

�4x5F̄T 4t − x5dx =

∫ t

t−w
�4x5F̄T 4t − x5dx

=E

[

∫ t

t−T
�4x5dx

]

=E6�4t − Te57E6T 71 (9)

E6B4t57=E6B4t1057

= F̄ 4w5
∫ t

−�

�4x−w5Ḡ4t − x5dx

= F̄ 4w5E

[

∫ t−w

t−w−S
�4x5dx

]

= F̄ 4w5E6�4t −w− Se57E6S70 (10)

Thus, X4t5, the total number of customers in the system at
time t is a Poisson random variable with a mean E6Q4t57+
E6B4t57. The processes counting the numbers of customers
abandoning and entering service are independent Poisson
processes with rate functions � and �, respectively, where

�4t5=

∫ w

0
�4t − x5dF 4x5=E6�4t − T 5 � T <w71

�4t5= �4t −w5F̄ 4w50

(11)

The departure process 4counting the number of customers
completing service5 is a Poisson process with rate

�4t5= F̄ 4w5
∫ �

0
�4t −w− x5dG4x5

= F̄ 4w5E6�4t −w− S570 (12)

Proof. For the most part, these results are a direct appli-
cation of Theorem 1 of Eick et al. (1993a). Understanding
is facilitated by drawing pictures of Poisson random mea-
sure. Here we elaborate on only one point: To establish
the claim that Q4t1 y15 is independent of B4t1 y25 for each
4y11 y25, first observe that the departure process from the
queue prior to time t is independent of 8Q4t1 y52 y ¾ 09.
That implies that the process of customers entering service
prior to time t is also independent of 8Q4t1 y52 y ¾ 09. But
B4t1 y25 depends on the history of Q only up to time t
through its own arrival process up to time t. �

As discussed in Eick et al. (1993a), the last two repre-
sentations for E6Q4t57 and E6B4t57 in (10) are appealing
because they show random time lags, but these random
time lags appear inside the expectation in a nonlinear fash-
ion. We get convenient explicit formulas when the arrival
rate function � has special structure, e.g., when � is sinu-
soidal or a polynomial, as we show in §EC.2. As in Eick
et al. (1993a) and Massey and Whitt (1997), the polyno-
mial arrival rate functions yield useful approximations. We
can see directly that the targeted wait of w before starting
service increases the random time lags in E6B4t57 by w.
This will be negligible if w is small, but not otherwise. As
noted in Eick et al. (1993a), the time lag in E6B4t57 involv-
ing w + Se is different from the time lag w + S appearing
in the departure rate �4t5.
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Because the departure process from the service facility
is a Poisson process, we see that the approximation extends
immediately to yield corresponding approximations for any
number of Mt/GI/st +GI models in series, in the spirit of
Massey and Whitt (1993).

We now indicate how the DIS approximation can be
used to specify the staffing function s�4t5 in the origi-
nal Mt/GI/st + GI model to achieve target � ≡ P4Ab5.
For any given target abandonment probability � with the
direct DIS approximation, the number of busy servers at
time t would be the random variable B�4t5. With the DIS
approximation, B�4t5 has a Poisson distribution with mean
m�4t5 ≡ E6B�4t57, for which we give an explicit formula.
Hence B�4t5 is approximately normally distributed with
both mean and variance equal to m�4t5.

The simple DIS staffing approximation is to simply set
s�4t5 = m�4t5. We will show that the simple DIS staffing
policy is effective when the QoS is low, but not when the
QoS is high.

4. Asymptotic Stability
In this section we prove that simple DIS staffing
s�4t5 = m�4t5 is effective in stabilizing the abandonment
probability and the expected delay at any positive target
values � and w related by � = F 4w5 asymptotically as
the scale increases. For that purpose, we apply the many-
server heavy-traffic FWLLN established in Liu and Whitt
(2012a, b, c). That FWLLN involves a sequence of Gt/GI/
st +GI queueing models indexed by n. Model n has
a general arrival process with time-varying arrival rate
�n4t5≡ n�4t5 (which covers the Mt assumption of the cur-
rent paper), i.i.d. service times with cumulative distribu-
tion function (cdf) G, a time-varying number of servers
sn1�4t5≡ �ns�4t5� (the least integer above ns�4t5) and cus-
tomer abandonment from queue, where the patience times
of successive customers to enter queue are i.i.d. with gen-
eral cdf F . The two cdfs G and F are fixed independent
of n, and differentiable, with positive probability density
functions (pdfs) g and f .

Our scaling of the fixed functions � and s induces
the familiar many-server heavy-traffic scaling. Under that
scaling, and under regularity conditions, Liu and Whitt
(2012b, c) establish a FWLLN with convergence of the
appropriately scaled stochastic processes to deterministic
performance functions associated with the fluid model ana-
lyzed in Liu and Whitt (2012a). Under this scaling and
these regularity conditions, we now show that the DIS
staffing achieves stability asymptotically; i.e., the time-
dependent mean delay and abandonment probability are
stabilized as n→ �.

