
IEOR 3106: Introduction to Operations Research: Stochastic Models

Class Lecture Notes: Tuesday, October 15, 2013

Continuous-Time Markov Chains, Ross Chapter 6

1. Pooh Bear and the Three Honey Trees.

These notes are extracted from the longer set of notes on continuous-time Markov chains,
which we shall follow closely in class.

A bear of little brain named Pooh is fond of honey. Bees producing honey are located in
three trees: tree A, tree B and tree C. Tending to be somewhat forgetful, Pooh goes back
and forth among these three honey trees randomly (in a Markovian manner) as follows: From
A, Pooh goes next to B or C with probability 1/2 each; from B, Pooh goes next to A with
probability 3/4, and to C with probability 1/4; from C, Pooh always goes next to A. Pooh
stays a random time at each tree. Pooh stays at each tree an exponential length of time, with
the mean being 5 hours at tree A or B, but with mean 4 hours at tree C. (For simplicity,
assume that the travel times can be ignored. And assume that Pooh does this continuously
throughout all time, without a break.)

(a) Construct a CTMC enabling you to find the limiting proportion of time that Pooh
spends at each honey tree.

(b) What is the average number of trips per day Pooh makes from tree B to tree A?

ANSWERS:

(a) Find the limiting fraction of time that Pooh spends at each tree.

———————————————————————-

These problems are part of a longer set of lecture notes, which have been posted on the
web page. The focus here is on different ways to model. We are thus focusing on Section 3 of
the notes.

For this problem formulation, it is natural to use the SMP (semi-Markov process) formu-
lation of a CTMC (continuous-time Markov chain), involving the embedded DTMC and the
mean holding times in each state. (See Sections 6.2 and 7.6 of Ross.) We thus define the
embedded transition matrix P directly and the mean holding times 1/νi directly.

Note that this problem is formulated directly in terms of the DTMC, describing the random
motion at successive transitions, so it is natural to use this initial modelling approach. Here
the transition matrix for the DTMC is

P =
A
B
C





0 1/2 1/2
3/4 0 1/4
1 0 0



 .

In the displayed transition matrix P , we have only labelled the rows. The columns are assumed
to be labelled in the same order.

In general, the steady-state probability is

αi =
πi(1/νi)

∑

j πj(1/νj)



In this case, the steady state probability vector of the discrete-time Markov chain is obtained
by solving π = πP , yielding

π = (
8

17
,

4

17
,

5

17
) .

Then the final steady-state distribution, accounting for the random holding times is

α = (
1

2
,
1

4
,
1

4
) .

You could alternatively work with the infinitesimal transition rate matrix Q. If we want
to define the infinitesimal transition matrix Q (Ross uses lower case q), then we can do so by
setting

Qi,j = νiPi,j for i 6= j .

As usual, the diagonal elements Qi,i are set equal to minus the ith row sum; i.e.,

Qi,i = −
∑

j:j 6=i

Qi,j .

But we do not need the Q matrix to solve for the steady-state distribution. We can use the
SMP representation. If we do define Q, then we can alternatively obtain the steady-state
probability vector α above by solving the equation αQ = 0, where the elements αi are required
to sum to 1. Note that this is just a system of linear equations, just like π = πP . You should
work to understand why we here have 0 instead of α for the vector.

———————————————————————-

(b) What is the average number of trips Pooh makes per day from tree B to tree A?

———————————————————————-
The long-run fraction of time spent at B is 1/4, by part (a). Thus, on average, Pooh spends

6 hours per day at tree B. When at tree B, the rate of trips from B is 1/5 per hour (the
reciprocal of 5 hours), and thus, on average, Pooh makes 6/5 = 1.2 trips per day from tree B.
However, 3/4 of the trips from tree B are to tree A, so the average number of trips per day
from B to A is (6/5) × (3/4) = (18/20) = 0.9.

———————————————————————-
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2. Copier Breakdown and Repair.

