
IEOR 3106: Introduction to Operations Research: Stochastic Models

Solutions to Homework Assignment 8.

Chapter 6: More Continuous-Time Markov Chains

Read Sections 6.6-6.8 in Ross. Do the following exercises at the end of Chapter 6.

14. Just like Problem 13 in the last assignment, this is an M/M/1/1 queueing model,
having one server and one extra waiting space (a total capacity of 2).

Let N(t) be the number of cars at the gas station at time t. The process {N(t) : t ≥ 0} is
a birth-and-death process with state space {0, 1, 2}.

The birth rates (per hour) are

λ0 = 20 and λ1 = 20 .

There is no (zero) birth rate in state 2. The death rates are

µ1 = 12 and µ2 = 12 .

There is no (zero) death rate in state 0.

The steady-state distribution can be found directly quite easily by solving local balance
equations as indicated in Remark (iii) in Section 6.5. There is a standard form for any BD
process (see (6.20), which we exploit below.

The steady-state vector α has the form

αi =
ri

r0 + r1 + r2
for 0 ≤ i ≤ 2 ,

where
r0 = 1, r1 =

λ0

µ1
and r2 = r1 × λ1

µ2
,

i.e., r0 = 1, r1 = 20/12 = 5/3 and r2 = 25/9, so that the specific steady-state probabilities are

α0 =
9
49

, α1 =
15
49

, and α2 =
25
49

.

(a) The fraction of time that the system is busy is α1 +α2 = 40/49. That is the proportion
of time that the attendant spends servicing cars.

(b) The proportion of customers that do not enter the shop coincides with the proportion
of time that the system is full (because the arrivals occur at a constant rate over all time).
The proportion of time that the system is full is α2 = 25/49.

20. Let the state be the number of machines that are down. Then the state space is the set
{0, 1, 2}. The stochastic process {X(t) : t ≥ 0}, where X(t) is the number of machines down
at time t, is a birth-and-death process, because the process is a CTMC that can move only to
a neighboring state at each transition.



The birth rates are λi = λ for i = 0, 1; the death rates are µi = µ for i = 1, 2. This model
coincides with a M/M/1/1 queueing model, which has 1 server and 1 extra waiting space.
Customer arrivals in the queue correspond to failures in the machines. Service times in the
queue correspond to repair times for the machines.

(a) Referring to pages 356-359, we see that we want E[T0 + T1], because T0 is the time to
go from state 0 to state 1, while T1 is the time to go from state 1 to state 2. Then, following
the top of page 357, we get

E[T0 + T1] = E[T0] + E[T1] = (
1
λ

) + (
1
λ

+
µ

λ2
) =

2
λ

+
µ

λ2
.

(b) To treat the variances, we look at the end of Section 6.3. In particular,

V ar(T0 + T1) = V ar(T0) + V ar(T1) = (
1
λ2

) + (
1

λ(λ + µ)
+

µ

λ3
+

µ

µ + λ
(
2
λ

+
µ

λ2
)2 .

The steady-state distribution has a simple form for a birth-and-death process. Let αi be
the steady-state probability of having i failed machines. Here, we want

α0 + α1 = 1− α2 =
1 + λ/µ

1 + λ/µ + (λ/µ)2
.

23. Let the state be the number of machines that are down. The state space is thus
{0, 1, 2, 3}. The number of machines that are down at time t is a BD process with birth rates
λ0 = 3/10, λ1 = 2/10, λ2 = 1/10 and death rates µ1 = 1/8, µ2 = 2/8, µ3 = 2/8.

The steady-state vector α has the form

αi =
ri

r0 + r1 + r2 + r3
for 0 ≤ i ≤ 3 ,

where
r0 = 1, r1 =

λ0

µ1
, r2 = r1 × λ1

µ2
, r3 = r2 × λ2

µ3
,

i.e., r0 = 1, r1 = 24/10 = 12/5, r2 = 48/25 and r3 = 96/125, so that

α0 =
125
761

, α1 =
300
761

, α2 =
240
761

, and α3 =
96
761

.

(a) The average number of machines not in use is

(0× α0) + (1× α1) + (2× α2) + (3× α3) =
1068
761

.

(b) The proportion of time both repairman are busy is

α3 + α2 =
336
761

.

24. The answer is in the back of the book. Note that this is an M/M/1/∞ queueing
model, but with an unusual interpretation. Here we want to let the arriving “customers” in
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the queueing model be the arriving taxis. A service occurs when a customer arrives and takes
one of the taxis away. Thus the arrival rate is λ = 1 and the service rate is µ = 2. This is a
BD process with birth rate in each state equal to the arrival rate, and death rate in each state
(except state 0) equal to the service rate.

26. We want to deduce, possibly counter to intuition, that the number of customers present
in an M/M/s queue in steady state is independent of the sequence of past departures. Toward
that end, we exploit time reversibility in Section 6.6. The reverse-time system is stochastically
equivalent to the standard forward-time system. Past departures in the standard forward-time
system correspond to future arrivals in the reverse time system. Since the arrival process is
a Poisson process, the departure process also must be a Poisson process. In the reverse time
system, the Markov property (applied to the Poisson arrival process) makes the number in the
system at any time independent of the future arrival process. So, in the forward-time system
the number in system is necessarily independent of past departures.

27. This question is related to Proposition 6.5 and Corollary 6.6. In the M/M/s queue if
you allow the service rate to depend on the number in the system but in such a way so that it
is ergodic, the process {Xt, t ≥ 0} of the number of customers in the system is still an ergodic
birth-death process. The difference is that the death rate of the process will be a function of
the process itself. So by Corollary 6.6, as long as the traffic intensity is kept less than one so
that a steady state exists for this queue system, the output process of customers is a Poisson
process with the same as the arrival process.

If the service rate µ remains unchanged but λ > sµ, the condition in Corollary 6.6 is
violated, so one can no longer conclude that the output process of customers is Poisson with
rate λ. In fact, under the condition λ > sµ, after the process has been in operation for a long
time, the process {Xt, t ≥ 0} of the number of customers in the system will blow up, but the
output process is actually a Poisson process with rate sµ since all servers will be constantly
utilized.

28. The answer is in the book. The focus, of course, is on time reversibility, which is
discussed in Section 6.6. If α denotes the steady-state probability vector and Q denotes the
rate matrix, then time reversibility holds when the local-balance equations are satisfied, i.e.,
when

αiQi,j = αjQj,i for all j 6= i .

30. Let {Xt, t ≥ 0} be the process of the location of the particle on the graph. It is evident
that this process is an ergodic Markov chain. Here we consider the process being in steady
state. If the process is in state i, i.e., the particle is at node i, then it will make a transition to
node j(6= i) along the arc (i, j) with rate Qij = λij . Similarly if the process is in state j, it will
make a transition to node i(6= j) along the arc (j, i) (same as (i,j)) with rate Qji = λji = λij .
Consider the reverse time process, if the reverse process is in state i, then it will make a
transition to node j(6= i) along the arc (i, j) in backward time with rate Q∗

ij = λij . So for
all i, j, Q∗

ij = Qij , which implies that this CTMC is time reversible. Then by PiQij = PjQji

where Pi is the proportion of time that the particle is at node j, we have Pi = Pj for all i, j.
Therefore, Pj = 1/n for all j.

33. Again, the answer is in the back of the book.
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