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Abstract—It is often possible to effectively calculate proba-
bility density functions (pdf’s) and cumulative distribution
functions (cdf’s ) by numerically inverting Laplace trans-
forms. However, to do so it is necessary to compute the
Laplace transform values. Unfortunately, convenient ex-
plicit expressions for required transforms are often unavail-
able for component pdf’s in a probability model. In that
event, we show that it is sometimes possible to find continued-
fraction representations for required Laplace transforms that
can serve as a basis for computing the transform values
needed in the inversion algorithm. This property is very
likely to prevail for completely monotone pdf’s, because
their Laplace transforms have special continued fractions
called S fractions, which have desirable convergence proper-
ties. We illustrate the approach by considering applications
to compute first-passage-time cdf’s in birth-and-death pro-
cesses and various cdf’s with non-exponential tails, which
can be used to model service-time cdf’s in queueing models.
Included among these cdf’s is the Pareto cdf.

Keywords—computational probability, numerical transform
inversion, continued fractions, Laplace transforms, S frac-
tions, complete monotonicity, Padé approximants, cumula-
tive distribution function, birth-and-death process, Pareto
distribution.

Many probability density functions (pdf’s) and cumu-
lative distribution functions (cdf’s) of interest in queue-
ing models and other probability models arising in opera-
tions research can be effectively computed by numerically
inverting Laplace transforms; see Abate, Choudhury and
Whitt [1], Abate and Whitt [4], [5] and references therein.
The biggest challenge in this approach, when there is a
challenge, is usually computing the required Laplace trans-
form values, because convenient closed-form expressions for
Laplace transforms often are not available. In this paper
we point out that continued fractions can sometimes serve
as a basis for effectively computing the required Laplace
transform values needed in the inversion algorithms.
A simple motivating example is the steady-state waiting-

time pdf in the M/G/1 queue. The classical Pollaczek-
Khintchine (transform) formula gives the Laplace trans-
form of the steady-state waiting-time pdf in terms of the
Laplace transform of the service-time pdf. Thus we can
compute the waiting-time transform values in order to com-
pute the waiting-time pdf or cdf by numerical inversion
whenever we can compute the service-time transform val-
ues. A possible difficulty, however, is that we might want
to consider service-time pdf’s for which convenient explicit
expressions for the Laplace transform are unavailable. In-
deed, this difficulty often arises when we consider distribu-
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tions which have non-exponential tails, e.g., which cannot
be represented as phase-type distributions. The present
paper provides a way to address this problem: Under favor-
able circumstances, we may be able to construct a continued-
fraction representation of the service-time Laplace trans-
form that enables us to compute the service-time Laplace
transform values, which in turn enables us to compute the
waiting-time Laplace transform values needed to perform
the desired numerical inversion. A specific example covered
by this approach is the Pareto pdf.
For background on continued fractions and their use for

numerical computation, see Baker and Graves-Morris [12],
Bender and Orszag [13], Chapter 12 of Henrici [26], Jones
and Thron [28], Section 5.2 of Press, Flannery, Teukolsky
and Vetterling [32] andWall [35]. Applications of continued
fractions in statistics and applied probability are described
in Bowman and Shenton [15] and Bordes and Roehner [14].
More recently, Guillemin and Pinchon [20], [21], [22], [23]
have used continued fractions to analytically derive impor-
tant properties of queueing models. A summary of that
work is contained in Dupuis and Guillemin [16]. However,
continued fractions evidently have not been suggested pre-
viously as a way to numerically compute transform values
in order to perform numerical transform inversion.
The use of continued fractions is an alternative to com-

putation of Laplace transforms via infinite-series represen-
tations, which we recently discussed in Abate and Whitt
[9]. We make an explicit numerical comparison to show
that continued fractions can be far superior in some cir-
cumstances, even when the series converges geometrically.
(See Section 6.)
Here is how the rest of this paper is organized: In Sec-

tion 1 we briefly define continued fractions and specify the
basic recursive algorithm for numerical computation. In
Section 2 we discuss the relation between continued frac-
tions and power series. There we show how to compute the
continued fraction elements from the moments of a proba-
bility distribution (which are related to the coefficients of a
power series — the moment generating function). In Sec-
tion 3 we point out that completely monotone pdf’s can
be identified with special continued fractions called S frac-
tions, which have nice convergence properties. In Section
4 we show how continued fractions can be used to compute
the Laplace transforms of first-passage-times pdf’s in birth-
and-death processes. We can exploit S fractions for this
purpose because first passage times to neighboring states
have completely monotone pdf’s.



The rest of the paper is devoted to numerical examples.
In Section 5 we consider the M/M/∞ busy period, which
is a special case of a first passage time in a birth-and-death
process. In Section 6 we consider the beta mixture of ex-
ponential (BME) pdf’s from Abate and Whitt [8] [9] and
show that continued fractions can be much more effective
for computing Laplace transform values than the previ-
ously considered infinite-series representations. In Section
7 we show how the continued fractions associated with the
BME pdf’s can be used to compute the Laplace transforms
of other pdf’s related to the BME pdf’s, including a Pareto
pdf. Finally, in Section 8 we discuss continued fraction rep-
resentations of Laplace transforms of other pdf’s.

1. Continued Fractions

An (infinite) continued fraction (CF) associated with a se-
quence {an : n ≥ 1} of partial numerators and a sequence
{bn : n ≥ 1} of partial denominators, which are complex
numbers with an �= 0 for all n, often called elements, is the
sequence {wn : n ≥ 1}, where

wn = t1 ◦ t2 ◦ . . . ◦ tn(0), n ≥ 1 , (1.1)

and
tk(u) =

ak

bk + u
, k ≥ 1 ; (1.2)

i.e., wn is the n-fold composition of the mappings tk(u) in
(1.2) applied to 0, called the nth approximant. If
limn→∞wn = w, then the CF is said to be (properly) con-
vergent and the limit w is called the value of the CF. We
write

w = Φ∞n=1
an

bn
or w =

a1

b1+

a2

b2+

a3

b3+
· · · . (1.3)

When we consider Laplace transforms of pdf’s, the CF
elements an and bn will be functions of the complex vari-
able s. In particular, we will consider special CFs called S
fractions (S for Stieltjes), which can be expressed as

w ≡ w(s) = 1

1+

a2s

1+

a3s

1+

a4s

1+
· · · (1.4)

where ak is real and positive for all k. However, S fractions
may appear in other forms, because CFs have many equiv-
alent representations. Indeed, for any sequence of complex
numbers {cn : n ≥ 0} with c0 = 1, the CF

