
IEOR 3106: Professor Whitt

Topics for Discussion, Thursday, October 24, 2013

Infinite-Server Queues and NHPP’s

We discussed the Mt/GI/∞ infinite-server queueing model, with a nonhomogeneous Pois-
son arrival process (the Mt, M for Markov and subscript t for time-varying rate) and i.i.d.
service times with a general cdf (the GI). Infinitely many servers means that each arrival
enters service (and remains in the system) for a random length of time after the arrival.

This model is discussed in the 1993 “Physics” paper. About 2-3 pages of reading there
are required. However, the model is also discussed in the class textbook. See Example 5.18
on p. 327 for a discussion of the M/G/∞ infinite-server queue (with constant arrival rate).
See §5.4.1 for a discussion of the NHPP. See Example 5.25 on p. 344 for a discussion of the
departure (or output) process of an infinite-server queue. See Exercise 5.94 for a problem on
a Poisson process on the plane. See Theorem 1 of the physics paper for more on the Mt/G/∞
queueing model.

1. Planning a Special Exhibit at an Art Museum

We anticipate that arrivals will come to the museum randomly over time according to a
nonhomogeneous Poisson process (NHPP) over the time interval [0, 8], corresponding to
an 8-hour day. (See §5.4.1 of the book.) We close the doors for new arrivals at time t = 8, but
we let the visitors remain for up to two hours more. We anticipate that the arrival rate will
start low and rise to a peak in the middle of the day and then drop down again toward the
end of the day. Specifically, we estimate that the arrival rate function will be approximately
quadratic, according to the function

λ(t) = 10(8t− t2), 0 ≤ t ≤ 8. (1)

For simplicity, we assume that the visitors arrive one at a time. From a quick look, we see
that λ(0) = λ(8) = 0 and it peaks at time 4, where λ(4) = 160. Let A(t) count the number of
arrivals in [0, t]. The arrival process {A(t) : t ≥ 0} is a counting process, specifically an NHPP.

We assume that successive visitors will each stay a random time, distributed as a random
variable S, with these times being independent and identically distributed (i.i.d.) with mean
and variance

E[S] = 1 and V ar(S) = 3. (2)

We plan to allow all these customers to enter the museum. Except possibly at the end of the
day, visitors can stay as long as they want. We want to estimate how many people will be in
the museum at each time. We plan to stop admitting new arrivals at time 8, but we will let
customers remain until time 10.

Let N(t) be the number of people in the museum at time t. Let m(t) = E[N(t)] be the
mean. We ask several questions:

1. What is the distribution of the total number of visitors to come to the museum on one
day (according to the model)?

2. At what time t is the arrival rate λ(t) highest?



3. What is m(t) = EN(t), the mean number of visitors in the museum as a function of
time?

4. What is distribution of the number of visitors in the museum as a function of time?

5. At what time t is the mean m(t) highest?

6. Approximately when would the mean m(t) drop to 0?

7. Is there a time t such that P (Q(t) > 130) > 0.1? (Assume that V ar(Se) = 6; see §3.)

1. Events Happening “At Random:” the Poisson distribution

The arrival process is an NHPP, so it can be viewed as a Poisson random measure (or
Poisson process) on the real line R with time-varying intensity function. In analyzing the
associated stochastic process {N(t) : t ≥ 0}, we will use the fact that the arrivals together
with their service times can be viewed as a random measure (or Poisson process) on the plane
R2 with an associated intensity function on the plane. That is discussed in the proof of Theorem
1 of the physics paper.

There are two key properties of an NHPP and a Poisson random measure:

1. The number of points in each subset has a Poisson distribution, with the mean being the
integral of the intensity function over the set.

2. The numbers of points in k disjoint subsets are k mutually independent random variables.

A Poisson distribution naturally models “events occurring at random.” That is naturally
modeled directly by Bernoulli random variables. We assume that the space can be divided into
small regions, with at most one point in each region, and with a point occurring in each region
with probability p. Thus if there are n regions in the space, then the total number of points
has a binomial distribution with mean np. If we let n get large and p get small, so that np = λ,
then the binomial distribution approaches the Poisson distribution. That explains the Poisson
approximation for the binomial distribution; See p. 30 of the textbook. This approximation
applies directly where the intensity function can be regarded as constant or approximately
constant.

2. The Tail Integral Formula for the Mean

A convenient formula for computing the mean of a nonnegative random variable X is the
tail integral formula,

E[X] =
∫ ∞

0
P (X > t) dt

A derivation is given on the bottom of page 610 in the textbook. It involves constructing a
two-dimensional integral and changing the order of integration.

3. The Stationary-Excess Random Variable Se

Given a nonnegative random variable S, the associated stationary-excess random variable
Se has cdf

P (Se ≤ x) =
1

E[S]

∫ x

0
P (S > u) du
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We use the tail integral formula to see that this is a bonafide cdf. It turns out that the moments
of Se can be expressed simply in terms of the moments of S by

E[Sk
e ] =

E[Sk+1]
(k + 1)E[S]

for k ≥ 1,

so that

E[Se] =
E[S2]

(2)E[S]
=

(c2
S + 1)E[S]

2
for k ≥ 1,

where c2
S = V ar(S)/E[S]2 is the squared coefficient of variation.