Consider two copier machines that are maintained by a single repairman. Machine i func-
tions for an exponentially distributed amount of time with mean 1/γi, and thus rate γi, before
it breaks down. The repair times for copier i are exponential with mean 1/βi, and thus rate
βi, but the repairman can only work on one machine at a time. Assume that the machines are
repaired in the order in which they fail. Suppose that we wish to construct a CTMC model
of this system, with the goal of finding the long-run proportions of time that each copier is
working and the repairman is busy. How can we proceed?

(a) Let {X(t) : t ≥ 0} be a stochastic process, where X(t) represents the number of working
machines at time t. Is {X(t) : t ≥ 0} a Markov process?

(b) Formulate a CTMC describing the evolution of the system.

(c) Suppose that γ1 = 1, β1 = 2, γ2 = 3 and β2 = 4. Find the stationary distribution.

(d) Now suppose, instead, that machine 1 is much more important than machine 2, so that
the repairman will always service machine 1 if it is down, regardless of the state of machine 2.
Formulate a CTMC for this modified problem and find the stationary distribution.

ANSWERS:

(a) Let {X(t) : t ≥ 0} be a stochastic process, where X(t) represents the number of working
machines at time t. Is {X(t) : t ≥ 0} a Markov process?

———————————————————————-
This process is not a Markov process. To be a Markov process, we need the conditional

distribution of a future state, given a present state and past states to depend only upon the
present state; i.e., we need

P (X(t) = j|X(s) = i,X(u), 0 ≤ u ≤ s) = P (X(t) = j|X(s) = i)

for all s and t with 0 ≤ s < t, and for all i and j. Here, however, the Markov property does
not hold: When both machines are down, the next transition depends on which of the two
machines failed first.

———————————————————————-

(b) Formulate a CTMC describing the evolution of the system.

———————————————————————-
However, we can use 5 states with the states being: 0 for no copiers failed, 1 for copier 1

is failed (and copier 2 is working), 2 for copier 2 is failed (and copier 1 is working), (1, 2) for
both copiers down (failed) with copier 1 having failed first and being repaired, and (2, 1) for
both copiers down with copier 2 having failed first and being repaired. (Of course, these states
could be relabelled 0, 1, 2, 3 and 4, but we do not do that.)

From the problem specification, it is natural to work with transition rates, where these
transition rates are obtained directly from the originally-specified failure rates and repair rates
(the rates of the exponential random variables). In Figure 1 we display a rate diagram

showing the possible transitions with these 5 states together with the appropriate rates. It can
be helpful to construct such rate diagrams as part of the modelling process.

From Figure 1, we see that there are 8 possible transitions. The 8 possible transitions
should clearly have transition rates

Q0,1 = γ1, Q0,2 = γ2, Q1,0 = β1, Q1,(1,2) = γ2, Q2,0 = β2, Q2,(2,1) = γ1, Q(1,2),2 = β1, Q(2,1),1 = β2 .
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Rate Diagram
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= rate copier j fails,              = rate copier j repairedjj

Figure 1: A rate diagram showing the transition rates among the 5 states in Problem 2,
involving copier breakdown and repair.

We can thus define the transition-rate matrix Q. For this purpose, recall that the diagonal
entries are minus the sum of the non-diagonal row elements, i.e.,

Qi,i = −
∑

j,j 6=i

Qi,j for all i .

That can be explained by the fact that the rate matrix Q is defined to be the derivative (from
above) of the transition matrix P (t) at t = 0; see the CTMC notes.

In other words, the rate matrix should be

Q =

0
1
2

(1, 2)
(2, 1)













−(γ1 + γ2) γ1 γ2 0 0
β1 −(γ2 + β1) 0 γ2 0
β2 0 −(γ1 + β2) 0 γ1

0 0 β1 −β1 0
0 β2 0 0 −β2













.

———————————————————————-

(c) Suppose that γ1 = 1, β1 = 2, γ2 = 3 and β2 = 4. Find the stationary distribution.
———————————————————————-

We first substitute the specified numbers for the rates γi and βi in the rate matrix Q above,
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obtaining

Q =

0
1
2

(1, 2)
(2, 1)













−4 1 3 0 0
2 −5 0 3 0
4 0 −5 0 1
0 0 2 −2 0
0 4 0 0 −4













.