Φ∞n=1
cn−1cnan
cnbn

(1.5)

has the same approximants as the CF in (1.3); see p. 478
of Henrici [26]. We call such CFs equivalent and use the
notation �.
It is significant that there is a relatively simple recursion

for calculating the successive approximants of a CF, due to
Euler in 1737. In particular, given the CF in (1.3),

wn =
Pn

Qn
, (1.6)

where P0 = 0, P1 = a1, Q0 = 1, Q1 = b1 and

Pn = bnPn−1 + anPn−2

Qn = bnQn−1 + anQn−2
(1.7)

for n ≥ 2. In performing numerical calculations, it is pru-
dent to renormalize after, say, every 10 iterations by divid-
ing the current values of Pk, Qk, Pk−1 and Qk−1 all by Qk,
and then proceed.
We will be interested in the special case of S fractions,

as in (1.4). Based on our computational experience, we
conclude that the S fraction converges rapidly and is easy
to compute if an = O(1) as n → ∞. If an = O(n) as
n → ∞, then the S fraction converges, but more slowly
and requires more work to calculate. If the elements grow
much faster, then computation is likely to be infeasible.
(We will give examples later.) The S fraction with an = n

k

can be shown to be convergent if and only if k ≤ 2; see p.
486 of Henrici [26].

2. Power Series and Continued Fractions

Continued fractions are intimately related to power series.
This relationship is useful in probability applications be-
cause the moments of probability distributions can be re-
garded as coefficients of a power series, namely, themoment
generating function (mgf).
Let f be a pdf on the nonnegative real line with associ-

ated cdf F (t) ≡ ∫ t0 f(u)du, t ≥ 0, and associated comple-
mentary cdf (ccdf) F c(t) ≡ 1 − F (t), t ≥ 0. Assume that
the pdf f has finite moments of all orders, i.e.,

mn(f) ≡
∫ ∞
0

tnf(t)dt, n ≥ 1 , (2.1)

and let f̂ be the Laplace transform (LT) of f , i.e.,

f̂(s) ≡
∫ ∞
0

e−stf(t)dt , (2.2)

where s is a complex variable. We often are most interested
in computing the cdf F (t) or ccdf F c(t), which we can do

via their LTs F̂ (s) = f̂(s)/s and F̂ c(s) = (1− f̂(s))/s. The
associated mgf is f̂(−s).
The Laplace transform f̂ is analytic for all s with Re(s) >

0. The nth moment of f can be recovered from the nth

derivative of the transform, i.e.,

mn(f) = −d
(n)

ds
f̂(s)
∣∣∣
s=0
, (2.3)

where limits are taken through real positive s, and the LT
can be represented as a formal power (Maclaurin or Taylor)
series

f̂(s) =

∞∑
n=0

cns
n , (2.4)

where c0 = 1 and

cn = (−1)nmn(f)
n!

, n ≥ 1 , (2.5)

2



by which we mean that, for each N ≥ 1,

f̂(s)−
N∑
n=0

cns
n = O(sN+1) as s→ 0 . (2.6)

However, in general we cannot conclude that the power
series (2.4) has a positive radius of convergence. It will if
and only if the LT is analytic at 0, which is not always the
case.
Given a formal power series such as (2.4), we can con-

struct rational approximants, called Padé approximants,
that match the coefficients of (2.4) as far as possible; see
Chapter 1 of Baker and Graves-Morris [12]. The [L/M ]

Padé approximant to f̂ is the rational function

[L/M ] ≡ a0 + a1s+ · · ·+ aLs
L

1 + b1s+ · · ·+ bMsM , (2.7)

where the first L+M+1 coefficients of the Maclaurin series
of (2.7) match the first L+M + 1 coefficients in (2.4).
Given a formal power series such as (2.4), it is also pos-

sible to construct an associated CF of the form

f̂(s) = a0 +Φ
∞
n=1

ans

1
, (2.8)

whose approximants also have Maclaurin series that match
the initial terms of the power series (2.4). (A CF with the
variable s in each coefficient as in (2.8) is sometimes called
a RITZ fraction; e.g., see p. 515 of Henrici [26].) To obtain
the CF representation, we use the notion of the reciprocal
of a power series to create an appropriate recursion. In
particular, we consider the reciprocal of the series

1 +
c2s

c1
+
c3s
2

c1
+ · · · = (1 + c(1)1 s+ c(1)2 s2 + · · ·)−1 (2.9)

to obtain

∞∑
n=0

cns
n = c0 +

c1

1 + c
(1)
1 s+ c

(1)
2 s

2 + · · ·
(2.10)

from (2.4). Next consider the reciprocal of the series

1 +
c
(1)
2 s

c
(1)
1

+
c
(1)
3 s

2

c
(1)
1

+ · · ·

= (1 + c
(2)
1 s+ c

(2)
2 s

2 + · · ·)−1 (2.11)
to obtain

∞∑
n=0

cns
n = c0 +

c1s

1 +
c
(1)
1 s

1+c
(2)
1
s+c

(2)
2
s2+···

. (2.12)

Proceeding by induction, we obtain (2.8) with a0 = c0,

a1 = c1 and an = c
(n−1)
1 , n ≥ 2.

Since the approximants of the CF in (2.8) are rational
functions, it should come as no surprise that there is a link
between the CF in (2.8) and Padé approximants. It turns
out that the CF approximants w2M and w2M+1 are “diag-
onal” Padé approximants; in particular, they are precisely

the [M/M ] and [M + 1/M ] Padé approximants, respec-
tively; see Theorem 4.2.1 of Baker and Graves-Morris [12].
(If the CF is terminating, corresponding to a rational func-
tion, then the approximants may be of lower order.)
Thus, methods for computing diagonal Padé approxi-

mants are equivalent to methods for computing approxi-
mants for CFs associated with power series. A powerful
computational procedure is the quotient-difference (QD)
algorithm; see Chapter 3 and Section 4.3 of Baker and
Graves-Morris [12]. The QD algorithm has a1 = c0, a2k =
−q0k and a2k+1 = −e0k, k ≥ 1, where qjk and ejk are defined
recursively by

qjk+1 = e
j+1
k qj+1k /ejk (2.13)

and
ejk = e

j+1
k−1 + q

j+1
k − qjk (2.14)

for k ≥ 1 and j ≥ 0, with ej0 = 0, j ≥ 1, and qj1 = cj+1/cj,
j ≥ 0. The QD algorithm is related to the ε-algorithm;
e.g., see Chapter 3 of Baker and Graves-Morris [12] and
Chapter 8 of Wimp [37].
An essentially equivalent computational procedure is the
product-difference (PD) algorithm due to Gordon [19]. The
PD algorithm involves only a single array pji , instead of the

two arrays eji and q
j
i in the QD algorithm. In particular,

the recursion is

pji = p
j−1
1 pj−2i+1 − pj−21 pj−1i+1 , (2.15)

where, for i ≥ 1, p1i and p2i are initialized to p11 = 1, p1i = 0
for i ≥ 2, and p2i = ci−1 for i ≥ 1. Then

an =
pn+11

pn−11 pn1
. (2.16)

Hence, given the moments of a pdf as in (2.1), we can
obtain a CF representation of its LT in (2.2), with the
property that the CF approximants coincide with diagonal
Padé approximants. We now discuss additional structure
that ensures that the CF is actually convergent.

