
IEOR 3106, Fall 2013, Professor Whitt

Topics for Discussion: Thursday, November 21

Renewal Theory: Patterns

1. Patterns: see §3.6.4 and §7.9

Consider successive independent flips of a biased coin. On each flip, the coin comes up
heads (H) with probability p or tails (T) with probability q = 1 − p, where 0 < p < 1. A
given segment of finitely many consecutive outcomes is called a pattern. The pattern is said to
occur at flip n if the pattern is completed at flip n. For example, the pattern A ≡ HTHTHT
occurs at flips 8 and 10 in the sequence TTHTHTHTHTTTTHHHT . . . and at no other
times among the first 17 flips.

WARMUP
For parts (a) and (b) below, assume that p = 1/2, but for later parts do not make that

assumption.

(a) Which pattern occurs more frequently in the long run: A ≡ HHH or B ≡ HTH?

(b) For patterns A and B in part (a), let NA and NB be the numbers of flips until the
patterns A and B, respectively, first occur. Is E[NA] = E[NB]?

MAIN PROBLEM
Now we revert to general probabilities p and q = 1− p.

(c) What is the probability that pattern A ≡ HTHTHT occurs at flip 72?

(d) Suppose that pattern A from part (c) does indeed occur at flip 72. What is the expected
number of flips until pattern A occurs again?

(e) Let NA(n) be the number of occurrences of pattern A in the first n flips, where A is
again the pattern in part (c). Does

NA(n)
n

→ x as n →∞ w.p.1?

If so, what is the limit x?

(f) What is E[NA], the expected number of flips until pattern A ≡ HTHTHT first occurs?

(g) What is the probability that pattern A occurs before pattern B ≡ TTH? That is, what
is P (NA < NB)?

2. Answers

(a) Which pattern occurs more frequently in the long run: A ≡ HHH or B ≡ HTH?

———————————————————————–
Since p = q = 1/2, we have P (A(n)) = P (B(n)) = 1/8 for all n ≥ 3. Thus the two patterns

occur equally often in the long run.

———————————————————————–

(b) For patterns A and B in part (a), let NA and NB be the numbers of flips until the
pattern first occurs. Is E[NA] = E[NB]?



———————————————————————–
No, we do not have E[NA] = E[NB]. See below and at the very end.

———————————————————————–

(c) What is the probability that pattern A ≡ HTHTHT occurs at flip 72?

———————————————————————–
For any pattern C, let C(n) be the event that pattern C occurs at time (flip) n. Then

P (C(n)) is the probability of event C(n), i.e., the probability that pattern C occurs at flip n.
This question is very easy to answer: With general probabilities p and q ≡ 1− p,

P (A(n)) = p3q3, n ≥ 6 .

That is because the specified outcomes must occur at flips n, n − 1, n − 2, n − 3, n − 4 and
n−5. We simply multiply the probabilities for independent events. We require n ≥ 6, because
this pattern is of length 6; it cannot occur before flip 6. Observe that the limiting value as
n →∞ already occurs at n = 6; we have a common value for all n ≥ 6. The limit is attained
at a finite value of n.

———————————————————————–

(d) Suppose that pattern A does indeed occur at flip 72. What is the expected number of
flips until pattern A occurs again?

———————————————————————–

We invoke renewal theory. We observe that the times (flips) when the event occurs
are renewals. (Of course that is why we are discussing this problem while we are reading
Chapter 7.) Note that here we have a delayed renewal process. The times between suc-
cessive renewals are IID. We have a delayed renewal process because the time until the first
pattern occurrence in general has a distribution that is different from the distribution of the
number of flips between renewals. Let NA(n) be the number of times pattern A has occurred
in the first n flips.

First we observe that

E[NA(n)] =
n∑

k=1

P (A(n)) ,

so that, by the reasoning above for part (c),

E[NA(n)]
n

→ p3q3 as n →∞ .

Let TA be the time between successive occurrences of event A. By Theorem 7.1 of Ross,
which extends to delayed renewal processes,

E[NA(n)]
n

→ 1
E[TA]

as n →∞ .