To state the result, let Qn4t5 be the number of customers
waiting in queue at time t in the nth queueing model. Let
Wn4t5 be the corresponding potential waiting time, i.e., the
virtual waiting time at time t if there were an arrival at
time t, assuming that arrival had unlimited patience. Let

An4t5 be the number of customers that have abandoned
in the interval 601 t7. Let An4t1 u5 be the number of cus-
tomers among arrivals in 601 t7 that have abandoned in the
interval 601 t+u7. Let Q̄n4t5≡ n−1Qn4t5, Ān4t5≡ n−1An4t5
and Ān4t1 u5 ≡ n−1An4t1 u5 be the associated FWLLN-
scaled processes. (The process Wn4t5 is not scaled.) Let
å4t5≡

∫ t

0 �4s5ds. Let 1C be the indicator variable, which
is equal to 1 if event C occurs and is equal to 0 otherwise.

Because the arrival processes are nonhomogeneous
Poisson processes here, both a functional central limit theo-
rem (FCLT) and a FWLLN hold for the arrival processes, as
required in Liu and Whitt (2012b, c). To establish conver-
gence of expected potential waiting times, we assume the
regularity conditions in Liu and Whitt (2012a, b, c) are
satisfied, namely, all model parameters (�, F and G) are
piecewisely continuous and differentiable. We assume in
addition that the service times have finite second moments.

Theorem 2 (Asymptotic Stability). Consider a sequence
of Mt/GI/st + GI models with the many-server heavy-
traffic scaling specified above. Suppose that these systems
start empty at time 0, the regularity conditions in Liu and
Whitt (2012a, b, c) are satisfied, and E6S27 < �. Then,
with the abandonment-probability target �, under the DIS
staffing sn1�4t5≡ �ns�4t5�, where

s�4t5=m�4t5≡E6B�4t57

= F̄ 4w5
∫ t−w

0
Ḡ4x5�4t −w− x5dx · 18t>w91 (13)

the expected delays and abandonment probabilities are sta-
bilized at their targets w and � with �= F 4w5 asymptoti-
cally as n→ �; i.e., for any time b with w < b <�,

sup
0¶t¶b

8�Q̄n4t5−E6Q4t57�9 ⇒ 01

sup
0¶t¶b

8�Wn4t5−w�9 ⇒ 01 E6Wn4t57→w1 t ¾ 01

sup
0¶t¶b

8�Ān4t5−A4t5�9 ⇒ 0 and

sup
0¶t¶b1w<u<b

8�Ān4t1 t + u5−A4t1u5�9 ⇒ 01

(14)

as n→ �, where

E6Q4t57=E6Q4t1057≡
∫ w

0
�4t − x5F̄ 4x5dx1

A4t5≡

∫ t

0
�4s5ds1 �4t5≡

∫ w

0
�4t − x5f 4x5dx1

and A4t1u5≡å4t5�1 u >w0

(15)

Remark 1 (Stabilizing Abandonment Probabilities,
Not Rates). From (15), we see that the abandonment rate
�4t5 is not stabilized. Instead, the proportion of arrivals
arriving in any time interval 6t11 t27 that eventually aban-
don before starting service approaches �. That is consistent
with our goal to stabilize the abandonment probability, as
opposed to the abandonment rate. That is achieved starting
empty by not staffing until time w.
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Proof. Under the regularity conditions specified in Liu and
Whitt (2012a, b, c), the appropriately scaled versions of
the stochastic processes describing the performance in the
Gt/GI/st +GI queueing models indexed by n converge to
corresponding deterministic functions describing the per-
formance of an associated deterministic fluid model having
capacity s4t5 and fluid input arriving at rate �4t5 at time t.
The performance of this limiting fluid model is character-
ized in Liu and Whitt (2012a).

A key assumption in Liu and Whitt (2012a, b, c) is that
the fluid model alternates between underloaded intervals
and overloaded intervals, with critical loading holding only
at isolated points of switching from one regime to another.
When we use the DIS staffing to stabilize abandonments
at a positive target �, we are forcing the system to always
operate in an overloaded regime after an initial transient
required for the capacity to be filled. Thus, by staffing in
that way, we consider the special case in which the sys-
tem remains overloaded after an initial underloaded inter-
val; i.e., there is a single switching point in the fluid model
at t = w (the delay target). In the terminology of Garnett
et al. (2002), the limit is for the quality-driven (under-
loaded) many-server heavy-traffic regime before time w
and the efficiency-driven (overloaded) many-server heavy-
traffic regime after time w.