3. Complete Monotonicity and S Fractions

Probability applications of CFs are especially appealing
when we have a completely monotone (CM) pdf because
then the associated LTs can be represented by special CFs
called S fractions, which are known to converge under mi-
nor regularity conditions. A CF of the form (2.8) is an
S fraction if all of the coefficients an (not considering the
complex variable s) are positive. With such a simple char-
acterization, it is also often possible to verify that a CF is
an S fraction directly.
A function f on [0,∞) is completely monotone (CM) if

it possesses derivatives of all orders that alternate in sign,
i.e.,

(−1)nf (n)(t) ≥ 0 for all t ≥ 0 and n ≥ 0 ; (3.1)

see p. 439 of Feller [18] and p. 66 of Keilson [29]. All CM
pdf’s are log convex, i.e., log f(t) is convex, and thus have
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decreasing failure rate (are DFR); see p. 74 of Keilson [29].
The family of CM pdf’s is closed under mixtures. A pdf f
on [0,∞) is CM if and only if f is a mixture of exponential
pdf’s, i.e.,

f(t) =

∫ ∞
0

y−1e−t/ydH(y) (3.2)

for some cdf H on [0,∞). Examples of CM pdf’s appear
in Abate and Whitt [2], [6], [8] and references therein.
By making the change of variables x = y−1, we see that

the CM pdf f in (3.2) can also be represented as

f(t) =

∫ ∞
0

xe−xtdH̃(x) , (3.3)

where dH̃(x) = x−2dH(x−1) and dH(x) = x−2dH̃(x−1).
We callH in (3.2) themixing cdf and H̃ in (3.3) the spectral
cdf. (The mixing and spectral cdf’s for the M/M/1 busy
period are displayed in [2].) LetX be a mean-1 exponential
random variable; let Y and Ỹ be random variables with
cdf’sH and H̃ , respectively. Then the representations (3.2)
and (3.3) are the pdf’s of XY and X/Ỹ , respectively.
The CM pdf f in (3.2) has Laplace transform

f̂(s) ≡
∫ ∞
0

e−stf(t)dt =
∫ ∞
0

(1 + sy)−1dH(y) . (3.4)

Associated with any cdf F is a ccdf F c(t) ≡ 1 − F (t).
Associated with the CM pdf f is a dual ccdf

Gc(t) =

∫ ∞
0

e−xtdH(x), t ≥ 0 , (3.5)

and associated dual pdf

g(t) =

∫ ∞
0

xe−xtdH(x), t ≥ 0 , (3.6)

which are obtained by switching the roles of H and H̃ .
Clearly, Gc(t) and g(t) are CM too. It is evident from (3.4)
and (3.5) that the dual Laplace transforms are related by

Ĝc(s) ≡
∫ ∞
0

e−stGc(t)dt

=

∫ ∞
0

(s+ x)−1dH(x) = s−1f̂(s−1) . (3.7)

Note that the moments of the CM pdf f in (3.2) are
related to the moments of the mixing cdf H by

mn(f) = mn(H)n! for all n ≥ 1 . (3.8)

Thus if f has moments of all orders, then its LT has the
(formal) power series representation

f̂(s) =

∞∑
n=0

f̂n(0)sn

n!

=

∞∑
n=0

mn(F )(−s)n
n!

=

∞∑
n=0

mn(H)(−s)n , (3.9)

where f̂ (0)(0) ≡ f̂(0) ≡ m0(F ) ≡ m0(H) = 1. If the
LT f̂(s) is analytic at 0, then the power series (3.9) has
a positive radius of convergence and is not formal, but it
suffices to have only a formal power series.
We now relate these probabilistic quantities to continued

fractions. The main connection is that, under the com-
plete monotonicity assumption, the CF associated with the
power series of f̂(s) in (3.9) is an S fraction; see Chap-
ter 5 of Baker and Graves-Morris [12]. Except for the

normalization f̂(0) = 1, which holds for pdf’s, Laplace
transforms of CM pdf’s with all moments finite, having the
integral representation (3.4), coincide with Stieltjes func-
tions in the theory of continued fractions; see p. 193 of
Baker and Graves-Morris [12]. As a regularity condition
to avoid the case of terminating CFs, it is usually assumed
that the underlying cdf H has infinitely many points of
increase (does not have finite support). The associated
series

∑∞
n=0mn(H)(−s)n in (3.9) then is called the associ-

ated Stieltjes series. The series is called formal because it
may not converge for any s (except s = 0). In Section 2 we
saw that there is a CF with denominator elements 1 asso-
ciated with any formal power series. The fact that we have
a Stieltjes series implies that the numerator CF elements
(not counting the complex variable s) are all positive, i.e.,
that we have an S fraction. The advantage of S fractions
is that there is more supporting convergence theory.
We now note duality properties of the CM pdf f(t) in

(3.2) and the dual ccdf Gc(t) in (3.5). Since the LTs are

related by Ĝc(s) = s−1f̂(s−1), it is immediate that the
CM for f̂(s) converges at s if and only if the CM for Ĝc(s)
converges at s−1. We can also relate the two CFs.

Proposition 3.1. The LT of a CM pdf f has an S fraction
representation

f̂(s) =
a1

1+

a2s

1+

a3s

1+

a4s

1+
· · · (3.10)

with a1 = 1 and ak > 0 for all k if and only if the LT of
the dual ccdf Gc has the S fraction representation

Ĝc(s) = s−1
(
a1

1+

a2s
−1

1+

a3s
−1

1+
· · ·
)

� a1

s+

a2

1+

a3

s+

a4

1+
· · · (3.11)

Proof. Since Ĝc(s) = s−1f̂(s−1), from (3.10) we imme-
diately see that Ĝc(s) has the first representation in (3.11).
Then we obtain the second relation in (3.11) by applying
the equivalence transformation in (1.5).
The convergence of S fractions is intimately linked to the

classical moment problem; see Akhiezer [11], Chapter 5 of
Baker and Graves-Morris [12] and Sections 12.7–12.14 of
Henrici [26]. For the following result, we apply Theorems
12.14b and 12.8e in Henrici [26]. We also use the fact that
the CF associated with Ĝc(s) converges to s if and only if

the CF associated with f̂(s) converges at s−1.

