0. The Spider and the Fly

1. §2.5. Sums of Independent Random Variables

(o) Dick and Jane meet at the Northwest Corner Building. A picture is worth a thousand formulas.

(i) What does it mean for two random variables X and Y to be independent random variables?

See Section 2.5.2. Pay attention to for all. We say that X and Y are independent random variables if

$$P(X \leq x, Y \leq y) = P(X \leq x)P(Y \leq y) \quad \text{for all } x \text{ and } y.$$

We can rewrite that in terms of cumulative distribution functions (cdf’s) as We say that X and Y are independent random variables if

$$F_{X,Y}(x, y) = P(X \leq x, Y \leq y) = F_X(x)F_Y(y) \quad \text{for all } x \text{ and } y.$$

When the random variables all have pdf’s, that relation is equivalent to

$$f_{X,Y}(x, y) = f_X(x)f_Y(y) \quad \text{for all } x \text{ and } y.$$

(ii) What is the joint distribution of (X, Y) in general?

See Section 2.5.

The joint distribution of X and Y is

$$F_{X,Y}(x, y) = P(X \leq x, Y \leq y).$$

(iii) How do we compute the distribution of the sum of two independent random variables?

Example 2.36 (sum of two i.i.d. uniform random variables)

Example 2.37 (sum of two independent Poisson random variables)

2. §2.6. Moment Generating Functions

Given a random variable X, the moment generating function (mgf) of X (really of its probability distribution) is

$$\psi_X(t) = E[e^{tX}],$$

which is a function of the real variable t, see Section 2.6 of Ross. (I here use ψ, whereas Ross uses ϕ.) An mgf is an example of a transform.
The random variable could have a continuous distribution or a discrete distribution;

Discrete case: Given a random variable X with a probability mass function (pmf)

$$p_n = P(X = n), \quad n \geq 0,$$

the moment generating function (mgf) of X (really of its probability distribution) is

$$\psi_X(t) \equiv E[e^{tX}] \equiv \sum_{n=0}^{\infty} p_n e^{tn}.$$

The transform maps the pmf $\{p_n : n \geq 0\}$ (function of n) into the associated function of t.

Continuous case: Given a random variable X with a probability density function (pdf) $f \equiv f_X$ on the entire real line, the moment generating function (mgf) of X (really of its probability distribution) is

$$\psi(t) \equiv \psi_X(t) \equiv E[e^{tX}] \equiv \int_{-\infty}^{\infty} f(x) e^{tx} \, dx.$$

In the continuous case, the transform maps the pdf $\{f(x) : x \geq 0\}$ (function of x) into the associated function of t.

A major difficulty with the mgf is that it may be infinite or it may not be defined. For example, if X has a pdf $f(x) \equiv A/(1 + x)^p$, $x > 0$, for $p > 1$, then the mgf is infinite for all $t > 0$. Similarly, if X has the pmf $p(n) \equiv A/n^p$ for $n = 1, 2, \ldots$, then the mgf is infinite for all $t > 0$. As a consequence, probabilists often use other transforms. In particular, the characteristic function $E[e^{itX}]$, where $i \equiv \sqrt{-1}$, is designed to avoid this problem. We will not be using complex numbers in this class.

Two major uses of mgfs are: (i) calculating moments and (ii) characterizing the probability distributions of sums of random variables.

Below are some illustrative examples.

Examples 2.41 and 2.45: Poisson

Example 2.43 (2.42 in 9th ed.) and 2.46: Normal

3. §2.8. *Proofs of the LLN and the CLT: pp. 83-84 (pp. 82-83 in 9th ed.)*

We work with mgf’s. We assume that each mgf $\psi_X(t) \equiv E[e^{tX}]$ is finite for some $t > 0$.

A key result behind these proofs is the continuity theorem for mgf’s.

Theorem 0.1 (continuity theorem) Suppose that X_n and X are real-valued random variables, $n \geq 1$. Let ψ_{X_n} and ψ_X be their mgf’s. Then

$$X_n \Rightarrow X \quad \text{as} \quad n \to \infty \quad (\text{convergence in distribution})$$

if and only if

$$\psi_{X_n}(t) \to \psi_X(t) \quad \text{as} \quad n \to \infty \quad \text{for all} \quad t.$$

Now to prove versions of the law of large numbers (LLN) and the central limit theorem (CLT), we exploit the continuity theorem for mgf’s and the following two lemmas:

Lemma 0.1 (convergence to an exponential) If $\{c_n : n \geq 1\}$ is a sequence of complex numbers such that $c_n \to c$ as $n \to \infty$, then

$$(1 + (c_n/n))^n \to e^c \quad \text{as} \quad n \to \infty.$$
The next lemma is classical Taylor series approximation applied to the mgf. For a function $h(t)$, recall that a Taylor series expansion is:

$$h(t) = h(0) + h'(0)t + h''(0)\frac{t^2}{2} \cdots$$

Since the derivatives of the mgf evaluated at 0, are the moments, we get the following.

Lemma 0.2 (Taylor’s theorem) *If $E[|X^k|] < \infty$, then the following version of Taylor’s theorem is valid for the mgf $\psi_X(t) \equiv E[e^{tX}]$:*

$$\psi_X(t) = \sum_{j=0}^{j=k} E[X^j] \frac{t^j}{j!} + o(t^k) \quad \text{as} \quad t \to 0$$

where $o(t)$ is understood to be a quantity (function of t) such that

$$\frac{o(t)}{t} \to 0 \quad \text{as} \quad t \to 0.$$

Suppose that $\{X_n : n \geq 1\}$ is a sequence of IID random variables. Let

$$S_n \equiv X_1 + \cdots + X_n, \quad n \geq 1.$$

Theorem 0.2 (LLN) *If $E[|X|] < \infty$, then*

$$\frac{S_n}{n} \Rightarrow EX \quad \text{as} \quad n \to \infty.$$

Proof. Look at the mgf of S_n/n and then do a Taylor series approximation:

$$\psi_{S_n/n}(t) \equiv E[e^{tS_n/n}] = \psi_X(t/n)^n = (1 + \frac{tEX}{n} + o(t/n))^n$$

by the second lemma above. Hence, we can apply the first lemma to deduce that

$$\psi_{S_n/n}(t) \to e^{tEX} \quad \text{as} \quad n \to \infty.$$

By the continuity theorem for mgf’s (convergence in distribution is equivalent to convergence of mgf’s), the LLN is proved. □

Theorem 0.3 (CLT) *If $E[X^2] < \infty$, then*

$$\frac{S_n - nEX}{\sqrt{n\sigma^2}} \Rightarrow N(0,1) \quad \text{as} \quad n \to \infty,$$

where $\sigma^2 = Var(X) < \infty$.

(This should be familiar when c_n is independent of n.)
Proof. For simplicity, consider the case of $EX = 0$. We get that case after subtracting the mean. Look at the mgf of $S_n/\sqrt{n\sigma^2}$:

$$
\psi_{S_n/\sqrt{n\sigma^2}}(t) \equiv E[e^{t[S_n/\sqrt{n\sigma^2}]}] = \psi_X(t/\sqrt{n\sigma^2})^n = (1 + (t/\sqrt{n\sigma^2})EX + (t/\sqrt{n\sigma^2})^2EX^2/2 + o(t/n))^n = (1 + t^2/2n + o(t/n))^n \rightarrow e^{t^2/2} = \psi_{N(0,1)}(t)
$$

by the two lemmas above. Thus, by the continuity theorem, the CLT is proved.

4