IEOR 3106: Introduction to Operations Research: Stochastic Models
Professor Whitt

SOLUTIONS to Homework Assignment 1

Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probabil-
ity Models, tenth edition, by Sheldon Ross. Please do the six problems marked with an asterisk
and turn them in next Tuesday. These problems are written out in case you do not yet have
the textbook (available in the Columbia Bookstore). Extra problems are provided in case you
need extra review. Solutions will be provided for all the following problems.

CHAPTER 1
*Problem 1.3.

A coin is to be tossed until a head appears twice in a row. What is the sample space for
this experiment? If the coin is fair, what is the probability that it will be tossed exactly four
times?

The sample space is a set with countably infinitely many elements. The sample space is
the set
S = {(61,62,...,€n) n > 2} ,

where e; € {H,T} (i.e., e; is either heads or tails) and, in addition, e, = e,—1 = H and,
for 1 <i <n-—2 (for n > 3), if ¢, = H, then necessarily e;11 = T. Here are initial ele-
ments of S: {H,H}, {T,H,H}, {T,\T,H,H}, {H,T,H,H}, {T,T,T,H,H}, {T,H,T,H, H},
{H,T\T,H,H}, {T,T,T,T,H,H},...

*Problem 1.21

Suppose that 5% of men and 0.25% of women are color-blind. A color-blind person is
chosen at random. What is the probability of this person being male? (Assume that there are
an equal number of males and females.)

Let C be the event that a person chosen at random is color-blind. Let M be the event that
a random person is male. Let M€ be the event that a random person is female, the complement
of the event M. Then

_ P(MC) P(C|M)P(M)
PIMIC) = =5y = PP + P(CIMe) PV
0.05 x 0.5 20

(0.05 x 0.5) 4 (0.0025 x 0.5) 21 °

Problem 1.22




The calculation becomes easy if we view it in a good way. One might observe that the
experiment has the form of tennis once deuce has been reached or table tennis (ping pong)
after the score of 20 — 20 has been reached, so this is a situation that you may well have
encountered previously.

Here is a good way to view it: Let successive trials consist of successive pairs of points.
That is, we consider what happens after 2 plays, after 4 plays, and so on. We do that, because
we observe that the game can only end after an even number of plays. Moreover, with this
definition of a “trial,” the sequence of games becomes a sequence of Bernoulli trials (a sequence
of independent and identically distributed (IID) Bernoulli random variables; see Section 2.2.1.
The probability that each player wins one point on any trial is ¢ = 2p(1 — p). A total of 2n
points are played if the first (n — 1) trials all results in each player winning one point, and
the n*® trial results in one of the players winning two points. We apply the independence to
calculate the desired results.

The probability that 2n points are needed is thus (2p(1 — p))*~(p? + (1 — p)?), n > 1.

The probability that A eventually wins is

P(A wins) = (Z(%(l —p))”1> X p?

n=1

p2

1—-2p(1—p)°

using the well known property of geometric series:

> 1
n __
Z,Z(;m Cl—x

for0<z < 1.

Problem 1.31

Two dice are tossed, one green and one red. What is the conditional probability that the
number on the green die is 6, given that the sum on the two dice is 77

Extra part: What is the conditional probability that the number on the green die is 6,
given that the sum on the two dice is 107

Let S be the event that the sum is 7; let G be the event that the number on the green die

is 6. Then
_P(GS) _P(S|G)P(G) _ (1/6) x (1/6) 1
P(G15) = P(S) —  P(S) 6/36 6

Now for the extra part. Let S now be the event that the sum is 10. Then

B P(GS) B P(S|G)P(G) B (1/6) x (1/6) 1
POSI= 26y == sy = s s

*Problem 1.43



Here is another application of Bayes’ Theorem, again like the examples in Section 1.6. Let
7 be the event that coin 7 is selected. As usual, let H and T denote the events head and tail.
We are told that P(H|i) = i/10; we want to calculate the conditional probability the other
way. We get

P(HN5)

P(H)
P(H|5)P(5)
.2, P(Hi)P(i)
5/100
30i2,4/100

5
Yy

5 1
I 0.090909. ..