Then we solve the system of linear equations αQ = 0 with αe = 1, which is easy to do
with a computer and is not too hard by hand. Just as with DTMC’s, one of the equations in
αQ = 0 is redundant, so that with the extra added equation αe = 1, there is a unique solution.
Performing the calculation, we see that the limiting probability vector is

α ≡ (α0, α1, α2, α(1,2), α(2,1)) =

(

44

129
,

16

129
,

36

129
,

24

129
,

9

129

)

.

Thus, the long-run proportion of time that copier 1 is working is α0 + α2 = 80/129 ≈ 0.62,
while the long-run proportion of time that copier 2 is working is α0 +α1 = 60/129 ≈ 0.47. The
long-run proportion of time that the repairman is busy is α1 + α2 + α(1,2) + α(2,1) = 1 − α0 =
85/129 ≈ 0.659,

———————————————————————-

(d) Now suppose, instead, that machine 1 is much more important than machine 2, so that
the repairman will always service machine 1 if it is down, regardless of the state of machine 2.
Formulate a CTMC for this modified problem and find the stationary distribution.

———————————————————————-

With this alternative repair strategy, we can revise the state space. Now it does suffice to
use 4 states, letting the state correspond to the set of failed copiers, because now we know
what the repairman will do when both copiers are down; he will always work on copier 1. Thus
it suffices to use the single state (1, 2) to indicate that both machines have failed. There now
is only one possible transition from state (1, 2): Q(1,2),2 = µ1. We display the revised rate
diagram in Figure 2 below.

The associated rate matrix is now

Q =

0
1
2

(1, 2)









−(γ1 + γ2) γ1 γ2 0
β1 −(γ2 + β1) 0 γ2

β2 0 −(γ1 + β2) γ1

0 0 β1 −β1









or, with the numbers assigned to the parameters,

Q =

0
1
2

(1, 2)









−4 1 3 0
2 −5 0 3
4 0 −5 1
0 0 2 −2









.

Just as before, we obtain the limiting probabilities by solving αQ = 0 with αe = 1. Now
we obtain

α ≡ (α0, α1, α2, α(1,2)) =

(

20

57
,

4

57
,
18

57
,
15

57

)

.

Thus, the long-run proportion of time that copier 1 is working is α0+α2 = 38/57 = 2/3 ≈ 0.67,
while the long-run proportion of time that copier 2 is working is α0 + α1 = 24/57 ≈ 0.42. The
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Revised Rate Diagram
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Figure 2: A revised rate diagram showing the transition rates among the 4 states in Problem
2, where the repairman always works on copier 1 first when both have failed.

new strategy has increased the long-run proportion of time copier 1 is working from 0.62 to
0.67, at the expense of decreasing the long-run proportion of time copier 2 is working from
0.47 to 0.42. The long-run proportion of time the repairman is busy is 1−α0 = 37/57 ≈ 0.649,
which is very slightly less than before.

We conclude by making some further commentary. We might think that the revised
strategy is wasteful, because the repairman quits working on copier 2 when copier 1 fails after
copier 2 previously failed. By shifting to work on copier 1, we might think that the repairman
is being inefficient, “wasting” his expended effort working on copier 2, making it more likely
that both copiers will remain failed. In practice, under other assumptions, that might indeed
be true, but here because of the lack-of-memory property of the exponential distribution, the
expended work on copier 2 has no influence on the remaining required repair times. From a
pure efficiency perspective, it might be advantageous to give one of the two copiers priority at
this point, but not because of the expended work on copier 2. On the other hand, we might
prefer the original strategy from a “fairness” perspective. In any case, the CTMC model lets us
analyze the consequences of alternative strategies. As always, the relevance of the conclusions
depends on the validity of the model assumptions. But even when the model assumptions are
not completely realistic or not strongly verified, the analysis can provide insight.

———————————————————————-
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