Theorem 3.1. Let f be a CM pdf as in (3.2) with all mo-

ments finite. Then the CFs associated with the LTs f̂ in
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(3.4) and Ĝc in (3.7) are convergent (uniformly in compact
subsets of the complex plane minus the negative real axis)
if and only if the moments mn(H) uniquely determine the
cdf H.

Note that an assumption in Theorem 3.1 is that the pdf f
in (3.2) has all moments finite. By (3.8), H too necessarily
has all moments finite. Note that Theorem 3.1 does not
preclude f̂ having a convergent S fraction when the pdf f
does not have all moments finite. Indeed the dual ccdf Gc

may fail to have all moments finite when the conditions of
Theorem 3.1 are satisfied, so that Ĝc has a convergent S
fraction.
It is also possible that the cdf H has all moments finite

and is uniquely determined by those moments, but that
the cdf F is not uniquely determined by its moments. An
example of such an F is the Weibull cdf with exponent
1/2. Thus this Weibull cdf is not uniquely determined by
its moments, but its LT nevertheless has a convergent S
fraction. (We discuss this example in Section 8.)
When the complex variable s in an S fraction is real

and positive, we also have a convenient a posteriori bound
on the numerical errors in the approximants, because then
the even approximants w2m are increasing, while the odd
approximants are decreasing, so that

w2n(s) < f̂(s) < w2n+1(s) for all n ; (3.12)

see Theorem 12.11d of Henrici [26]. Moreover, we can nu-
merically verify convergence for all complex s (except neg-
ative real s) by considering the case of any single positive
real s, by Theorem 12.8e of [26]. Various a priori and a
posteriori bounds on the error are also given in [26].
The fact that property (3.12) holds for all positive real s

motivates using inversion methods based on positive real s.
One such method is the Gaver-Stehfest inversion algorithm
in [4]. However, in our numerical examples we use the
Fourier-series method with Euler summation, which is the
main method described in [1], [4], [5]. It requires computing
Laplace transform values at complex s.
We close this section by showing what happens for a

typical diverging S fraction. We let an = (n − 1)3 for
n ≥ 2. Table 1 shows the values of the even and odd ap-
proximants as a function of n for s = 1 and s = 10. First,
monotonicity as in (3.12) and non-convergence are evident
from the numerical results. Second, the odd and even ap-
proximants converge remarkably slowly to their limits, so
that we cannot easily make use of the limits of the odd and
even approximants either.
When the power series (3.9) is only formal, it is typically

divergent. However, we have seen that the associated CF
may nevertheless be convergent. On the other hand, as
illustrated by Table 1, the CF may be divergent. When
the CF converges, we have a way to sum a divergent series
— called Stieltjes summation; see Chapter 19 of Wall [35].

index s = 1 s = 10
n even odd even odd
4, 000 0.6637 0.7927 0.1777 0.7312

8, 000 0.6643 0.7921 0.1783 0.7301

12, 000 0.6646 0.7918 0.1785 0.7296

16, 000 0.6648 0.7917 0.1787 0.7293

20, 000 0.6649 0.7916 0.1788 0.7291

Table 1: Values of even and odd S fraction approximants
for s = 1 and 10 when an = (n− 1)3 for n ≥ 2.

4. First Passage Times in Birth-and-Death
Processes

In this section we show how CFs can be used to compute
the LT of a first-passage-time pdf in a birth-and-death
(BD) process. Let Ti,j be a random variable represent-
ing the first passage time from state i to state j. It is
elementary that such first passage times can be expressed
in terms of first passage times to neighboring states; e.g.,
if i < j, then

Ti,j = Ti,i+1 + Ti+1,i+2 + · · ·+ Tj−1,j , (4.1)

where the random variables on the right are mutually in-
dependent, and similarly if i > j. Let fi,j be the pdf of

Ti,j and let f̂i,j be its LT, i.e.,

f̂i,j(s) ≡
∫ ∞
0

e−stfi,j(t)dt ≡ Ee−sTi,j . (4.2)

From (4.1), we have

f̂i,j(s) =

k=j−1∏
k=i

f̂k,k+1(s) (4.3)

if i < j. Hence, in order to compute the LT f̂i,j, it suffices
to be able to compute the LT of the first passage time to
a neighboring state.
First passage times to neighboring states are especially

tractable because their pdf’s are always CM. For finite-
state BD processes, this CM property is an elementary
consequence of the spectral theory associated with these
reversible Markov processes; see Section 3.4B of Keilson
[29]. For first passage times up in infinite-state BD pro-
cesses, the states above the destination state play no role,
so that the state space may be considered finite. For first
passage times down in infinite-state BD processes, the CM
property can be deduced by considering the limit of the
finite-state approximations for which in the BD process n
the original birth rate (in the infinite-state model) in state
n, λn, is set equal to 0. (The holding time in state n is then
exponential with mean µ−1n , where µn is the death rate.)
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Let T
(n)
i denote the first passage time down from state i

to state i−1 in BD process n with state space {0, 1, . . . , n},
where n > i. Let F

(n)
i be the cdf of T

(n)
i . By the construc-

tion above, we can make sample-path comparisons as in
Whitt [36] to deduce that a stochastic order relation holds
as we change n, i.e.,

T
(n)
i ≤st T (n+1)i for n ≥ i , (4.4)

by which we mean that

F
(n)
i (t) ≥ F (n+1)i (t) for all t . (4.5)

Hence, F
(n)
i (t) decreases to a limit Fi(t) as n→∞, which

need be a proper cdf. We then apply the following result
to deduce that the limiting cdf Fi is CM.

Proposition 4.1. If {Fn : n ≥ 1} is a sequence of CM
cdf’s on [0,∞) such that Fn(t)→ G(t) as n→∞ for each
t, then the limit G is CM. If F cn(0)→ 1, then G is proper.

Proof. Recall that the ccdf’s F cn can be expressed as

F cn(t) =

∫ ∞
0

e−xtdHn(x) (4.6)

for cdf’s Hn by the CM property, so that the ccdf F
c
n(t) can

be identified with the Laplace-Stieltjes transform of the cdf
Hn evaluated at s = t for t real and positive. Hence we can
apply the continuity theorem for Laplace transforms on p.
431 of Feller [18].
It is also easy to directly construct CFs representing the

LTs of first passage times down with an infinite state space.
Let λi and µi denote the birth and death rates in state i,
respectively. Let f̂i denote the LT of the pdf of the first
passage time from state i to state i−1. By considering the
first transition, we obtain the recursion

f̂i(s) =

(
µi

λi + µi

)(
λi + µi
λi + µi + s

)

+

(
λi

λi + µi

)[(
λi + µi
λi + µi + s

)
f̂i+1(s)f̂i(s)

]

=
µi

λi + µi + s
+
λif̂i+1(s)f̂i(s)

λi + µi + s
(4.7)

from which we obtain

f̂i(s) =
µi

λi + µi + s− λif̂i+1(s)
. (4.8)

Iterating on (4.8) produces the CF

f̂i(s) = − 1

λi−1
Φ∞k=i

−λk−1µk
λk + µk + s

, (4.9)

which directly has the form of a real J fraction (J for Ja-
cobi), which can be shown to be equivalent to an S fraction;
see Baker and Graves-Morris [12], Wall [35] and Dupuis
and Guillemin [16]. However, the CM property implies the
equivalence, so that we do not need to construct one.