It is not difficult to see that Se is distributed the same as S if S has an exponential cdf.
That turns out to be the only case.

As an aside, we mention that the stationary-excess distribution plays an important role in
renewal theory in Chapter 7. See Examples 7.16, 7.17, 7.23 and 7.24. We will be considering
it again later.

In our example, the mean and variance of the random variable have been given above. Thus
E[S2] = 4 and E[Se] = 2. From the formula for E[Se], we see that E[Se] > E[S] whenever
c2
S > 1.

4. The Infinite-Server Queue

The number of visitors in the museum at time t can be represented by the number of busy
servers in an infinite-server queue, specifically in the Mt/G/∞ model, in which the Mt denotes
an NHPP arrival process with time-varying arrival rate function, specifically given in (1) above,
and i.i.d. service times distributed as S. Since there are infinitely many servers, each arrival
enters service immediately upon arrival, and thus remains in the system for a random time
distributed as S. If S is not constant, this allows arrivals to depart in a different order than
they arrive.

Key facts: The distribution of N(t) is Poisson for each t, with mean given by

m(t) =
∫ ∞

0
[
∫ ∞

s
λ(t− s)g(x) dx] ds =

∫ ∞

0
λ(t− s)Gc(s) ds, (3)

where Gc(t) ≡ P (S > t) or Gc(t) = 1 − G(t), where G(t) ≡ P (S ≤ t. From above it follows
that we can express the mean as

m(t) =
∫ ∞

0
λ(t− s)E[S]ge(s) ds = E[S]

∫ ∞

0
λ(t− s)ge(s) ds = E[λ(t− Se)]E[S], (4)

where Se has the stationary-excess distribution as specified above, with Ge and ge being the
cdf and pdf of Se, respectively. (Just observe that Gc(s) = E[S]ge(s) by the definition of Se

and ge.) See Theorem 1 of the 1993 physics paper.

Explanation: If we put points in the plane at locations (t, x) where t is an arrival time of a
visitor and x is the time that visitor remains in the museum, then the points are distributed as
a Poisson random measure on the plane (R2) or, equivalently, a Poisson process on the plane
with the intensity of a point occurring at (t, x) being λ(t)gS(x) where gS(x) is the probability
density function (pdf) of the random variable S. That occurs because the arrival process is a
NHPP and the number of points in a rectangle in the plane can be constructed by independent
thinning of the arrivals in the appropriate subinterval of the real line.
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5. The Quadratic Approximation

If we made the simplifying assumption that the arrival rate function is approximately
quadratic, of the form λ(t) = a+ bt− ct2, as in (1), throughout all time, then we have a simple
approximation formula, given in Theorem 9 and (14) of the physics paper, in particular,

m(t) ≈ λ(t−E[Se])E[S]− cV ar(Se)E[S]. (5)

Such a quadratic function can arise by taking a Taylor series approximation of the arrival rate
function. (This approximation does not make sense for all time, because the quadratic arrival
rate function with a positive maximum necessarily assumes negative values in the past and in
the future. We are thus assuming that the past where the arrival rate function is negative does
not influence the answer much at the time of interest.)

This approximation formula (5) should be compared to the exact formula at the end of (4)
above. Note that the random variable SE appears inside the nonlinear function λ in (4), so
that we have an expectation of a nonlinear function of a random variable, but instead we have
the mean E[Se] appearing inside the deterministic function λ in (5).

Thus, m(t) ≈ λ(t)E[S] except for a deterministic time shift and a deterministic space shift.
First notice that, if λ(t) = λ, a constant, then m(t) = m = λE[S] is the long-run mean.

In the example above, the time shift is by E[Se] = 2. We have not yet specified V ar(Se),
which depends on the first three moments of S, but suppose that V ar(Se) = 6, as in the
questions. Then, for our example,

m(t) ≈ 10(8(t− 2)− (t− 2)2)− 60. (6)

The peak of m(t) in (6) occurs at time t∗ = 6. The peak value of the mean is approximately

m(t∗) ≈ 10(32− 16)− 60 = 160− 60 = 100.

Since the distribution of N(t) is Poisson, it is approximately normal, and since the variance
of a Poisson random variable equals its mean, we have

P (N(t∗) > 130) ≈ P

(
N(t∗)−m(t∗)√

m(t∗)
>

130−m(t∗)√
m(t∗)

)
≈ P (N(0, 1) > 3).

6. Answers to the Questions

1. What is the distribution of the total number of visitors to come to the museum on one
day (according to the model)?

————————————————————————-

For each t, the number of arrivals, A(t), has a Poisson distribution with mean

E[A(t)] =
∫ t

0
λ(s) ds, t ≥ 0.

Hence,

E[A(8)] =
∫ 8

0
10(8t− t2) dt = 10(8(32)− 512/3) = 853.33

————————————————————————-
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2. At what time t is the arrival rate λ(t) highest?

————————————————————————-

Set the derivative equal to 0, i.e., solve λ̇(t) = 0. Get t∗ = 4. The arrival rate function
is symmetric, with λ(0) = λ(8) = 0.