In Liu and Whitt (2012a, §10) it was shown how to staff
the fluid model in order to stabilize delays and abandon-
ments. (Abandonment probabilities in the queueing model
correspond to proportions of entering fluid that abandon
before entering service in the fluid model.) For simplicity,
in Liu and Whitt (2012a, §10) it was assumed that the fluid
model starts empty at time 0, so we made that assump-
tion, but it was shown how to treat more general initial
conditions in Section H of the appendix of Liu and Whitt
(2012a). When starting empty, the staffing policy to stabi-
lize delays of all fluid to enter service at a target w provides
no staffing at all, and thus allows no fluid to enter service,
until time w. The stabilizing staffing function after time
w is given by (13) above. Given that the delays are stabi-
lized at w, the proportion of arriving fluid at each time to
abandon before entering service is �= F 4w5. Because F is
continuous and strictly increasing, it has a unique inverse
F −1, so we could start with � instead of w and then let
w = F −14�5.

Moreover, as discussed in Liu and Whitt (2012a, §4),
there is an intimate connection between the fluid content
at time t and the mean of the number of busy servers in
an associated IS model. As a consequence, this staffing
function for the fluid model coincides with the simple DIS
staffing, adjusted appropriately for the scaling factor n;
i.e., in the fluid model, s�4t5 = E6B�1n4t57/n, if we also
assume that the fluid model starts empty and we first pro-
vide staffing at time w, where w is chosen so that w =

F −14�5. Thus we can combine the results above to deduce
that DIS staffing achieves its goal asymptotically.

As a consequence, if we use the simple DIS staffing
in the fluid model, we succeed in stabilizing the delays
in the fluid model. We then apply the FWLLN with that
particular staffing function. Then the FWLLN in Liu and
Whitt (2012b, c) directly applies the stated limits for Q̄n4t5,
Wn4t5 and Ān4t5 in (14), because all fluid waits exactly w
before entering service, if it does not abandon, the same
will be true asymptotically for the stochastic model. Thus
we get the stated limit for Ān4t1 u5 with u>w.

Finally, we apply uniform integrability to get the con-
vergence of means E6Wn4t57 → w for each t from the
established convergence Wn4t5 ⇒ w, using Billingsley
(1999, p. 31). To obtain the uniform integrability, we show
that supn¾1 E6Wn4t5

27 <�. That is proved in §7.1. �
From the representation of the DIS approximating mean

queue length E6Q�4t57 in Theorem 1, we can show that it
cannot be a constant function with a time-varying arrival
rate function. Hence, Theorem 2 together with two addi-
tional lemmas below implies the following corollary.

Corollary 1 (The Mean Queue Length Is Not Sta-
bilized Asymptotically). Suppose that the conditions of
Theorem 2 hold with the arrival rate function � not being
a constant function. Then, under DIS staffing, the scaled
number in queue n−1Qn4t5 converges to the mean DIS
queue length, which cannot be a constant function of t after
time w. Thus, the DIS staffing function that asymptotically
stabilizes the abandonment probability does not asymptot-
ically stabilize the mean queue length.

We use the following lemma to prove Corollary 1. We
prove this lemma and the following one in §7.2.

Lemma 1 (Uniqueness of Time-Shifted Integral). If

m4t5=

∫ w

0
�4t − x5F̄ 4x5dx1 t ¾w1 (16)

is a positive constant for all t ¾ w, then � is a constant
function for t ¾ 0.

We now observe that the DIS staffing is essentially the
only staffing function that can stabilize abandonments and
delays.

Corollary 2 (Uniqueness). The DIS staffing in (13) is
the unique staffing function that stabilizes abandonment
and delays at positive values in the fluid model. Conse-
quently, any other sequence of staffing functions 8sn2 n¾ 19
that asymptotically stabilizes abandonment and delays must
satisfy n−1sn4t5→ s�4t5 as n→ �.

However, the MOL staffing function for the stochastic
system is unique only in the order of o4n5, according to
the fluid scaling. We use the following lemma to prove
Corollary 2. The following lemma shows that there are not
multiple staffing functions that produce identical potential
waiting time functions or identical abandonment rate func-
tions in the limiting fluid model.
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Lemma 2 (Unique Fluid Model Staffing Func-
tions Yielding Given Targeted Performance). For
the Gt/GI/st + GI deterministic fluid model specified by
the model data 4�1 s1G1F 1b401 ·51 q401 ·55 satisfying the
assumptions of Liu and Whitt (2012a) starting empty at
time 0, the DIS staffing in (13) is the unique staffing yield-
ing the positive constant target delay w and abandonment
�= F 4w5.

We can combine Corollaries 1 and 2 to deduce the fol-
lowing corollary.

Corollary 3 (Impossibility of Simultaneous Stabi-
lization). There does not exist a staffing function that can
simultaneously stabilize the abandonment probability and
the mean queue length at positive targets asymptotically in
the many-server heavy-traffic regime.