The analysis above shows that first passage times to
neighboring states have CM pdf’s, so that by Section 3
their LTs have CF representations that are S fractions.
This S fraction representation provides a basis for com-
puting the LT, which in turn can be used to calculate the
more general first-passage-time pdf’s and cdf’s by numeri-
cal transform inversion, using (4.3).
Given the CM transform representation (3.4), if the mix-

ing cdf H has all moments finite, then the CF (4.9) is con-
vergent if and only if the moments ofH uniquely determine
H by Theorem 3.1. As noted at the end of Section 3, nu-
merically, convergence for all s (except negative real s) can
be verified by considering the case of a single real s. Then
there is convergence if and only if the gap between odd
and even approximants i.e., w2n+1(s) − w2n(s) in (3.12)
decreases to 0 as n increases.
In queueing applications the first passage time of great-

est interest is T10, which corresponds to the busy period.
Interesting special cases are the M/M/1, M/M/s, M/M/∞,
M/M/s/0 and M/M/s/r systems. It is interesting that the
mixing and spectral cdf’s have a continuous spectrum (in-
terval of support) in the M/M/1 case, see Abate and Whitt
[2], but have a countably infinite spectrum (support) in the
M/M/∞ case; see the next section. Alternative methods
for computing the first-passage-time LTs in the M/M/s/0
case were recently discussed in Abate and Whitt [7].

5. The M/M/∞ Busy Period
In this section we apply the CF for BD first-passage-time
LTs in Section 4 to calculate the busy-period ccdf in the
M/M/∞ queue. We apply the Fourier-series method with
Euler summation, the algorithm EULER in [5], to numer-
ically invert the LT after we calculate the required LT val-
ues.
The busy period is the time between an arrival to an

empty system and the epoch when the system becomes
empty again. It is the first passage time T10. The LT of the
busy cycle (busy period plus subsequent independent idle
period) is given in (2) on p. 210 of Takács [34], from which
the transform of the busy period itself is easily obtained.
Let the arrival rate be λ and the service rate be 1. Let
b(t) be the probability density function (pdf) of the busy

period and let b̂(s) its Laplace transform. From [34], we
obtain

b̂(s) ≡
∫ ∞
0

e−stb(t)dt =
λ+ s

λ

−
[
λe−λ

∫ ∞
0

exp(−sx+ λe−x)dx
]−1
. (5.1)

Computation directly with (5.1) is inconvenient because of
the integral.
There is a quite substantial literature related to the M/G/∞

busy period associated with type II particle counters and
coverage problems; e.g., see Hall [25]. In particular, Stadje
[33] shows that the complementary cdf (ccdf) of an M/G/∞
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busy period has the form

Bc(t) ≡
∫ ∞
t

b(u)du = λ−1
∞∑
n=1

c∗n(t), t ≥ 0 , (5.2)

where c∗n(t) is a pdf, the n-fold convolution of a pdf with

c(t) = λHc(t)Cc(t), t ≥ 0 , (5.3)

Hc(t) is the service-time ccdf and Cc(t) is the ccdf of c(t),
which has the form

Cc(t) = exp

{
−λ
∫ t
0

Hc(u)du

}
. (5.4)

Thus, in the M/M/∞ case,
c(t) = λe−λ exp{−t+ λe−t}, t ≥ 0 . (5.5)

While (5.2) and (5.5) provide interesting structural infor-
mation, they do not seem so useful for computation.
In contrast, Dupuis and Guillemin [16] show that (5.1)

can be given a series representation which is numerically
useful, see p. 61 of [16], in particular,

b̂(s) =
λ+ s

λ
− eλs

λ(1 + sα̂(s))
, (5.6)

where

α̂(s) =
∞∑
n=1

λn

(s+ n)n!
. (5.7)

From (5.6) and (5.7), it is easy to get the first two moments

m1 = (e
λ − 1)/λ and m2 = 2eλ

∞∑
n=1

λn−1

n(n!)
. (5.8)

For example, for λ = 1 we get m1 = 1.72, m2 = 7.17
and c2 ≡ (m2 −m21)/m21 = 1.42. It is interesting that the
squared coefficient of variation as a function of λ, c2(λ),
approaches 1 both as λ → 0 and as λ → ∞. Moreover,
c2(λ) first increases and then decreases, so that there is
a λ maximizing c2(λ), in particular, λmax ≈ 2.97 and
c2(2.97) � 1.73. A rough exponential approximation based
on matching the first two moments is

Bc(t) ≈ 2

c2 + 1
exp(−2m1t/m2) . (5.9)

Approximation (5.9) is supported by the fact that Bc(t) is
asymptotically exponential as t→∞; see p. 62 of Dupuis
and Guillemin [16].
Dupuis and Guillemin also show that the busy-period pdf

is a countably infinite mixture of exponentials. In addition,
they determine the CF

b̂(s) = − 1
λ
Φ∞n=1

−λn
s+ λ+ n

, (5.10)

which we can also obtain as a special case of (4.9) by letting
λn = λ and µn = n. Additional insight into the M/M/∞
transient behavior is provided by Preater [31].

The values of the Laplace transform b̂(s) are easily com-
puted by either the series (5.7) or the CF (5.10). For
the argument s needed in the numerical inversion, and for
other representative s, we found that 30 terms of each was
sufficient to produce 20-digit precision in the transform
values. We then applied the Fourier-series method with
Euler summation from Section 1 of [5] using parameters
A = 15 log 10, m = n = 25 to compute values of the ccdf
Bc(t). (Hence a sum of m + n + 1 = 51 terms had to be
computed with s values (A + 2kπi)/2t, k = 0, 1, . . . , 50.)
Sample results are displayed in Table 2. The two different
methods agreed at least to the 15 decimal places displayed.
From the last three entries of Table 2, we obtain an esti-

mate of the exponential asymptotics for the tail probabili-
ties

Bc(t) ∼ 0.71200 exp(−0.450265t) as t→∞ . (5.11)
In contrast, approximation (5.9) yieldsBc(t) ≈ 0.826e−0.480t.
In this case we did not actually need CFs, because the

series representation is effective. We used the series repre-
sentation to confirm the effectiveness of the CF. The sit-

t Bc(t)
0.1 0.909, 084, 551, 819, 689
1.0 0.490, 128, 803, 420, 172
3.0 0.185, 450, 685, 115, 345
5.0 0.074, 977, 023, 964, 783
10.0 0.007, 888, 690, 353, 660
20.0 0.000, 087, 403, 419, 314
30.0 0.000, 000, 968, 394, 367
40.0 0.000, 000, 010, 729, 416
50.0 0.000, 000, 000, 118, 878

