
IEOR 3106: Introduction to Operations Research: Stochastic Models

Fall 2013, Professor Whitt

Solutions to Homework Assignment 6: Due on Tuesday, October 22.

Chapter 6: Continuous-Time Markov Chains

Read Sections 6.1-6.5 in Ross. Do the following exercises at the end of Chapter 6.

As usual, you are only required to turn in the problems without answers in the back, but
you should do all the problems.

2. The solution is in the back of the book, but we elaborate.

The object here is to construct a CTMC model. There are two key steps: (1) defining the
state space and (2) specifying the local transition structure.

The state space in this example is the set of pairs (n,m) of nonnegative integers, where
n is the number of organisms in state A and m is the number of organisms in state B.
Thus, as indicated in the back of the book, the stochastic process that is the CTMC can
be {(NA(t), NB(t)) : t ≥ 0}, where NA(t) is the number of organisms in state A at time t,
while NB(t) is the number of organisms in state B at time t.

The “local” transition structure of a CTMC can be defined in two ways. First, following
Section 6.2 of Ross, we can specify the transition matrix P for the embedded discrete-time
Markov chain (DTMC) operating at the at the transition epochs of the CTMC plus the rates
of the exponential holding times in each state. As in Ross, we let νi denote the rate of
the exponential holding time in state i; i.e., the holding time in state i has an exponential
distribution with mean 1/νi. The elements of the matrix P and the vector ν are given in the
book.

An alternative way to specify a CTMC is to specify the (infinitesimal) transition rates.
The (infinitesimal) transition rate of a transition from state i to state j is denoted by Qi,j .
The diagonal entries Qi,i of the matrix Q can be unspecified or can be defined as Qi,i ≡
−∑

j,j 6= Qi,j = −νi. In terms of the model elements P and ν introduced above, we have

Qi,j = νiPi,j for j 6= i .

3. Recall that a birth-and-death (BD) process is a CTMC defined on a subset of the
nonnegative integers that moves only to neighboring states; i.e., from state i it can only go
next to one of i − 1 or i + 1. The transition rate from i to i + 1 is denoted by λi instead of
Qi,i+1, as it would be in the CTMC representation. Similarly, the transition rate from i to
i− 1 is denoted by µi instead of by Qi,i−1, as it would be in the CTMC representation.

This example cannot be represented directly as a BD process using the obvious state space,
because the state space cannot simply be the number of machines working. We must keep track
of which machine is working, if any. Moreover, the states cannot be relabeled so that this is a
BD process. First we show that the system can be modeled as a CTMC.

We can analyze the system as a CTMC by letting the states be:



b = both machines are working
1 = machine 1 is working, but 2 is not
2 = machine 2 is working, but 1 is not

01 = both machines are down, machine 1 is being serviced
02 = both machines are down, machine 2 is being serviced.

With these states we have a CTMC. We can define the CTMC by specifying the local
transition structure in either of the two ways indicated for problem 2. The transition rates are

Qb,1 = µ2

Qb,2 = µ1

Q1,02 = µ1

Q2,01 = µ2

Q1,b = µ

Q2,b = µ

Q01,1 = µ

Q02,2 = µ

Alternatively, we can specify the model elements ν and P . For example,

νb = Qb,1 + Qb,2 = µ2 + µ1 ,

while
Pb,1 =

Qb,1

Qb,1 + Qb,2
=

µ2

µ2 + µ1
.

We might wonder if we could get a BD process from this CTMC by simply relabeling the
states. For example, we may define new states by mapping the old states into the integers as
shown below:

new state old state defining property
2 b both machines are working
1 1 machine 1 is working, but 2 is not
3 2 machine 2 is working, but 1 is not
4 01 both machines are down, machine 1 is being serviced
0 02 both machines are down, machine 2 is being serviced.

From new state 2, we can go only to new states 1 and 3. From new state 3, we can go only
to new states 2 and 4. From new state 1, we can go only to new states 0 and 2. Everything
works so far, but there is a problem: From new state 0, we can only go to new state 3, and
from new state 4, we can only go to new state 1. So it is not possible to get a BD process by
relabeling the states.

We do not go on to “solve” this CTMC. For example, we could go on to solve for the
steady-state distribution. If α is the steady-state probability vector, then αQ = 0 and the sum
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of the elements of the vector α is 1 (assuming that Qi,i = −νi). In other words, we solve the
balance equations, setting the rate out of state i equal to the rate into state i:

αiνi =
∑

j,j 6=i

αjQj,i for all i .

9. Since the death rate is constant, it follows that the number of deaths evolves as a Poisson
process until the system becomes empty. Hence, Pi,j(t) is the probability a Poisson distribution
assumes the value i− j for i > j; i.e.,

Pi,j(t) =
e−µt(µt)i−j

(i− j)!
for 0 < j ≤ i

and

Pi,0(t) = 1−
j=i∑

j=1

Pi,j(t) =
∞∑

k=i

e−µt(µt)k

k!
.