P(i =5|H) =

CHAPTER 2
Problem 2.9

The probability mass function (pmf) gives the jumps in the cumulative distribution function
(cdf). Let p(b) be the pmf. Then

1/2 b=0
/10 b=1
pb)={ 1/5  b=2
1/10  b=3
1/10  b=35

Problem 2.20

This is a multinomial distribution. Let T be the number of ordinary television sets purchsed;
let C' be the number of color television sets purchased; and let B be the number of customers
browsing. Then

5!
HT:ZC:ZB:UT+C+B:Q:QWMmm%mNm5ﬂ:&%4
This could be approached by using the binomial distribution twice. First we consider the
purchasers of ordinary TV’s and all others. Then we divide up the others into purchasers of
color TV’s and browsers. That leads to the product of two binomial distributions, as follows:

P(T=2,C=2B=1T+C+B=5)=P(T =2,T°=3[T+C+B =5P(C =2,B=1|C+B =3),

yielding the same result after calculation.



*Problem 2.32

This problem is about approximating the binomial distribution by the Poisson distribution.
Directly, the problem can be solved by the binomial distribution, but the binomial distribution
with large n and small p, with np = )\, is approximately Poisson with mean A. Let N be the
number of prizes won. Then, first exactly and then approximately,

50!
P(N =k) = b(k; — b(k.50.0.01) = —2%_(0.01)%(0.99)30—F
( ) (k;n,p) = bk, 50,0.01) k!(50—k)!( )£(0.99)
—-0.5 k
P~ POiSSOTl(k}; A= np) = Pozsgon(k705) — 6]5[05)

so that
P(N>1)=1-P(N=0)~1-¢% =0.394

P(N =1)=P(N =1) ~¢*%(0.5)! = 0.303
P(N>2)=1-P(N =0)— P(N =1)~0.394 — 0.303 = 0.091

Problem 2.33

We need the total probability to be 1. Hence we must solve

c/l(l—$2)d:n:1.

Elementary calculus yields

or ¢(4/3) =1, so that
c=3/4.

The cdf F' is the integral of the pdf f, as on the bottom of page 34, so that

= [ swae=3 [a-aa=3 (-2 2)

for —1 <y < 1. Clearly, F(y) =0 for y < —1 and F(y) =1 for y > 1.

*Problem 2.34

To be a probability density function, its integral must be 1. So we must have

2
c/ (4r — 22?) dx = c(22% — 223/3) =1,
0



which implies that ¢ = 3/8. Then

3 (32 11
P(1/2<X<3/2)—8/ (4x—2x2)dxzﬁ.
1/2

Problem 2.39

1 2 24 31 1
EX =1xp(1)+2xp(2) +24xp24) = 5+ 5+ == =5;

*Problem 2.43

This problem gives practice in the use of indicator random variables, the X; here.
(a)
n
X=> X
i=1

(b)
1
EX,; = P(X,; =1) = P(ball i chosen before all black balls) = L
S0 n
EX = .
m+1

The key theoretical fact here is this: The expected value of a sum of random variables is the
sum of the expectations, even if the random variables are dependent. There is such dependence
in this example. See pages 49-51 in the textbook for additional discussion. In contrast, the
variance of a sum of random variables is the sum of the variances only under the condition
that the component random variables are independent.

The reason why P(ball i before all black balls) = m#ﬂ is the following. Let Y be the first

ball that is either ball 7 or a black ball. We then condition on the color of ball Y:

P(ball ¢ before all black balls) = P(ball i before all black balls | Y is red) P(Y is red)
=1
+ P(ball ¢ before all black balls | Y is black) P(Y is black)

=0

= P(Y is red).

This probability is easy to calculate: just before we draw ball Y, all black balls and ball ¢ are
still in the urn. So the probability that ball Y is ball ¢ is 1/(m + 1).

Problem 2.48 (in 9" edition)




Problem 2.48 (in 10" edition)

See answer in back of the book.

Problem 2.50

Use definition of the variance.
(i)
Var(cX) = E[(cX — E[cX])?] = E[*(X — EX)?] = E[(X — EX)?] = *Var(X)

(i)
Var(c+ X) = E[(c+ X — Elc+ X))} = E[(X — EX)}] = Var(X) .