Table 2: Values of the M/M/∞ busy-period ccdf Bc(t)
computed by the Fourier-series method to 10−15 precision
based on computing the LT values b̂(s) computed to 20-
digit precision by both the series, (5.6) and (5.7), and the
continued fraction (5.10).

uation is different if we consider the excursion time above
some level c, i.e., the first-passage-time Tc+1,c. Guillemin
and Simonian [24, p. 870] show that the Laplace trans-
form of the excursion time in the M/M/∞ system can be
represented as the ratio of two Kummer functions, i.e.,

f̂c(s) =
c+ 1

c+ 1 + s

M(s, c+ s+ 2, λ)

M(s, c+ s+ 1, λ)
, (5.12)

where M is the Kummer function

M(a, b, z) =

∞∑
n=0

(a)n
(b)n

zn

n!
, (5.13)

with (x)n being the Pochhammer symbol, i.e., (x)0 = 1
and (x)n = x(x+1) . . . (x+n− 1) = Γ(x+n)/Γ(x), where
Γ(x) is the gamma function. In this case, we know of no

alternative for computation of f̂c+1 to the CF

f̂c+1(s) = − 1
λ
Φ∞n=1

−λ(n+ c)
s+ λ+ n+ c

, (5.14)
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which again follows immediately from (4.9).
Giullemin and Simonian [24] also prove that the scaled

excursion time cTc+1,c in the M/M/∞ system with arrival
rate λc and individual service rate 1 converges to the busy
period T10 in an M/M/1 system with arrival rate λ and
service rate 1 as c → ∞. We can establish additional re-
sults. We can make a stochastic comparison by noting that
the scaled M/M/∞ system above level c is equivalent to
a BD process with constant birth rate λk = λ and death
rates µk(c) = (c + k)/c. Since µk(c) decreases to 1 as
c increases, we can apply [36] again to conclude that the
variables cTc+1,c increase stochastically in c, i.e.,

cTc+1,c ≤st (c+ 1)Tc+2,c+1 (5.15)

for all c, as well as converge in distribution as c → ∞.
Moreover, we can show that the entire scaled BD process
above c converges to the M/M/1 queue-length process in
the sense of weak convergence on function space. Similar
observations are made by Preater [31].
The M/G/1 busy-period LT is known to satisfy the Kendall

functional equation

b̂(s) = ĝ(s+ λ− λb̂(s)) , (5.16)

where ĝ(s) is the service-time LT. For M/M/1, ĝ(s) =
(1 + s)−1, so that (5.16) becomes

b̂(s) = (1 + s+ λ− λb̂(s))−1 , (5.17)

which upon iteration gives the CF

b̂(s) = − 1
λ
Φ∞n=1

−λ
s+ λ+ 1

, (5.18)

as in (4.9). Of course, we can solve (5.17) to get

b̂(s) =
1

2λ

(
1 + λ+ s−

√
(1 + λ+ s)2 − 4λ

)
. (5.19)

If we scale the M/M/1 busy-period pdf to have mean 1
and squared coefficient of variation c2 = v then the LT has
the form

b̂(s) =
1

v − 1
(
s+ v −

√
(s+ v)2 − (v2 − 1)

)
, (5.20)

which can be written as a functional equation

b̂(s) =
(v + 1)/2

s+ v − ( v−12 ) b̂(s) . (5.21)

From (5.21), we obtain the J fraction

b̂(s) =
−2
v − 1Φ

∞
n=1

− (v2−1)4

s+ v
. (5.22)

However, from (2.26) on p. 161 of [2] and (94.23) on p.

376 of Wall [35], we see that the LT b̂ has an S fraction of
the form (3.10) with a1 = a2 = 1, a2k−1 = (v − 1)/2 and
a2k = (v + 1)/2 for all k ≥ 2.
We now apply numerical inversion to evaluate the qual-

ity of the approximation for various values of c. Since the

M/M/1 busy period pdf does not have a pure-exponential
tail, whereas the M/M/∞ busy period has a pure expo-
nential tail, we are led to expect some discrepancies for
large values. The numerical results are displayed in Table
3. Consistent with our expectations, when t is small, the
limiting M/M/1 values are good approximations when c is
not large. However, as t increases, c needs to increase too
in order for the approximation to be good.

time Scaled M/M/∞ M/M/1
t c = 100 c = 1000 c = 10,000 c =∞
1 .48583276 .48930439 .48965265 .48969135
3 .24519851 .25005028 .25053923 .25059360
10 .08584378 .09192578 .09255093 .09262058
50 .00617291 .00983952 .01029354 .01034506
100 .00054713 .00173518 .00193941 .00196341
200 .00000571 .00010209 .00013611 .00014051
400 .00000000 .00000067 .00000143 .00000156

Table 3: The ccdf Bc(t) for the scaled busy period cTc+1,c
in an M/M/∞ system with arrival rate c and service rate
1 for three values of c.

6. Beta Mixtures of Exponentials

In Abate and Whitt [8] we studied a class of pdf’s obtained
by taking beta mixtures of exponentials (BMEs), i.e.,

v(p, q; t) =

∫ 1
0

y−1e−t/yb(p, q; y)dy , (6.1)

where b(p, q; y) is the standard beta pdf, i.e.,

b(p, q, y) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 ≤ y ≤ 1 , (6.2)

Γ(x) is the gamma function and p > 0 and q > 0. We
observed that the BME pdf v(p, q; t) has Laplace transform

v̂(p, q; s) ≡
∫ ∞
0

e−stv(p, q; t)dt = 2F1(1, p; p+ q;−s) ,
(6.3)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.
In Section 2 of [8] and in [9], we showed that the BME

pdf and its Laplace transform have Laguerre-series repre-
sentations, which can be used for numerical calculations.
For the BME LT, we obtain a closed-form expression for
the Laguerre coefficients, so that

v̂(p, q; s) =
1

1 + s

∞∑
n=0

(q)n
(p+ q)n

(
s

1 + s

)n
, (6.4)

where (x)n is again the Pochhammer symbol. Here we
observe that continued fractions tends to be more effective
for this example.
The CF representation for the Gauss hypergeometric

function in (6.3) was found by Gauss in 1812 by exploiting
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recursions; see p. 88 of Erdelyi [17]. The CF can also be
constructed by the QD scheme mentioned at the end of
Section 2 from the series representation of 2F1; see p. 533
of Henrici [26]. For 2F1(1, p, p + q;−s), the elements can
be taken to be bn = 1, n ≥ 1, a1 = 1,

a2n =
(p+ n− 1)(p+ q + n− 2)s

(p+ q + 2n− 3)(p+ q + 2n− 2) , n ≥ 1 ,
(6.5)

a2n+1 =
n(q + n− 1)s

(p+ q + 2n− 2)(p+ q + 2n− 1) , n ≥ 1 .

