
IEOR 3106: Introduction to Operations Research: Stochastic Models

Professor Whitt, Fall 2013

Solutions to Problem for Discussion, Thursday, October 10

Gone Fishing

To seek a change of pace from his intense Columbia experience, Seth Hochhauser has
decided to go fishing. It is conceivable that this, like everything else, could be done in a brief
excursion from campus, but Seth wants a real change. So Seth has decided to go to Venice,
Florida, which is centrally located on the Gulf of Mexico along the coast of southwest Florida.
As usual, he hopes to catch some grouper and snapper, but she is also hoping to catch some
other fish, such as kingfish, cobia, black-fin tuna, Greater amberjack, Spanish mackerel, dolphin
fish (mahi-mahi, not dolphins), shark, barracuda, tarpon, permit, little tunny, sheepshead,
flounder, snook, redfish, and sea trout.

Suppose that Seth catches fish according to a Poisson process at a rate of 3 per hour.

(a) What is the expected number of fish he catches in a two-hour period?

————————————————————————————-
Let N(t) be the number of fish Seth catches in the time interval (0, t), where time is

measured in hours. The assumption is that the stochastic process {N(t) : t ≥ 0} is a Poisson
process. One implication is that N(t + s) − N(s) has a Poisson distribution with mean 3t
for any t > 0 and s > 0. It suffices to focus on N(t) = N(t) − N(0), where N(0) = 0. The
distribution is

P (N(t) = k) =
e−λt(λt)k

k!
,

where λ is the rate and t is the length of the time interval. In other words, the random variable
N(t) has a Poisson distribution with mean λt.

Here λ = 3 and t = 2. So the distribution is

P (N(2) = k) =
e−3×2(3 × 2)k

k!
=

e−6(6)k

k!

Now, answering the specific question, recalling that the mean of a Poisson distribution with
parameter λ is just λ, so that E[N(t)] = λt and

E[N(2)] = λt = 3 × 2 = 6

————————————————————————————-

(b) What is the variance of the number of fish he catches in a two-hour period?

————————————————————————————-
For a Poisson distribution, the variance equals the mean. Thus,

V ar(N(2)) = E[N(2)] = 6

using part (a)

————————————————————————————-



(c) What is the probability that he catches exactly 4 fish in a given 2-hour period?

————————————————————————————-
From above,

P (N(2) = 4) =
e−3×2(3 × 2)4

4!
=

e−6(6)4

4!
= 0.134

————————————————————————————-

(d) What is the probability that he catches at least two fish in a two-hour period?

————————————————————————————-

P (N(2) ≥ 2) = 1 − P (N(2) = 0) − P (N(2) = 1) = 1 −
e−6(6)0

0!
−

e−6(6)1

1!
= 1 − e−6 − 6e−6 = 1 − 7e−6 = 0.8785

————————————————————————————-

(e) What is the conditional probability that he catches exactly 4 fish in a given 2-hour
period, given that he catches 23 fish in the previous two hours?

————————————————————————————-
A fundamental property of the Poisson process is that it has stationary increments and

independent increments. Stationary increments means that the distribution of N(t+s)−N(s)
is independent of s. Independent increments means that N(s + t) − N(s) is independent of
N(a + b) − N(a) for nonnegative real numbers s, t, a and b, provided that the two intervals
(s, s + t) and (a, a + b) are disjoint. Hence, the conditioning makes no difference (according to
the model!) So

P (N(t + 2) − N(t) = 4|N(t) − N(t − 2) = 23) = P (N(t + 2) − N(t) = 4) =
e−6(6)4

4!
= 0.134 ,

just as in part (c) above.

————————————————————————————-

(f) What is the conditional expected number of fish that he catches in a given 2-hour period,
given that he catches 23 fish in the previous two hours?

————————————————————————————-
By the independence mentioned above in part (e),

E[N(t + 2) − N(t)|N(t) − N(t − 2) = 23] = E[N(t + 2) − N(t)] = 6 ,

just as in part (a).

————————————————————————————-

(g) Given your answers to parts (e) and (f), what feature of the probability model would
you question? How could you test whether or not that model feature is reasonable for this
kind of fishing?

————————————————————————————-
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For fishing, we might not believe the independent-increments property. The Poisson dis-
tribution might be a reasonable model for one given time interval, but we might not assume
independent increments.

Testing whether independent increments holds is a standard statistical problem, but not
always easy in applications. The general idea is to measure the numbers of fish caught in
disjoint intervals, and then see if the results are consistent with independence. The general
idea is the same as the problem 2 (d) on the posted 2011 first midterm exam. But the specific
techniques would be different in this problem. The problem is similar to problems arising in
finance: In finance, stock prices are often modelled as geometric Brownian motion. That means
that the logarithm of the stock price is modeled as ordinary Brownian motion. That implies
that the logarithm of stock price should have independent increments. (Brownian motion is
like the Poisson process in that both have independent increments, but Brownian motion has
continuous sample paths, whereas the Poisson process has integer-values sample paths.) It is
natural to want to test that. We do not try to provide details here; the question is beyond the
scope of the course.

A rough test, with a lot of data, would be to see if the variance of N(t + 4) − N(t) is
different from the sum of the variances of N(t+4)−N(t+2) and N(t+2)−N(t). In general,
letting V ar be the variance and Cov the covariance,

V ar(N(t + 4) − N(t)) = V ar(N(t + 4) − N(t + 2) + N(t + 2) − N(t))

= V ar(N(t + 4) − N(t + 2)) + V ar(N(t + 2) − N(t))

+2Cov(N(t + 2) − N(t), N(t + 4) − N(t + 2))

Hence,

V ar(N(t + 4) − N(t)) − [V ar(N(t + 4) − N(t + 2)) + V ar(N(t + 2) − N(t))]

= 2Cov(N(t + 2) − N(t), N(t + 4) − N(t + 2)).