5. The DIS-MOL Approximation
Consistent with Theorem 2, in simulation experiments we
see that the simple DIS staffing is remarkably effective in
stabilizing the abandonment probability and the expected
delays in large-scale queueing models with relatively low
QoS (high abandonment probabilities and expected delays);
see Figure 4 for an example. Unfortunately, however,
the DIS approximation does not perform so well for
higher QoS (lower abandonment probabilities and expected
delays). Such lighter loads tend to move the system from
the ED asymptotic regime to the QED asymptotic regime.
(With higher QoS, the scale must be extremely large, such
as n = 11000 or more, before the DIS staffing is effective.
Experience indicates that the required scale increases as �
decreases.)

Fortunately, for such higher QoS, a new MOL approx-
imation performs remarkably well; see Figure 5 for an
example. We now develop it. Let Pt4Ab5 be the time-
dependent probability that an arrival at time t will eventu-
ally abandon. For a stationary model, the offered load can
be defined as �41 − P4Ab55E6S7, the rate customers enter
service, �41−P4Ab55, multiplied by the mean service time,
E6S7. A candidate time-dependent generalization would be
the pointwise-stationary approximation for the offered load,
�4t541 − Pt4Ab55E6S7, but �4t541 − Pt4Ab55 is the rate of
arrivals at time t that will eventually enter service; it is not
the rate at which customers actually enter service at time t.
By Little’s law applied to the service facility in the station-
ary model, �41 −P4Ab55E6S7 is also the expected number
of busy servers in steady state. Experience indicates that
the mean number of busy servers in the IS system tends to
be a far better analog of the offered load in a nonstation-
ary model.

Thus, to obtain the DIS-MOL approximation for the
staffing s4t5 at time t to achieve the target �, we let w =

F −14�5, and we look at the steady-state distribution of the
stationary M/GI/s +GI model applied with s = s4t5 and
arrival rate

�MOL
� 4t5≡

m�4t5

E6S741 −�5
0 (17)

For each fixed time t, we let the DIS-MOL staffing
level sMOL

� 4t5 be the least integer staffing level, such
that the stationary abandonment probability P4Ab5 in the
M/GI/s +GI model with arrival rate �= �MOL

� 4t5 in (17)
and s = sMOL

� 4t5 satisfies P4Ab5¶ �.
Because the stationary M/GI/s + GI model itself

is very complicated, we apply the approximation from
Whitt (2005), which is based on an associated Markovian
M/M/s +M4n5 model with state-dependent abandonment
rates. Alternatively, because that approach approximates
the general service-time distribution by an exponential
distribution with the same mean, one can use the exact
solution or asymptotic approximations for the associated
M/M/s +GI model from Zeltyn and Mandelbaum (2005).
Either way, we are exploiting the property that the service-
time distribution beyond its mean tends not to matter
too much in the stationary M/GI/s + GI model; see
Whitt (2005, 2006). In an application this property can be
checked with simulation.

Remark 2 (Sensitivity to the Service-Time Distribu-
tion Beyond Its Mean). Because the stationary M/GI/

s/0 loss model and the stationary M/GI/� IS model
have the celebrated insensitivity property, i.e., because the
steady-state performance is independent of the service-time
distribution beyond its mean, it is not too surprising that
the stationary M/GI/s+GI model should exhibit approx-
imate insensitivity to the service-time distribution beyond
its mean. However, unlike the performance in these station-
ary models, the insensitivity is lost when we abandon the
stationarity, as was shown in Davis et al. (1995) for the loss
model. Similarly, the transient performance in the Mt/GI/

s +GI model with time-varying arrival rate is more sen-
sitive to the service-time distribution beyond its mean, as
shown by the example in Liu and Whitt (2012a, §2). That
sensitivity is captured in our approximation through the
impact of the service-time distribution beyond its mean
on the transient performance of the time-varying IS and
DIS models.

6. An Mt/M/st +M Example with a
Sinusoidal Arrival-Rate Function

In this section, we use simulation experiments to show that
both the abandonment probability Pt4Ab5 and the expected
delay E6W4t57 are indeed stabilized (independent of time)
in Markovian Mt/M/st +M examples for low QoS targets
with the DIS algorithm and for all QoS targets with the
DIS-MOL algorithm. We show that the new methods also
work for nonexponential service and patience distributions
in §EC.4 and the longer version available on the authors’
Web pages.

Our staffing procedure applies to arbitrary arrival-rate
functions, because we can apply Theorem 1 to calculate the
DIS OL function m4t5. Following common practice in the
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study of time-varying arrival rates, we consider a sinusoidal
arrival-rate function

�4t5= a+ b · sin4ct51 0 ¶ t ¶ T 0 (18)

This sinusoidal example is convenient because we can
apply Theorem 1 to obtain explicit analytical formulas for
the offered load m�4t5, paralleling Eick et al. (1993b). This
sinusoidal example also roughly captures the spirit of real
systems, as seen in call center data, as in Figure 7 of
Feldman et al. (2008). We obtain a concrete many-server
example by letting a = 100, b = 20, c = 1 and T = 20 in
(18). Here we let the individual service rate � be 1 and the
individual abandonment rate � be 0.5. (Choosing �= 1 cor-
responds to measuring time in units of mean service times.)