For the special case p = 1/2 and q = 3/2, the BME pdf
coincides with the reflected Brownian motion (RBM) first-

moment pdf, i.e., ĥ1(s) = v̂(1/2, 3/2; s); e.g., see [8]. In
that case, a2n = a2n+1 = 1/4 for all n ≥ 1. The special role
of the RBM first-moment LT ĥ1(s) can be explained from
the fact that it is the unique fixed point of the exponential
mixture operator; see p. 93 of [6].
The CF associated with the BME transform tends to

converge rapidly. This can be seen from the fact that
an ∼ k/4 (independent of n) as n → ∞ in the S fraction
for v̂(p, q; ks). Table 4 displays the first seven coefficients
for the S fractions associated with the LTs of four distri-
butions. One is an exponential; two are BME’s; and the
last is an exponential mixture of exponentials (EME) with
pdf

f(t) =

∫ ∞
0

x−1e−t/xe−xdx . (6.6)

The exponential LT is a simple rational function, so it has
a simple terminating CF. The two BME examples have
an = O(1) as n → ∞, so the CF’s are easily calculated.
The EME has an = O(n) as N → ∞, so the CF can be
calculated with some effort.

exp. BME
coef. 1

1+s v̂(1, 1; 2s) v̂(.5, 1.5; 4s) EME

a1 1 1 1 1
a2 1 1 1 1
a3 0 1/3 1 1
a4 0 2/3 1 2
a5 0 2/5 1 2
a6 0 3/5 1 3
a7 0 3/7 1 3

Table 4: The coefficients of S fractions associated with
Laplace transforms of four different pdf’s.

To illustrate the computational advantages of continued
fractions over the series representation (6.4), we consider
the number of terms (in units of 10) required to compute
the BME transform v̂(1, 1; s) to obtain 16-digit precision.
The numerical values for several s are displayed in Table 5.
As noted in Section 2 of [9], when we apply the Fourier-

series method of numerical inversion of Laplace transforms
incorporating Euler summation, we typically need to com-
pute transform values at about 40 values of s = u + iv,

with u ≈ 15/t and v ≈ kπ/t for k = 1, 2, . . . , 40. For the
series in (6.4), the worst case (making |s/(1 + s)| close to
1) is k = 40. Then the required number of terms for the
series (6.4) is approximately n ≈ 4.4t−1×104. In contrast,
Table 5 shows that the continued-fraction method is much
more efficient.

complex
number continued
s series fraction
1 50 30
3 130 40
5 190 50
9 330 60
15 540 70
20 710 80
25 890 90
1 + 5i 630 60
2 + 10i 1470 70
15 + 125i 44,000 250
150 + 1250i 440,000 710

Table 5: The number of terms needed to compute the BME
transform v̂(1, 1; s) to 16-digit precision by the series in
(6.4) and the continued fraction in (1.7) and (6.5) for sev-
eral values of s.

7. Distributions Associated with BMEs

Our ability to calculate BME LTs enables us to calculate
LTs of several other important related distributions. First,
in [8] we also considered a second beta mixture of expo-
nentials, denoted by B2ME, which is constructed by using
the beta pdf of the second kind, i.e.,

v2(p, q; t) ≡
∫ ∞
0

y−1e−t/yb2(p, q; y)dy, t ≥ 0 , (7.1)

where

b2(p, q; t) ≡ Γ(p+ q)
Γ(p)Γ(q)

yp−1(1 + y)−(p+q), y ≥ 0 . (7.2)

Unlike the BME ccdf, the B2ME ccdf has a long tail, i.e.,

V c(p, q, t) ∼ Γ(p+ q)
Γ(p)tq

e−t as t→∞ (7.3)

and

V c2 (p, q; t) ∼
Γ(p+ q)

Γ(p)tq
as t→∞ . (7.4)

By Theorem 1.6 of [8], the ccdf’s are related simply by

V c2 (p, q; t) = e
tV c(p, q; t), t ≥ 0 . (7.5)

Thus, from (1.22) and (5.6) of [8], the LTs are related by

v̂2(p, q; s) =
1

s− 1(sv̂(p, q, s− 1)− 1) . (7.6)
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Thus, the CF for v̂(p, q, s− 1) yields the LT v̂2(p, q; s).
A third BME ccdf, denoted by B3ME, is the dual ccdf

as defined in Section 4, i.e.,

V c3 (p, q, t) =

∫ ∞
0

e−txb(p, q; y)dy, t ≥ 0 , (7.7)

for b(p, q; y) in (6.2), with Laplace transform

V̂ c3 (p, q; s) = s
−1v̂(p, q; s−1) . (7.8)

The B3ME LT is easily computed from the BME LT via
(7.8).
In Section 7 of [8] we considered gamma mixtures of

exponentials (GME) pdf’s as limits of BME pdf’s. Directly
the GME pdf can be represented as

f(p; t) =

∫ ∞
0

y−1e−t/y
yp−1e−y

Γ(p)
dy

=
2

Γ(p)
t(p−1)/2Kp−1(2

√
t) . (7.9)

In [8] we noted that the LT of f(p; t) is

f̂(p; s) = s−pe1/sΓ(1− p, s−1) , (7.10)

where Γ(a, z) is the incomplete Gamma function.

In [8] we noted that f̂(p; s) = limq→∞ v̂(p, q; qs). Hence,
we can let q → ∞ in the CF for 2F1(1, p; p + q;−qs) in
(6.5) to obtain a CF representation of f(p; s) of the form
(3.10) with a2n = n+ p− 1 and a2n+1 = n.
Now consider the dual ccdf associated with the pdf f(p; t),

obtained as a mean-1 exponential random variable divided
by a gamma random variable, i.e.,

Gc(p; t) =

∫ ∞
0

e−t/y
e−1/y

yp+1Γ(p)
dy = (1 + t)−p , (7.11)

which is a Pareto distribution. Since Gc(s) = s−1f̂(s−1),
from (7.10) we obtain

Ĝc(p; s) = sp−1esΓ(1− p, s) , (7.12)

which can be shown to be the Laplace transform of (1+t)−p

from p. 21 of Oberhettinger and Badii [30]. Again the CF
can be used to compute the transform values. By the du-
ality, we see that Ĝc(p; s) has a CF of the form (3.11) with
a2n = (n + p− 1) and a2n+1 = n. Since the pdf f(p; t) in
(7.9) and ccdf Ĝc(t) in (7.11) are CM, it is natural to con-
sider computations of the Laplace transforms by continued
fractions.