Moreover, by the LLN (law of large numbers) for delayed renewal processes, we have

NA(n)
n

→ 1
E[TA]

.

see Proposition 7.1 in Ross. As a consequence, we must have

E[TA] =
1

P (A(n))
for n suitably large .
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Here, in our specific context,
E[TA] = p−3q−3

.

———————————————————————–

(e) Let NA(n) be the number of occurrences of pattern A in the first n flips, where A is
the pattern in part (c). Does

NA(n)
n

→ x as n →∞ w.p.1?

If so, what is the limit x?

———————————————————————–
We already used this result to answer the last question.

NA(n)
n

→ 1
E[TA]

= p3q3 as n →∞ w.p.1

by the LLN for delayed renewal processes; Proposition 7.1 of Ross.

———————————————————————–

(f) What is E[NA], the expected number of flips until pattern A ≡ HTHTHT first occurs?

———————————————————————–
Like question (b), this is a tricky question. To understand this, it is useful to reconsider

the mean of TA. When we consider E[TA], the time between occurrences of A ≡ HTHTHT ,
we do not start with nothing, but we start already having had the partial pattern HTHT .
Let NC→D be the number of flips to get pattern D after observing pattern C. (Our notation
NC→D corresponds to ND|C in Ross; we use the arrow to emphasize which pattern comes first.)

We relate E[NA] to E[TC ] for various patterns C.

E[NA] = E[NHT ] + E[NHT→HTHT ] + E[NHTHT→HTHTHT ]

= E[THT ] + E[THTHT ] + E[THTHTHT ] =
1
pq

+
1

p2q2
+

1
p3q3

.

———————————————————————–

(g) What is the probability that pattern A occurs before pattern B ≡ TTH?

———————————————————————–
This is another tricky question; see page 127 of Ross for a detailed explanation. We set up

two equations in two unknowns and solve them. One unknown is the probability PA ≡ P (NA <
NB) that A occurs before B. The other unknown is E[MA,B], where MA,B ≡ min {NA, NB}
is the first time that one of the patterns A or B first occurs. These variables are expressed in
terms of four computable means:

E[NA], E[NB], E[NA→B] and E[NB→A] .

We have seen how to derive E[NA] and E[NB]. From part (f),

E[NA] = E[THT ] + E[THTHT ] + E[THTHTHT ] =
1
pq

+
1

p2q2
+

1
p3q3

.
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On the other hand, the occurrence of B gives no head start toward having B occur again; i.e.,
we have

NB
d= TB and E[NB] = E[TB] =

1
pq2

.

So now we are ready to consider E[NA→B] and E[NB→A]. Note that NA→B
d= NT→TTH

and
E[NTTH ] = E[NT ] + E[NT→TTH ] ,

so that
E[NT→TTH ] = E[NTTH ]− E[NT ] = E[TTTH ]−E[TT ] =

1
pq2

− 1
q

.

Next note that NB→A
d= NH→HTHTHT and

E[NHTHTHT ] = E[NH ] + E[NH→HTHTHT ] ,

so that

E[NH→HTHTHT ] = E[NHTHTHT ]− E[NH ] = E[THT ] + E[THTHT ] + E[THTHTHT ]− E[TH ]

=
1
pq

+
1

p2q2
+

1
p3q3

− 1
p

.

Now, following Ross, we have

E[NA] = E[MA,B] + E[NA −MA,B]
= E[MA,B] + E[NA −MA,B|B before A](1− PA)
= E[MA,B] + E[NB→A](1− PA) .

Similarly,
E[NB] = E[MA,B] + E[NA→B]PA .

Solving these two equations, we obtain

PA =
E[NB] + E[NB→A]− E[NA]

E[NB→A] + E[NA→B]

and
E[MA,B] = E[NB]− E[NA→B]PA .

———————————————————————–

Summary of the notation defined above:

pattern A, A(n), P (A(n)), NA, TA, NA(n),
NA→B, MA,B ≡ min {NA, NB}, PA,
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