IEOR 3106: Introduction to Operations Research: Stochastic Models
Fall 2013, Professor Whitt
Class Lecture Notes: Thursday, September 5.

Random Variables, Distributions and Expectation

1. Expectation (expected value, mean)
(a) What are the mean, median and mode?

What are the definitions?” How are the mean, median and mode related for a normal
distribution? for an exponential distribution? Do these concepts lead to a unique number?

(b) Computing Expected Values

Examples 2.19 and 2.22

Expectations of a Poisson distribution with parameter (mean) A and a normal distribution
with parameters p and o2 (mean u and variance 0. Notice that we can exploit the property
that the sum of a pmf over all its values is 1, and similarly, the integral of a pdf over all its
values is 1. That is convenient for calculations.

2. Random Variables and Functions of Random Variables

Examples 2.2.4 and 2.26
If X is uniform on [0, 1], then what is EF[X3]?

What is E[X + Y]?
(i) What is a random variable?

A (real-valued) random variable, often denoted by X (or some other capital letter), is a
function mapping a probability space (5, P) into the real line R. This is shown in Figure 1.
Associated with each point s in the domain S the function X assigns one and only one value
X(s) in the range R. (The set of possible values of X (s) is usually a proper subset of the real
line; i.e., not all real numbers need occur. If S is a finite set with m elements, then X (s) can
assume at most m different values as s varies in S.)

As such, a random variable has a probability distribution. We usually do not care about
the underlying probability space, and just talk about the random variable itself, but it is good
to know the full formalism. The distribution of a random variable is defined formally in the

obvious way
Ft)=Fx(t)=P(X <t)=P({se S: X(s) <t}),

where = means “equality by definition,” P is the probability measure on the underlying sample
space S and {s € S : X(s) <t} is a subset of S, and thus an event in the underlying sample
space S. See Section 2.1 of Ross; he puts this out very quickly. (Key point: recall that P
attaches probabilities to events, which are subsets of S.)

If the underlying probability space is discrete, so that for any event E in the sample space

S we have
P(E) =Y p(s),
sek



A random variable: a function

X

Domain: probability space Range: real line

Figure 1: A (real-valued) random variable is a function mapping a probability space into the
real line.

where p is the probability mass function (pmf), then X also has a pmf px on a new sample
space, say S1, defined by

px(r)=P(X =r)=P{se€S: X(s)=r}) = Z p(s) for reS. (1)
se{seS: X (s)=r}

Example 0.1 (roll of two dice) Consider a random roll of two dice. The natural sample space
is
S={(i,5):1<i<6,1<j<6},

where each of the 36 points in S is assigned equal probability p(s) = 1/36. The random
variable X might record the sum of the values on the two dice, i.e., X(s) = X((4,7)) =i+ j.
Then the new sample space is

S1=42,3,4,...,12}.

In this case, using formula (1), we get the pmf of X being px(r) = P(X = r) for r € Sy, where
px(2) = px(12) =1/36,

px(3) = px(11) =2/36,
px(4) = px(10) = 3/36,
px(5) = px(9) = 4/36,
px(6) = px(8)=5/36,
px(7) = 6/36.



(ii) What is a function of a random variable?

Given that we understand what is a random variable, we are prepared to understand what
is a function of a random variable. Suppose that we are given a random variable X mapping
the probability space (S, P) into the real line R and we are given a function h mapping R into
R. Then h(X) is a function mapping the probability space (S, P) into R. As a consequence,
h(X) is itself a new random variable, i.e., a new function mapping (S, P) into R, as depicted
in Figure 2.

A function of a random variable

X h

Domain: probability space  Range: real line Range: real line

Figure 2: A (real-valued) function of a random variable is itself a random variable, i.e., a
function mapping a probability space into the real line.

As a consequence, the distribution of the new random variable h(X) can be expressed in
different (equivalent) ways:
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where P is the probability measure on S in the first line, Px is the probability measure on
R (the distribution of X) in the second line and P (x is the probability measure on R (the
distribution of the random variable h(X) in the third line.

Example 0.2 (more on the roll of two dice) As in Example 0.1, consider a random roll of two
dice. There we defined the random variable X to represent the sum of the values on the two



rolls. Now let
h(z) = |z — 7],

so that h(X) = |X — 7| represents the absolute difference between the observed sum of the
two rolls and the average value 7. Then h(X) has a pmf on a new probability space Sy =
{0,1,2,3,4,5}. In this case, using formula (1) yet again, we get the pmf of h(X) being
prx)(k) = P(M(X) =k) = P({s € S: h(X(s)) = k}) for k € Sy, where

Prx)(5) = P(MX)=5)=P(X -7=5)=2/36=1/18,
Prx)(4) = PWMX)=4)=P(|X -7 =4) =4/36 = 2/18,
Prx)(3) = PMX)=3)=P(X -7 =3)=06/36=3/18,
Prx)(2) = PMX)=2)=P(X -7 =2)=28/36 =4/18,
prx)(1) = P(WMX)=1)=P(|X -7 =1)=10/36 = 5/18,
prx)(0) = P(M(X)=0)=P(|X -7 =0)=06/36=3/18.