An important issue for applications is the rate of fluctu-
ation in the arrival-rate function compared to the expected
service time. Because a cycle of the sinusoidal arrival-rate
function in (18) is 2�/c and we have set c = 1, the length
of a cycle is 2� ≈ 603. Thus there will be slightly more
than three cycles during the interval 601207; e.g., see Fig-
ure 4. If we measure time in hours, then the mean service
time is one hour and the full time period is slightly less
than one day. Then the three peaks in the arrival rate in Fig-
ure 4 occur approximately at 2 a.m., 8 a.m., and 2 p.m. Thus
in this example the fluctuations in the arrival-rate function
are relatively fast compared to the expected service time.
From Jennings et al. (1996) and Feldman et al. (2008),
we know that the pointwise-stationary approximation does
not perform well for this example. That is demonstrated
for the abandonment probability and the expected delay in
the appendix.

We now turn to DIS staffing. We apply Theorem 1 and
Eick et al. (1993b) to calculate the DIS performance func-
tions. Letting F̄ 4x5 = e−�x, Ḡ4x5 = e−�x, and �4t5 ≡ 0 for
t < 0, we obtain

E6B4t57

=



































e−�w
a

�
−

(

a

�
−

bc

�2 + c2

)

e−�w−�4t−w5

+
be−�w

�
√

1+c2/�2
sin6c4t−w5−�71 t¾w

01 0 ¶ t < w1

(19)

E6Q4t57

=


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
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�
41 − e−�w5+ b

√

x2 + y2

�2 + c2
sin4ct +�−�51

t ¾w

a

�
−

(

bc

�2 +c2
−
a

�

)

e−�t
+

b
√
�2 +c2

sin4ct−�51

0 ¶ t < w1

(20)

where �= arctan4c/�51 � = arctan4a/�51 �= arctan4y/x5

x = 1 − e−�w cos4cw51 y = e−�w sin4cw5

From (19), we see that E6B4t57 is asymptotically sinu-
soidal as t → �, eventually coinciding with the formula
for the periodic steady state, given for the more general
Mt/GI/st + GI model in Theorem EC.1. From (20), we
see that E6Q4t57 is sinusoidal when t ¾w.

We first compare the DIS-MOL staffing function sMOL
� 4t5

to the DIS staffing function, which is the OL m�4t5. In
Figure 3, we plot 8sMOL

� 4t52 0 ¶ t ¶ T 9 and 8m�4t52 0 ¶
t ¶ T 9 4T = 205 with two abandonment probability tar-
gets: �= 001 and �= 00001. These two targets are extreme
cases. The first one (� = 10%) represents a low QoS; the
second one (� = 001%) represents a high QoS. Figure 3
shows that 8sMOL

� 4t52 0 ¶ t ¶ T 9 and 8m�4t52 0 ¶ t ¶ T 9
coincide when the QoS is low. Therefore, to stabilize aban-
donment under low QoS, we can just staff the system with
the OL function m�4t5, given in Theorem 1. However,
when the QoS is high, Figure 3 shows that the DIS-MOL
staffing function is significantly above the OL function,
which makes the MOL refinement necessary. Our experi-
ments indicate that the DIS-MOL staffing is never less than
the OL (DIS staffing).

We now use simulation experiments to show that DIS-
MOL approximation achieves the desired time-stable per-
formances under all QoS targets. First we evaluate the
simple DIS approximation at low QoS targets (where it
is nearly identical to DIS-MOL). Figure 4 shows simu-
lation estimates of key performance measures with target
abandonment probability � for 0005 ¶ � ¶ 0020. (Addi-
tional details about the simulation estimates are given in
§EC.3.) Figure 4 shows that both the abandonment proba-
bility and the expected delay are stabilized at the targets �
and w = F −14�5 = −1/� log41 − �5. Moreover, as pre-
dicted, the queue-length processes are not stabilized; they
agree closely with the formulas in (20). All these quantities
were estimated by performing multiple (5,000) independent
replications under the staffing function s�4t5 = m�4t5 =

E6B4t57 in (19).
Figure 4 shows that the simple DIS approximation works

well for � between 0.05 and 0.20, and associated expected
delays ranging from 0.1 to 0.45. However, at least 5% aban-
donment might not be acceptable. For higher QoS targets,
the DIS-MOL approximation is needed.

In Figure 5, we again plot the expected queue lengths,
abandonment probabilities, delay probabilities and expected
delays, using the DIS-MOL approximations with relatively
low abandonment probability targets 00005 ¶ �¶ 0002. The
DIS-MOL approximation works remarkably well after the
initial transient period.