13. This is an M/M/1/1 queueing model, having one server and one extra waiting space
(a total capacity of 2). The two M ’s refer to Markov, the first because the interarrival-time
distribution is exponential (with the lack-of-memory property), and the second because the
service-time distribution is also exponential; see Section 8.3.

Let N(t) be the number of customers in the shop at time t. The process {N(t) : t ≥ 0} is
a birth-and-death process with state space {0, 1, 2}.

The birth rates (per hour) are

λ0 = 3 and λ1 = 3 .

The death rates are

µ1 = 4 and µ2 = 4 .

The steady-state distribution can be found directly quite easily by solving local balance
equations as indicated in Remark (iii) in Section 6.5. There is a standard form for any BD
process (see (6.20), which we exploit below.

The steady-state vector α has the form

αi =
ri

r0 + r1 + r2
for 0 ≤ i ≤ 2 ,

where
r0 = 1, r1 =

λ0

µ1
and r2 = r1 × λ1

µ2
,

i.e., r0 = 1, r1 = 3/4 and r2 = 9/16, so that

α0 =
16
37

, α1 =
12
37

, and α2 =
9
37

.

(a) Hence the average number in the shop is

E[N(∞)] = (0× α0) + (1× α1) + (2× α2) =
30
37

.
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By “average” number in the shop, we mean the expected value of the limiting steady-state
distribution. Here we have N(t) converge in distribution to N(∞) as t →∞.

(b) The proportion of customers that do not enter the shop is α2 = 9/37, so the proportion
of customers that enter the shop is 28/37.

(c) The service rate or death rate would increase from 4 to 8. The r vector would change
to

r0 = 1, r1 = 3/8 and r2 = 9/64 .

Hence the steady-state vector changes to

α0 =
64
97

, α1 =
24
97

, and α2 =
9
97

.

Thus the loss proportion decreases from 9/37 to 9/97. The served proportion thus increases
from 28/37 = 0.7568 to 88/97 = 0.9072. The difference is 0.1505. Arrivals come at 3 per hour.
Of these he serves 90.7% instead of 75.7%, a gain of 15.1%.

20. Let the state be the number of machines that are down. Then the state space is the set
{0, 1, 2}. The stochastic process {X(t) : t ≥ 0}, where X(t) is the number of machines down
at time t, is a birth-and-death process, because the process is a CTMC that can move only to
a neighboring state at each transition.

The birth rates are λi = λ for i = 0, 1; the death rates are µi = µ for i = 1, 2. This model
coincides with a M/M/1/1 queueing model, which has 1 server and 1 extra waiting space.
Customer arrivals in the queue correspond to failures in the machines. Service times in the
queue correspond to repair times for the machines.

(a) Referring to pages 356-359, we see that we want E[T0 + T1], because T0 is the time to
go from state 0 to state 1, while T1 is the time to go from state 1 to state 2. Then, following
the top of page 357, we get

E[T0 + T1] = E[T0] + E[T1] = (
1
λ

) + (
1
λ

+
µ

λ2
) =

2
λ

+
µ

λ2
.

(b) To treat the variances, we look at the end of Section 6.3. In particular,

V ar(T0 + T1) = V ar(T0) + V ar(T1) = (
1
λ2

) + (
1

λ(λ + µ)
+

µ

λ3
+

µ

µ + λ
(
2
λ

+
µ

λ2
)2 .

The steady-state distribution has a simple form for a birth-and-death process. Let αi be
the steady-state probability of having i failed machines. Here, we want

α0 + α1 = 1− α2 =
1 + λ/µ

1 + λ/µ + (λ/µ)2
.

23. Let the state be the number of machines that are down. The state space is thus
{0, 1, 2, 3}. The number of machines that are down at time t is a BD process with birth rates
λ0 = 3/10, λ1 = 2/10, λ2 = 1/10 and death rates µ1 = 1/8, µ2 = 2/8, µ3 = 2/8.

The steady-state vector α has the form

αi =
ri

r0 + r1 + r2 + r3
for 0 ≤ i ≤ 3 ,
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where
r0 = 1, r1 =

λ0

µ1
, r2 = r1 × λ1

µ2
, r3 = r2 × λ2

µ3
,

i.e., r0 = 1, r1 = 24/10 = 12/5, r2 = 48/25 and r3 = 96/125, so that

α0 =
125
761

, α1 =
300
761

, α2 =
240
761

, and α3 =
96
761

.

(a) The average number of machines not in use is

(0× α0) + (1× α1) + (2× α2) + (3× α3) =
1068
761

.

(b) The proportion of time both repairman are busy is

α3 + α2 =
336
761

.
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