
IEOR 3106: Introduction to Operations Research: Stochastic Models

Professor Whitt

Solutions to Homework Assignment 4

Even More Markov Chains

Read Sections 4.5.1, 4.5.2, 4.6 and part of 4.8. In Section 4.8 read pages 249-255, up to
Example 4.37. (In the 9th edition, the covered material in Section 4.8 is on pages 236-242, up
to Example 4.33.

Do the following exercises at the end of Chapter 4. Turn in all except for ones with answers
in back:

41. (Answer in back)

42.

This exercise is similar to the previous one.

(a) This first double sum is the long-run proportion of transitions that go from a state in
the set A to a state in the complement of A (the subset of remaining states), denoted by Ac.

(b) This second double sum is the long-run proportion of transitions that go from a state
in the set Ac to a state in the set A.

(c) Between any two transitions from A to Ac, there must be a transition from Ac to A.
Similarly, between any two transitions from Ac to A, there must be a transition from A to Ac.
Hence the long-run proportion of transitions from A to Ac must equal the long-run proportion
of transitions from Ac to A.

46.

(i) The key is to define a good state. Let the state be the number of umbrellas at his
present location. The possible values for the states are 0, 1, . . . , r, so there are r + 1 states.

With this definition for the state, the transition probabilities are

P0,r = 1 (He can take no umbrella, but finds all at his destination.)

If it does not rain, he takes no umbrella. Since the probability of not raining is 1− p, we
have

Pi,r−i = 1−p for 1 ≤ i ≤ r . (He takes no umbrella and find the others at the destination.)

Otherwise it rains, and he takes an umbrella with him, so there is 1 more umbrella at his
destination, yielding:

Pi,r−i+1 = p for 1 ≤ i ≤ r .



(ii) It suffices to show that π = πP . Consequently, it suffices to show that

πj =
r∑

i=0

πiPi,j , 0 ≤ j ≤ r .

These equations become

πr = π0 + π1p

πj = πr−j(1− p) + πr−j+1p, 1 ≤ j ≤ r − 1,

π0 = πr(1− p)

Start with πr = 1
r+1−p :

πr =
1

r + 1− p
=

1− p

r + 1− p
+

1
r + 1− p

p ,

as desired.
Similarly, the other equations hold.

He gets wet if there is no umbrella and it rains. The steady-state limiting probability of
that event is

π0p =
p(1− p)
r + 1− p

.

(iv) Differentiate the probability obtained in part (iii) for r = 3:

d

dp

p(1− p)
4− p

=
p2 − 8p + 4

(4− p)2

Setting the derivative equal to 0, we get

p =
8−√48

2
≈ 0.55 .

You can check that the extreme value yields a mximum, not a minimum.

47.

This exercise is somewhat similar to the expansion of the states to make a non-Markov
process Markov, which we considered in Example 4.4 and Exercise 2.

Here, however, the original process is already Markov. The answer is in the back of the
book.

49.

(i) No, at time n, n ≥ 2, the future conditional on the past and present depends on the
outcome of the coin flip at time 1.

The limiting probability can still be computed. It is

lim
n→∞P (Xn = i) = pπ1

i + (1− p)π2
i .
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(ii) Yes, the successive states now are a Markov chain. The transition probabilities now
are:

Pi,j = pP
(1)
i,j + (1− p)P (2)

i,j .

56.

Recognize that this is the gambler’s ruin problem discussed in Section 4.5.1. By formula
(4.14) in the text (formula (4.13) in the 7th edition), The probability of winning is the proba-
bility of reaching level n + m before hitting 0, starting in level m. That probability is

P (win) =
1− (q/p)m

1− (q/p)n+m
,

where q ≡ 1− p.

57.

Let A be the event that all steps are visited by time T , the time of first return to state
0. Conditioning on the direction of the first step, we can transform the problem into two
applications of the gambler’s ruin problem, which was just discussed in the previous exercise.
Specifically, we get

P (A) = P (A|go clockwise at first)p + P (A|go counterclockwise at first)(1− p)

= p
1− (q/p)
1− (q/p)n

+ (1− p)
1− (p/q)
1− (p/q)n

These probabilities are the probabilities that a gambler starting with 1 will reach n before
going broke. The two directions change the role of p and q.

76.

Use the formula for the steady-state probability distribution given at the end of Example
4.32, namely,

πi =

∑
j wi,j∑

i

∑
j wi,j

,

where wi,j is the weight on arc (i, j), which here we take to be 1 if the knight can move from
square i to square j. There are 2 possible moves from each corner. There are 4 squares from
which there are 2 possible moves (the corners). There are 8 squares from which there are 3
possible moves. There are 20 squares from which there are 4 possible moves. There are 16
squares from which there are 6 possible moves. There are 16 squares from which there are 8
possible moves. Thus, the sum of the weights is 336. Let state 1 be a corner. Then the steady-
state probability of being at a corner is π1 = 2/336 = 1/168. Hence the expected number of
steps for the Markov knight to return to the corner from which it started is 168. At this last
step we use Remark (ii) in Section 4.4, which states that

πi =
1

mi,i
.
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where mi,i is the mean time to return to state i.
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