8. Other Examples

We conclude with a few other examples of pdf’s whose
LTs can be effectively computed via CFs. These examples
show that the CF elements can have remarkably simple
structure.

Example 8.1. First Bell pdf. As in Example 6.1 of [9],
consider the first Bell pdf with Laplace transform

f̂(s) =

∞∑
k=1

(e−1/k!)(1 + sk)−1 , (8.1)

which has moments mn = n!b(n), where

b(n) ≡ e−1
∞∑
k=1

kn

k!
(8.2)

is the nth Bell number. By (8.1), the pdf is a countably
infinite mixture of exponentials. The LT values can be
effectively computed from the series (8.1), but they also
can be effectively computed from CFs. The PD algorithm
applied to these moments yields a CF of the form (2.8) with
a2n+1 = n and a2n = 1. Since a2n+1 = O(n), computation
of the CF is possible but not easy.

Example 8.2. Second Bell pdf. As in Example 6.2 of [9],
consider the second Bell pdf with Laplace transform

f̂(s) =

∞∑
k=1

2−(k+1)(1 + sk)−1 , (8.3)

which has moments mn = n!b̃(n), where

b̃(n) =

∞∑
k=0

kn

2k+1
(8.4)

is the nth ordered Bell number. This second Bell pdf is also
a countably infinite mixture of exponentials. Again the LT
values can be computed from either the series (8.3) or a
CF. The PD algorithm applied to these moments yields a
CF of the form (2.8) with a2n+1 = 2n and a2n = n. Again
an = O(n), so that computation of the CF is possible but
not easy.

Example 8.3. EMIGs. As in [10] and Section 8 of [6],
consider the two-parameter exponential mixture of inverse
Gaussian (EMIG) pdf scaled to have mean 1 and squared
coefficient of variation c2 > 1. The pdf thus has explicit
LT

f̂(s) =
c2 − 1

c2 − 2 +√1 + 2(c2 − 1)s . (8.5)

From Theorem 4.1 of [10], the LT in (8.5) has integral
representation

f̂(s) = (8.6)

∫ 1
0

1

1 + 2(c2 − 1)sy
1

π

√
1− y
y

c2 − 1
(1 + [(c2 − 2)2 − 1]y)dy .

By applying (94.22) on p. 375 of Wall [35], we see that
the LT has the CF representation (3.10) with a1 = a2 = 1
and ak = (c

2 − 1)/2 for all k ≥ 3.
Since the LT is given explicitly in (8.5), the CF is not

needed for computation. We display the CF because it has

10



a remarkably simple form. For the special case c2 = 3,
ak = 1 for all k ≥ 1. The case c2 = 3 corresponds to the
RBM first-moment LT ĥ1(s). The CF for ĥ1(s) also can
be obtained from the property that it is the unique fixed
point of the exponential mixture operator, i.e.,

ĥ1(s) =
1

1 + sĥ1(s)
; (8.7)

see Section 7 of [6].

Example 8.4. Weibull pdf’s. Consider a random vari-
able Xr with the Weibull ccdf

F cr (t) = exp(−r(t)1/r), t ≥ 0 ; (8.8)

see Chapter 20 of Johnson and Kotz [27]. Since X
1/r
r is

distributed as X1/r, the n
th moment of Xr is

mn(Xr) ≡ E[Xnr ] =
Γ(nr + 1)

rnr
. (8.9)

Given the moments, we can construct the CF using the PD
algorithm.
Here we are interested in the “long-tail” case of r >

1. The ccdf F cr (t) in (8.8) is CM in that case, so that
the CF of the LT is an S fraction. It is known that the
moments do not determine the distribution in that case.
The indeterminateness follows from the Krein condition,
i.e., for r > 1, the divergence∫ ∞

0

(1 + x2)−1 log fr(x)dx = −∞ (8.10)

fails to hold, where fr is the pdf associated with Fr; e.g.
see Akhiezer [11].
For integer r > 1, we can identify products of random

variables (mixtures of distributions) that have the moments
of Xr. (We conjecture that the full distributions coincide
with the Weibull as well.) For integer r,

mn(Xr) =
(nr)!

rnr
=

(
1

r

)
n

(
2

r

)
n

· · ·
(
r − 1
r

)
n

(1)n

=
(1/r)n
(1)n

(2/r)n
(1)n

· · · ((r − 1)/r)n
(1)n

(1)rn, (8.11)

where as before (x)n is the Pochhammer symbol. However,
recall that for 0 < p ≤ 1, 0 < q < 1, (1)n = n!, (p)n and
(p)n/(p+q)n are the moment sequences of the exponential,
gamma and beta pdf’s; e.g., see [8]. Let Z(p) be a random
variable with a gamma pdf having shape parameter p, as
in (7.9), so that Z(1) has a mean-1 exponential pdf, and let
Y (p, q) be a random variable having the beta pdf in (6.3)
with parameters p and q. Then, for integer r > 1,

E[Xnr ] = E

r∏
k=1

Z(k/r)

= E

[
r−1∏
k=1

Y (k/r, (r − k)/r)
r∏
k=1

Zk(1)

]
(8.12)

for all n, where the random variables on the right are mu-
tually independent, with Zk(1) all distributed as Z(1).
For the case r = 2, we can conclude that they have the

same distributions, because F cr (t) is CM for r > 1. Hence,

X2
d
= Z(1/2)Z(1) , (8.13)

where
d
= denotes equality in distribution. Since the gamma

(1/2) pdf of Z(1/2) is determined by its moments and X2
is CM, (8.13) is justified. Moreover, we can apply Theorem
3.1 to conclude that the S fraction associated with the LT
Ee−sX2 converges.
However, for integer r > 2, we can conclude that the S

fraction associated with Ee−sXr fails to converge, because
the moments mn(Xr)/n! do not determine the mixing cdf
H .
To illustrate, the first 7 numerator elements of the CF

(3.10) for Ee−sXr are given in Table 6. (In Table 6 all
distributions are scaled to have mean 1.) Since an = n− 1
for X2, we see that convergence takes place, but it is not
too rapid. For r = 3 and 4, we see that an fails to be
O(n) as n → ∞. Moreover, for r = 3, 4 the CF fails to
converge, demonstrating that the moments of the mixing
cdf H indeed do not determine H .

continued fraction elements
r a1 a2 a3 a4 a5 a6 a7
2 1 1 2 3 4 5 6
3 1 1 9 20 40 61.25 93.15
4 1 1 34 133.82 364.25 736.02 1342.57

Table 6: The first seven CF numerator elements, for a
CF of the form (3.10), of Weibull Laplace transforms for
r = 2, 3 and 4.
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