————————————————————————-

3. What is m(t) = EN(t), the mean number of visitors in the museum as a function of
time?

————————————————————————-

Here we use the infinite-server formula (3) above.

m(t) =
∫ ∞

0
λ(t− s)Gc(s) ds (7)

We do not calculate here, because we did not actually specify the cdf G. However, we
can approximate by using the quadratic approximation. That produces (6) above.

————————————————————————-

4. What is distribution of the number of visitors in the museum as a function of time?

————————————————————————-

The distribution is Poisson for each t:

P (N(t) = k) =
e−m(t)m(t)k

k!

where m(t) is the mean, discussed in the previous question.

————————————————————————-

5. At what time t is the mean m(t) highest?

————————————————————————-

We use the approximation in (6). It tells us that there is a time lag of the peak in the
arrival rate to the peak of m(t) of E[Se] = 2. So the time of the peak in m(t) is 6.

————————————————————————-

6. Approximately when would the mean m(t) drop to 0?

————————————————————————-

Apply (6). Set
m(t) ≈ 10(8(t− 2)− (t− 2)2)− 60 = 0 (8)

so that t = x + 2, where
8x− x2 − 6 = 0,

so that we have the solution of a quadratic equation, x = 4 +
√

10 ≈ 7.16 and m(t) ≈ 0
at time t = 9.16. Hence closing at t = 10 seems reasonable.

————————————————————————-
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7. Is there a time t such that P (N(t) > 130) > 0.1?

————————————————————————-

Look at the time t∗ that makes m(t) largest. At t∗ = 6, m(t∗) = 100 (done above in the
quadratic approximation. Use a normal approximation for the Poisson:

P (N(t) > 130) > 0.1 ≈ P (N(0, 1) > 3) ≈ 0.0013 < 0.1

So the answer is no. This result is useful to know that, under the assumptions, the
number in the museum is unlikely ever to exceed 130.

————————————————————————-

7. Extra Observations (first three mentioned in class)

1. not a Poisson process

It is important to point out and emphasize that {N(t) : t ≥ 0} is not a Poisson process
or an NHPP. These processes are counting processes, which have nondecreasing sample
paths. In addition, a Poisson process has independent increments. Neither is true for
the process {N(t) : t ≥ 0} here.

2. starting in the infinite past

It is important to point out and emphasize that the simple formulas depend on starting
in the infinite past. Starting at time 0 is covered as the special case in which we set
λ(t) = 0 for t < 0. But the formulas get more complicated.

3. the departure process and rate

Theorem 1 in the physics paper includes a description of the departure process and
the departure rate. The departure process is an NHPP. It is easy to see that it has
independent increments and that each increment has a Poisson distribution. Note that
the departure rate has a formula closely related to the mean m(t) ≡ E[Q(t)].

4. ODE with M service

Theorem 6 and Corollary 4 show that the mean m(t) satisfies an ordinary differential
equation (ODE) when the service-time distribution is exponential. That reveals how
the peaks of m and λ are related. In particular, that explains why the curve for m(t)
crosses the curve for λ(t)E[S] where the derivative ṁ(t) = 0, e.g., where m(t) assumes
its maximum.

5. relaxation time: approach to steady state

For a stationary model, it is important to understand how the system approaches steady
state as time evolves, starting with various typical special initial conditions, such as
starting empty. A very simple revealing formula exists for the Mt/GI/∞ model; formula
(20).

6. the covariance

Theorem 2 describes Cov(Q(t), Q(t + u)). The idea is to exploit the random measure
representation and the picture, here Figure 3. We see that Q(t) = X+Y , while Q(t+u) =
Y + Z, where X, Y and Z are independent. Hence

Cov(Q(t), Q(t + u)) = Cov(X + Y, Y + Z) = Cov(Y, Y ) = V ar(Y ) = E[Y ],
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where E[Y ] has a simple integral formula, like the mean m(t) = E[Q(t)]. (We use the
facts that (i) the covariance function is linear in both its arguments, so that Cov(X +
Y, Y + Z) = Cov(X, Y ) + Cov(X, Z) + Cov(Y, Y ) + Cov(Y, Z) and (ii) Cov(X,Y ) = 0 if
X and Y are independent.

7. sinusoidal and other periodic arrival rates

The sine paper describes results for periodic arrival rate functions. The key fact is that
m inherits the sinusoidal structure from λ. Hence revealing formulas are available.

8. staffing: the 1996 paper

Application of this model to set staffing levels in service systems (which are not themselves
modeled as infinite-server queues) is discussed the 1996 staffing paper. The infinite-
server (IS) approximation, or offered-load approximation, we have been discussing is
contrasted with the pointwise-stationary approximation (PSA) and the simple stationary
approximation (SSA) there, for the case of a sinusoidal arrival-rate function. We noted
that an explicit formula for m(t) when λ(t) is sinusoidal is given in the 1993 sine paper.
The function m(t) is also sinusoidal with the same frequency, but there is a time lag and
space shift there too. An important concept and method is the modified offered load
(MOL) approximation (not discussed in class).
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