In this setting we can compute probabilities for events associated with h(X) = |X — 7| in three
ways: using each of the pmf’s p, px and pp(x).

(iii) How do we compute the expectation (or expected value) of a (probability distribution)
or a random variable?

See Section 2.4. The expected value of a discrete probability distribution P is

expected value = mean = ZkP({k}) = Z kp(k) ,
k k

where P is the probability measure on S and p is the associated pmf, with p(k) = P({k}).
The expected value of a discrete random variable X is

ElX] = Y kP(X=k) = kpx(k)
k k
= S X(s)P({s}) =D X(s)p(s) .

ses ses

In the continuous case, with pdf’s, we have corresponding formulas, but the story gets
more complicated, involving calculus for computations. The expected value of a continuous
probability distribution P with density f is

expected value = mean = / xf(x)dx .
seS

The expected value of a continuous random variable X with pdf fx is

BIX) = [ afsla)de = [ X(s)f(s)ds

where f is the pdf on S and fx is the pdf “induced” by X on R.

(iv) How do we compute the expectation of a function of a random variable?



Now we need to put everything above together. For simplicity, suppose S is a finite set,
so that X and h(X) are necessarily finite-valued random variables. Then we can compute the
expected value E[h(X)] in three different ways:

ER(X)] = Y hX(s)P({s}) =Y h(X(s))p(s)

s€S seS

= S hPX =r) =3 h(r)px(r)
reR reR

— ZtP(h(X) =t) = thh(X) (t) -
teR teR

Similarly, we have the following expressions when all these probability distributions have prob-
ability density functions (the continuous case). First, suppose that the underlying probability
distribution (measure) P on the sample space S has a probability density function (pdf) f.
Then, under regularity conditions, the random variables X and h(X) have probability density
functions fx and fj(x). Then we have:

Eh(X)] = h(X(s))f(s)ds

ses

= [ by

— o0

= / tfnea) () dt

— 00

3. Random Vectors, Joint Distributions, and Conditional Distributions

We may want to talk about two or more random variables at once. For example, we may
want to consider the two-dimensional random vector (X,Y).

(i) What is the joint distribution of (X,Y’) in general?
See Section 2.5.
The joint distribution of X and Y is

Fxy(z,y) = P(X <x,Y <y)
as a function of x and y.

(ii) What does it mean for two random variables X and Y to be independent random
variables?

See Section 2.5.2. Pay attention to for all. We say that X and Y are independent random
variables if
PX<z,Y<y)=PX<z2)P(Y <y) forall = and y.

We can rewrite that in terms of cumulative distribution functions (cdf’s) as We say that X
and Y are independent random variables if

Fxy(z,y)=P(X <z,Y <y) = Fx(z)Fy(y) forall = and y.
When the random variables all have pdf’s, that relation is equivalent to

fxy(z,y) = fx(x)fy(y) forall z and y.



Proposition 2.3 on p. 49. If X and Y are independent, then E[g(X)h(Y)] = E[g(X)]E[h(Y)]
for any real-valued functions g and h.

(iii) What is the covariance of (X,Y)? What is the correlation between X and Y77
oX.y = cov(X,Y) = E[XY] — E[X]|E[Y]

and )

cov(X,Y) _ OXy
VVar(X)Var(Y) oxoy
Note that —1 < pxy < 1. (To see this, note that E[((U—V)?] > 0, where U = (X — E[X])/ox
and V = (Y — E[Y])/oy and expand into its components.)

By Proposition 2.3 above, independence implies uncorrelated (pxy = 0), but not con-

versely. Here is a counterexample: Let X be uniformly distributed on [—1,1] and let Y = X?2.
Then X and Y are dependent, but uncorrelated.

pxy =corrX,Y =

Example 2.33

(iv) How do we compute the conditional expectation of a random variable, given the value
of another random variable, in the discrete case?

See Section 3.2. There are two steps: (1) find the conditional probability distribution,
(2) compute the expectation of the conditional distribution, just as you would compute the
expected value of an unconditional distribution.

Here is an example. We first compute a conditional density. Then we compute an expected
value.

Example 3.6

Here we consider conditional expectation in the case of continuous random variables. We
now work with joint probability density functions and conditional probability density functions.
We start with the joint pdf fx y(x,y). The definition of the conditional pdf is

Ixy(z,y)
fxy (zly) i)

where the pdf of Y, fy(y), can be found from the given joint pdf by

friy) = / oy () do.

Then we compute E[X|Y = y] by computing the ordinary expected value

BIX|Y =] = [ afxy(aly)da.
treating the conditional pdf as a function of x just like an ordinary pdf of x.
Example 3.13 in 10"" ed., Example 3.12 in 9" ed.

This is the trapped minor example. This is another example with three doors. It shows
how we can compute expected values by setting up a simple linear equation with one unknown.
This is a common trick, worth knowing. As stated, the problem does not make much sense,
because the miner would not make a new decision, independent of his past decisions, when he
returns to his starting point. So think of the miner as a robot, who is programmed to make
choices at random, independently of the past choices. That is not even a very good robot. But
even then the expected time to get out is not so large.