So a difference would indicate a non-zero covariance, violating independence. Of course, even
with independence, we cannot expect to see exactly 0 covariance in an estimate because of
the randomness. Careful statistical analysis investigates how much deviation could not have
happened by chance.

————————————————————————————-

(h) What is the expected time until he catches his fourth fish?

————————————————————————————-
For a Poisson process, the intervals between successive events are IID exponential random

variables, with a mean equal to the reciprocal of the rate. So here the mean length of the
interval between successive catching of fish is 1/λ = 1/3 hour = 20 minutes. Let Xi be the
length of the interval between catching his (i − 1)st and ith fish. Then we want

E[X1 + X2 + X3 + X4] = 4E[X1] =
4

3
.

————————————————————————————-

(i) What is the variance of the time until he catches his fourth fish?

————————————————————————————-
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Because of the IID property,

V ar[X1 + X2 + X3 + X4] = 4V ar[X1] = 4E[X1]
2 =

4

9
.

————————————————————————————-

(j) How likely would it be that he would catch more than 90 fish in 27 hours?

————————————————————————————-
Here we can use the normal approximation for the Poisson distribution. That can be based

on the central limit theorem because N(27)
d
= N1(1) + N2(1) + · · · + N27(1), where Ni(1) is

the number of fish caught in the ith hour, i.e., Ni(1)
d
= N(i) − N(i − 1). At any rate, we can

apply a normal approximation. The mean is E[N(27)] = 3 × 27 = 81. Here, the variance is
equal to the mean, so the standard deviation is equal to 9.

P (N(27) > 90) ≈ P (
N(27) − 81

9
>

90 − 81

9
) ≈ P (N(0, 1) > 1) ≈ 0.16

————————————————————————————-

(k) How likely would it be that it would take him less than 27 hours to catch 90 fish?

————————————————————————————-
Here we can use the normal approximation for sums of IID random variables. As it should

appear, this problem is related to the previous one, being sort of an inverse problem. The time
required to catch 90 fish is the sum of 90 IID exponential random variables, each with mean
1/3, and thus variance 1/9. The total mean is 30, while the total variance is 10, so the total
standard deviation is 3.162. Let Sn be the sum of n IID exponentials. Hence,

P (S90 < 27) = P (
S90 − 30

3.162
<

27 − 30

3.162
) ≈ P (N(0, 1) < −

3

3.162
) ≈ P (N(0, 1) < −1) ≈ 0.16

The important inverse relation is

Sn ≤ t if and only if N(t) ≥ n ;

see the middle of page 294 in Ross. Thus, we could, with some work, deduce the answer here
from the answer to the previous part.

————————————————————————————-

(l) Suppose that he catches exactly 4 fish in a given 2-hour period. What then is the
probability that he catches all four fish in the first 30 minutes?

————————————————————————————-
We here apply Section 5.3.5 of Ross. Conditional on a Poisson process having n events in

an interval (a, b), those n events are distributed throughout the interval (a, b) as n IID random
variables, each distributed uniformly over the interval (a, b). The time to the first point, is
thus the minimum of n IID uniform random variables.

For each of the four fish caught, the probability that it was caught in the first half hour is
thus 1/4. The answer here then is (1/4)4 = 1/256 ≈ 0.004.

————————————————————————————-
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(m) Suppose that he catches exactly 4 fish in a given 2-hour period. What then is the
probability that he catches his first fish after 30 minutes?

————————————————————————————-
He catches his first fish after 30 minutes if and only if he catches all four fish after 30

minutes. So the probability is (3/4)4 = 81/256 ≈ 0.316

————————————————————————————-

Suppose, in addition, that each fish Seth catches is a grouper with probability 1/4, a snapper
with probability 1/3 and some other kind of fish with probability 5/12, with the successive
kinds being independent random trials.

(n) What is the probability that he catches exactly 8 fish in a given 2-hour period, with 3
of them being grouper and 5 being snapper?

————————————————————————————-
Here we have the independent-splitting property. Let NG(t) be the number of grouper

caught in the interval (0, t); let NS(t) be the number of snapper caught in the interval (0, t);
let NO(t) be the number of other fish caught in the interval (0, t). The key fact is that these
three stochastic processes are independent Poisson processes. The rate for the grouper is the
overall rate 3 times the probability 1/4, which equals 3/4. Thus the answer is the product of
three Poisson probabilities:

P (NG(2) = 3, NS(2) = 5, N0(2) = 0) = P (NG(2) = 3)P (NS(2) = 5)P (N0(2) = 0)

=
e−1.5(1.5)3

3!

e−2(2)5

5!

e−2.5(2.5)0

0!

=
e−6.0(1.5)3(2)5

3!5!
=

(0.002479)(3.375)(32)

720
= 0.000372

(Be sure to include that the other kin must be 0.)

————————————————————————————-

(o) What is the conditional probability that he catches 8 grouper in one 2-hour period, given
that he later catches 3 snapper in a subsequent two-hour period (according to the model)?

————————————————————————————-
There is independence, because these are two independent Poisson processes. So

P (NG(2) = 8|NS(t + 2) − NS(t) = 3) = P (NG(2) = 8) =
e−1.5(1.5)8

8!

————————————————————————————-

(p) What is the conditional probability that he catches 8 grouper in a given 2-hour period,
given that he catches 14 snapper in the same two-hour period?

————————————————————————————-
The answer is the same, because there still is independence:

P (NG(2) = 8|NS(2) = 14) = P (NG(2) = 8) =
e−1.5(1.5)8

8!

————————————————————————————-
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