In the DIS model, because all customers are required
to wait in queue for w before entering service, unlike
the expected queue length, we are not able to produce
an approximate delay probability because the DIS approx-
imation predicts that every customer should be delayed.
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Figure 3. A comparison of the OL function m�4t5 and the DIS-MOL staffing function sMOL
� 4t5 for the Mt/M/st +M

example with sinusoidal arrival rate for abandonment probability targets �= 001 and 0.001.
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Figure 4. A comparison of the simple DIS approximation with simulation: estimated time-dependent expected queue
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Figure 5. Estimated time-dependent expected queue lengths, abandonment probabilities, delay probabilities, and
expected delays for the Mt/M/st + M example with sinusoidal arrival under the DIS-MOL staffing with
relatively high QoS (�= 00005, 0001 and 0002).
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Of course, in the original stochastic model the delay proba-
bility is always less than 1. The delay probability increases
as the abandonment probability � increases. When � is big
enough, e.g., � = 002, the delay probability is nearly 1, as
shown in Figure 4; when � is as small as 0.005, the delay
probability goes down to 0.2, as shown in Figure 5. Fig-
ures 4 and 5 show that the delay probabilities are stabi-
lized when � is small, and they are sinusoidal otherwise.
This phenomenon is consistent with Feldman et al. (2008,
Figure 4), which shows the abandonment probabilities when
the delay probability is the target. There, both were stabi-
lized in with high QoS, but the abandonment probabilities
were not stabilized under low QoS (high delay probabil-
ity targets).

We conclude this section by remarking that the DIS-
MOL approximation is consistent with a square-root-
staffing (SRS) formula. Paralleling (2), the candidate new
SRS formula for the Mt/GI/st + GI model based on the
DIS OL with abandonment target � would be

s�4t5=m�4t5+��

√

m�4t50 (21)

Formula (21) differs from (2) by using the DIS OL m�4t5
instead of the standard OL m04t5 in (1). In §EC.5 we verify
that the DIS-MOL approximation is indeed consistent with
the SRS staffing in (21); i.e., we show that the DIS-MOL

staffing function sMOL
� 4t5 has the form of the SRS formula

(21). Following Feldman et al. (2008), for an abandonment
probability target �, we let D�4t5 ≡ sMOL

t − m�4t5 be the
difference between the DIS-MOL staffing and the OL func-
tions, and let ��4t5 ≡ D�4t5/

√

m�4t5 be the implicit QoS
function for DIS-MOL. Figure EC.4 shows that ��4t5≈ ��,
independent of t, where �� is a nonnegative decreasing
function of �. However, it remains to find a simple formula
for the new QoS constant ��. In §EC.5 we show results of
fitting it to simulation data.

7. Additional Proofs for §4

7.1. A Bound to Justify Uniform Integrability in
Theorem 2

To justify the uniform integrability used to imply conver-
gence in moments E6Wn4t57 → w given the established
convergence in distribution Wn4t5 ⇒ w, we show that
supn¾1 E6Wn4t5

27 <�, where Wn4t5 is the potential waiting
time at time t in model n; see Billingsley (1999, p. 31).

Lemma 3. Under the assumptions of Theorem 2,

sup
n¾1

E6Wn4t5
27 <�0

Proof. It suffices to use a crude upper bound. Thus we
simplify. First, we bound the arrival process in model n,
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Nn4t5, above by a stationary Poisson process over the inter-
val 601 T 7 by letting the fluid arrival rate be �bd ¾ �4t5
for all t in a bounded interval 601 T 7. Similarly, we bound
the staffing function in the fluid model below by a positive
capacity sbd with 0 < sbd ¶ s4t5, 0 ¶ t ¶ T , which is possi-
ble by Assumption 11 of Liu and Whitt (2012a). We also
assume that there is no abandonment. These modifications
can be shown to increase the process Wn4t5 in sample path
stochastic order, as in Whitt (1981).

With those simplifications, we have a sequence of classi-
cal M/GI/s/� models, with arrival rate n�bd and staffing
level �nsbd�, n¾ 1. We now focus on these models, with-
out changing the notation. Let W a

n 4k5 be the actual delay
of the kth arrival and observe that Wn4t5¶Wn4Nn4t5+5¶
W a

n 4Nn4t55+ S, where Nn4t5 is the homogeneous Poisson
arrival process with rate n�bd and S is a generic service
time independent of W a

n 4Nn4t55. Next we bound the given
M/GI/s models with the customary FCFS service disci-
pline above by the associated M/G/s model assigning the
customers to servers in a cyclic or round-robin order. In
particular, we next apply the stochastic bounds in Wolff
(1977, 1987) for the moments to deduce that

E
[

4W a
n 4Nn4t555

2
]

¶E
[

4W a1 c
n 4Nn4t555

2
]

1

where the additional superscript c on the right side denotes
the cyclic service discipline.

