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Fall 2013, Professor Whitt, Thursday, September 12.

Sums of Independent Random Variables and Moment Generating Functions

1. §2.5. Sums of Independent Random Variables

(0) Dick and Jane meet at the Northwest Corner Building. A picture is worth a thousand
formulas: Suppose that they plan to meet between 9 am and 10 am, but they will only wait for
10 minutes for the other. Suppose that they arrive independently at times that are uniformly
distributed over the hour. What is the probability that they meet? Are they more likely to
meet or not meet?

(i) What does it mean for two random variables X and Y to be independent random
variables?

See Section 2.5.2. Pay attention to for all. We say that X and Y are independent random
variables if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x and y .

We can rewrite that in terms of cumulative distribution functions (cdf’s) as We say that X
and Y are independent random variables if

FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y) = FX(x)FY (y) for all x and y .

When the random variables all have pdf’s, that relation is equivalent to

fX,Y (x, y) = fX(x)fY (y) for all x and y .

(ii) What is the joint distribution of (X, Y ) in general?

See Section 2.5.

The joint distribution of X and Y is

FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y) .

(iii) How do we compute the distribution of the sum of two independent random variables?

The distribution of the sum of two independent random variables is the convolution of
the distributions of the individual random variables. For example, if the two random variables
have probability mass functions (pmf’s) on the set of nonnegative integers, then

P (X + Y = k) =
k∑

j=0

P (X = j)P (Y = k − j) (1)

for each integer k. There is a similar expression for probability density functions (pdf’s) if the
random variables have pdf’s on the positive halfline. In particular,

fX+Y (x)) =
∫ x

0
fX(u)fY (x− u) du. (2)



Example 2.36 (sum of two i.i.d. uniform random variables

Example 2.37 (sum of two independent Poisson random variables

2. §2.6. Moment Generating Functions

——————————————–

Given a random variable X, the moment generating function (mgf) of X (really of its
probability distribution) is

ψX(t) ≡ E[etX ] ,

which is a function of the real variable t, see Section 2.6 of Ross. (I here use ψ, whereas Ross
uses φ.) An mgf is an example of a transform.

The random variable could have a continuous distribution or a discrete distribution;

Discrete case: Given a random variable X with a probability mass function (pmf)

pn ≡ P (X = n), n ≥ 0, ,

the moment generating function (mgf) of X (really of its probability distribution) is

ψX(t) ≡ E[etX ] ≡
∞∑

n=0

pnetn .

The transform maps the pmf {pn : n ≥ 0} (function of n) into the associated function of t.

Continuous case: Given a random variable X with a probability density function (pdf)
f ≡ fX on the entire real line, the moment generating function (mgf) of X (really of its
probability distribution) is

ψ(t) ≡ ψX(t) ≡ E[etX ] ≡
∫ ∞

−∞
f(x)etx dx .

In the continuous case, the transform maps the pdf {f(x) : x ≥ 0} (function of x) into the
associated function of t.

A major difficulty with the mgf is that it may be infinite or it may not be defined. For
example, if X has a pdf f(x) ≡ A/(1 + x)p, x > 0, for p > 1, then the mgf is infinite for
all t > 0. Similarly, if X has the pmf p(n) ≡ A/np for n = 1, 2, . . ., then the mgf is infinite
for all t > 0. As a consequence, probabilists often use other transforms. In particular, the
characteristic function E[eitX ], where i ≡ √−1, is designed to avoid this problem. We will not
be using complex numbers in this class.

Two major uses of mgfs are: (i) calculating moments and (ii) characterizing the probability
distributions of sums of random variables.

Below are some illustrative examples.

Examples 2.41 and 2.45: Poisson

Example 2.43 (2.42 in 9th ed.) and 2.46: Normal

3. §2.8. Proofs of the LLN and the CLT: pp. 83-84 (pp. 82-83 in 9th ed.)
We work with mgf’s. We assume that each mgf ψX(t) ≡ E[etX ] is finite for some t > 0.
A key result behind these proofs is the continuity theorem for mgf’s.
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Theorem 0.1 (continuity theorem) Suppose that Xn and X are real-valued random variables,
n ≥ 1. Let ψXn and ψX be their mgf’s (assumed finite). Then

Xn ⇒ X as n →∞ (convergence in distribution)

if and only if
ψXn(t) → ψX(t) as n →∞ for all t .

Now to prove versions of the law of large numbers (LLN) and the central limit theorem
(CLT), we exploit the continuity theorem for mgf’s and the following two lemmas:

Lemma 0.1 (convergence to an exponential) If {cn : n ≥ 1} is a sequence of real numbers
such that cn → c as n →∞, then

(1 + (cn/n))n → ec as n →∞ .

(This should be familiar when cn is independent of n.)
The next lemma is classical Taylor series approximation applied to the mgf. For a function

h(t), recall that a Taylor series expansion is:

h(t) = h(0) + h′(0)t + h′′(0)
t2

2
· · ·

We also want a refinement with error term:

h(t) =
k∑

j=0

hj(0)tj

j!
+ o(tk) as t → 0,

where o(tk) is a quantity small compared to tk, i.e., o(tk)/tk → 0 as t → 0.
Since the derivatives of the mgf evaluated at 0, are the moments, and the derivatives exist

if the moments are finite, we get the following.

Lemma 0.2 (Taylor’s theorem) If E[|Xk|] < ∞, then the following version of Taylor’s theo-
rem is valid for the mgf ψX(t) ≡ E[etX ]:

ψX(t) =
j=k∑

j=0

E[Xj ]tj

j!
+ o(tk) as t → 0

where o(t) is understood to be a quantity (function of t) such that

o(t)
t
→ 0 as t → 0 .

Suppose that {Xn : n ≥ 1} is a sequence of IID random variables. Let

Sn ≡ X1 + · · ·+ Xn, n ≥ 1 .

Theorem 0.2 (LLN) If E[|X|] < ∞, then

Sn

n
⇒ EX as n →∞ .
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Proof. Look at the mgf of Sn/n and then do a Taylor series approximation:

ψSn/n(t) ≡ E[etSn/n] = ψX(t/n)n = (1 +
tEX

n
+ o(t/n))n

by the second lemma above. Hence, we can apply the first lemma to deduce that

ψSn/n(t) → etEX as n →∞.

By the continuity theorem for mgf’s (convergence in distribution is equivalent to convergence
of mgf’s), the LLN is proved.

Theorem 0.3 (CLT) If E[X2] < ∞, then

Sn − nEX√
nσ2

⇒ N(0, 1) as n →∞ ,

where σ2 = V ar(X) < ∞.

Proof. For simplicity, consider the case of EX = 0. We get that case after subtracting the
mean. Look at the mgf of Sn/

√
nσ2:

ψ
Sn/

√
nσ2(t) ≡ E[et[Sn/

√
nσ2]]

= ψX(t/
√

nσ2)n

= (1 + (
t√
nσ2

)EX + (
t√
nσ2

)2
EX2

2
+ o(1/n))n

= (1 +
t2

2n
+ o(1/n))n

→ et2/2 = ψN(0,1)(t) as n →∞

by the two lemmas above. Thus, by the continuity theorem, the CLT is proved.

——————————————————-
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