With the cyclic service discipline, the model is equivalent
to separate GI/GI/1 models. However, the arrival process
at each server in model n has Erlang E�sbdn� interarrival
times, which change with n. This will not be a serious dif-
ficulty because we can relate these arrival processes back to
the original Poisson arrival process. Next, the upper bound
can be further bounded above by the sum of all service
times assigned to that single server up to time T , i.e.,

E
[

4W a1 c
n 4Nn4t555

2
]

¶E

[(N c
n 4T 5
∑

i=1

Si

)2]

1 0 ¶ t ¶ T 1 (22)

where N c
n 4T 5 is the number of arrivals assigned to that indi-

vidual server, which is a renewal process with Erlang inter-
arrival times. Because every �nsbd�th arrival in the orig-
inal system is assigned to this server, N c

n 4T 5¶ 4Nn4T 5/
sbdn5+ 1. Combining these results, we get

E64W a
n 4Nn4t555

27

¶E

[(4Nn4T 5/sbdn5+1
∑

i=1

Si

)2]

1 0 ¶ t ¶ T 1 (23)

where Nn4t5 is a Poisson process with rate �bdn. Hence,

E6Nn4T 5/sbdn7=
�bdn

sbdn
=

�bd

sbd
<� and

Var4Nn4T 5/sbdn5=
�bdn

4sbdn5
2
¶ �bd

s2
bd

<�1

from which the desired uniform bound follows, using for-
mulas for compound Poisson random variables and the con-
dition that E6S27 <�. �

7.2. Proofs of Two Lemmas in §4

We now prove the two lemmas used with Theorem 2 to
prove Corollary 2.

Proof of Lemma 1. Let mw ≡
∫ w

0 F̄ 4x5dx and pw4x5 ≡

F̄ 4x5/mw, 0 ¶ x < w. Then the function m in (16) can be
expressed as an integral weighted average on the interval
6w1�5 with respect to the positive pdf pw, namely,

m4t5=mw

∫ w

0
�4t − x5pw4x5dx1 t ¾w0

Now extend the pdf p and the arrival rate function � to the
entire real line by letting pw4x5 = 0 if x ¶ 0 or if x ¾ w
and �4t5= 0 for t < 0. Then m4t5= c for all t ¾w if and
only if the convolution integral

mc1w4t5≡mw

∫ �

−�

�c1w4t − x5pw4x5dx = 0

for all t ¾ 01 (24)

where �c1w4t5 ≡ �4t + w5 − c for all t ¾ 0. In particular,
mc1w is the convolution of the function �c1w with respect
to the density p, which is decreasing and positive on its
interval of support, 601w7; i.e., mc1w = pw ∗ �c1w, as on
p. 143 of Feller (1971). Now let

p̂w4s5≡

∫ �

−�

e−stpw4t5dt

for positive real s and similarly for the other functions.
Exploiting basic properties of transforms of convolutions,
we get m̂c1w4s5 = �̂c1w4s5p̂w4s5 for all positive real s. If
mc1w4t5 = 0 for all t, then necessarily m̂c1w4s5 = 0 for all
positive real s. Because p̂w4s5 > 0 for all positive real s, we
deduce that necessarily �̂c1w4s5 = 0 for all s > 0. Because
�̂c104s5= esw�̂c1w4s5, where �̂c104s5 coincides with the ordi-
nary Laplace transform of �c1w4t5, we see that �̃c104s5= 0
for all positive real s. By Feller (1971, §VII.6), that implies
that �c1w4t5= 0 for all t. �
Proof of Lemma 2. Because the fluid model starts empty,
in order to have all fluid experience delay of w, no staffing
at all can be provided until time w. After time w the staffing
must be as in (13) to achieve and maintain the target delay
w. In turn, that fixed delay must be obtained to provide the
fixed abandonment proportion �= F 4w5.

To elaborate, there must be a first time that the staffing
deviates from the DIS staffing. We can trace the implica-
tions of a change in the staffing function in the fluid model,
referring to results in Liu and Whitt (2012a). First, a change
in the staffing function s necessarily changes the rate fluid
enters service b4·105. To see that, first observe that a change
in s necessarily changes â in (19) (of Liu and Whitt 2012a,
like all references in this proof) to an associated ā. In par-
ticular, (19) implies that the function â is a monotone func-
tion of the derivative s′. If we increase s′ over some inter-
val 601 u7, then, â necessarily increases over 601 u7. From
the monotonicity of the fixed point equation for the rate
fluid enters service in (18), we can apply Theorem 2 to



Liu and Whitt: Stabilizing Performance
Operations Research 60(6), pp. 1551–1564, © 2012 INFORMS 1563

deduce that the b4·105 increases as well, and similarly for a
decrease. Hence, a change in the staffing function s forces
a change in the rate fluid enters service, b4·105, which is
monotone in s′. That change in the function b4·105 in turn
forces a change in the BWT w by virtue of the ODE in
Theorem 3. However, here an increase in b4t105 forces a
decrease in w4t5. Thus the first change of staffing changes
the BWT w4t5. The change in the BWT w forces cor-
responding changes in the fluid density in queue q4t1 x5
by Corollary 2, the PWT v4t5 by Theorem 5, and in the
abandonment rate function � by (7). The change in b4·105
produces changes in the fluid density in service b4t1 x5 via
(15) and the service completion rate � via (9). Because
we are concerned with stabilizing the PWT v4t5 at w, the
change in v4t5 implies that the DIS staffing is the unique
staffing that achieves the stabilizing goals. �

8. Conclusions
We have developed a systematic formula-based procedure
to stabilize the abandonment probability and the expected
delay in an Mt/GI/st + GI model with a time-varying
arrival rate, across a wide range of performance targets,
by providing an appropriate staffing function s4t5. The first
step in §3 involves the delayed infinite-server (DIS) model
with two Mt/GI/� IS models in series. In this model (but
not in the actual system) each customer arrives at the first
IS system (representing the queue) and stays there for a
fixed time w = F −14�5 (the target). Customers may aban-
don from this first queue. If they do not, then they proceed
to the second IS system (representing the service facility).
Because the number of busy servers in the service facility,
B4t5, is a Poisson random variable for each t, it is easy
to analyze. Its mean m�4t5 ≡ E6B4t57 as a function of the
abandonment probability target � is the offered-load func-
tion used in this paper. We gave explicit formulas for m�4t5
in §§3 and EC.2

We found that the DIS mean m�4t5 itself provides an
excellent staffing function for low quality-of-service (QoS)
targets. Indeed, in §4 we proved that it achieves the stabi-
lizing goal asymptotically as the scale increases. However,
to obtain a staffing function that works for all QoS levels,
we developed a new modified-offered-load (MOL) approx-
imation in §5, obtaining our overall DIS-MOL approxi-
mation. As in previous MOL approximations, our MOL
approximation exploits the associated stationary model
with a constant arrival rate depending on the appropriate
offered load. To treat the steady state of the stationary
M/GI/s+GI model, we use an approximation developed
in Whitt (2005), which is based on an associated Marko-
vian M/M/s+M4n5 model with state-dependent abandon-
ment rates.

Our simulation experiments have shown that the DIS-
MOL approximation not only stabilizes expected delays
and abandonment probabilities but also describes other
performance measures, e.g., the expected queue length

E6Q4t57. As in Feldman et al. (2008), we find that other
performance measures are stabilized to a great extent but
not fully (across a wide range of performance targets). That
was illustrated in Figures 4 and 5. Indeed, in Corollary 3
we showed that it is not possible to simultaneously stabilize
all performance measures asymptotically in the efficiency-
driven many-server heavy-traffic regime. However, just as
in Feldman et al. (2008), we find that DIS-MOL simulta-
neously stabilizes all standard performance measures with
higher QoS targets, when the system is in the quality-and-
efficiency driven regime.

In §6 we showed that a modification of the classical
square-root-staffing (SRS) formula in (2) can be applied for
staffing to meet abandonment-probability targets provided
that we use the DIS offered-load function m�4t5. How-
ever, in general, it remains to determine an appropriate QoS
parameter ��. In EC.5 we developed an explicit approxima-
tion formula for the QoS parameter �� for the Markovian
Mt/M/st +M special case; see equation (EC.1). Its special
linear separable structure reveals how performance depends
on the model parameters.

We have demonstrated that the DIS-MOL approximation
is remarkably effective by performing simulation experi-
ments for both Markovian and non-Markovian models with
sinusoidal arrival-rate functions, when the arrival rates are
not too small (around 100 with mean service ES = 1).
In general, the performance of DIS-MOL tends to improve
as the scale (arrival rate and number of servers) increases.
We have also considered both smaller and larger systems,
in particular, for average arrival rates ranging from s = 20
to s = 11000. The performance of DIS-MOL is spectacular
for s = 11000 and still reasonable for s = 20.

While conducting the simulation experiments, we con-
sidered several discretization issues: how to convert a con-
tinuous staffing function into an integer-valued staffing
function; what is the consequence of agents being required
to finish their current services when called to leave; how
does the size of a fixed-staffing period affect this approach
(discussed in the e-companion).

Much work remains to be done in the future. For exam-
ple, it remains to establish supporting theory for the DIS-
MOL approximation, paralleling Massey and Whitt (1994).
So far, we can only conjecture that the DIS-MOL staffing
is never less than the DIS staffing. We also need asymp-
totic results supporting the excellent performance of the
DIS-MOL approximation under a wide range of targets.
We conjecture that it is asymptotically correct in the QED
many-server heavy-traffic regime (in a meaningful way,
e.g., that

√
nP n

t 4Ab5 → � as n → �, independent of t,
where �n is the target in model n, which is required to
satisfy

√
n�n → � as n → �). It also remains to stabilize

performance measures in multiclass, multipool systems and
in systems with different service disciplines.

Electronic Companion
An electronic companion to this paper is available as part of the
online version at http://dx.doi.org/10.1287/opre.1120.1104.
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