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Supplementary Notes on Martingales and Brownian Motion

1. Martingales
We start by defining a martingale, working in discrete time.

Definition 0.1 Let {Xn : n ≥ 0} and {Yn : n ≥ 0} be stochastic processes (sequences of
random variables). We say that {Xn : n ≥ 0} is a martingale with respect to {Yn : n ≥ 0} if

(i)E[|Xn|] < ∞ for all n ≥ 0

and
(ii)E[Xn+1|Y0, Y1, . . . , Yn] = Xn for all n ≥ 0 .

a. More on Definition 0.1.
In Definition 0.1 we think of the stochastic process {Yn : n ≥ 0} constituting the history

or information. Then {Yk : 0 ≤ k ≤ n} is the history up to (and including) time n. The
random variables Yk could be random vectors, as we illustrate below. We simply say that
{Xn : n ≥ 0} is a martingale if {Xn : n ≥ 0} is a martingale with respect to {Xn : n ≥ 0};
i.e., if the history process {Yn : n ≥ 0} is the stochastic process {Xn : n ≥ 0} itself. We then
also say that {Xn : n ≥ 0} is a martingale with respect to its internal history (the history
generated by {Xn : n ≥ 0}).

In the literature on martingales, the histories are usually characterized via sigma-fields of
events, denoted by Fn for n ≥ 0. We know whether or not each of the events in Fn occurred
by time n. We then write instead of (ii) above:

(ii)E[Xn+1|Fn] = Xn for all n ≥ 0 ,

where Fn is understood to be the history up to time n. With that notation, we assume the
history is cumulative, starting at time 0. Then Fn can be understood to be shorthand for
{Yk : 0 ≤ k ≤ n}.

b. Conditional Expectation
In order to understand the definitions above, we need to understand conditional expec-

tation. The basic concepts are reviewed in the first four sections of Chapter 3 in Ross. In
particular, we need to know what E[X|Y ] means for random variables or random vectors X
and Y . For this, see p. 106 of Ross.

By E[X|Y ], we mean a random variable. In particular, E[X|Y ] = E[X|Y = y] when
Y = y. Thus E[X|Y ] can be regarded as a deterministic function of the random variable Y ,
which makes it itself be a random variable. Since (in the discrete case)

E[X] =
∑

y

E[X|Y = y]P (Y = y) = E[E[X|Y ]] ,

we have the fundamental relation

E[E[X|Y ]] = E[X]

for all random variables X and Y .



As a consequence, for a martingale {Xn : n ≥ 0} with respect to {Yn : n ≥ 0}, we have

E[Xn+1] = E[E[Xn+1|Y0, Y1, . . . , Yn]] = E[Xn] for all n ≥ 0 .

Thus, by mathematical induction, for a martingale E[Xn] = E[X0] for all n ≥ 1. This last
expected-value relation is a consequence of the martingale property, but it is not equivalent;
the martingale property implies more than that.

c. Stopping Times.
An important concept associated with martingales is the notion of a stopping time.

Definition 0.2 Let T be a random variable taking values in the nonnegative integers and let
{Yn : n ≥ 0} be a stochastic process. We say that T is a stopping time with respect to
{Yn : n ≥ 1} if the event {T ≤ n} is a function of (Y0, Y1, . . . , Yn) for each n ≥ 0 and
P (T < ∞) = 1.

Note that a stopping time is not only a random time (a random variable taking values in
the nonnegative integers, when we work in discrete time), but it is a random time whose values
depend on the history. We know whether or not T ≤ n by observing the history (Y0, Y1, . . . , Yn).
If we used the notation Fn, then we would say that T is a stopping time if the event {T ≤ n}
belongs to the sigma-field of events Fn.

What is not a stopping time? We now give an example of a random time that is not a
stopping time. First suppose T is the first time n such that Y1 + · · · + Yn = 4; then T is
a stopping time. On the other hand, suppose that T is the last time n among the integers
1 ≤ n ≤ 20 such that Y1 + · · ·+ Yn = 4; then T is not a stopping time. Clearly, the event
{T ≤ 7} does not depend only on (Y0, Y1, . . . , Y7). Instead, it depends upon (Y0, Y1, . . . , Y20).

d. The Optional Stopping Theorem (OST).
Stopping times play an important role with martingales because of the optional stopping

theorem (OST) or Martingale Stopping Theorem. Stopping times enable us to compute the
expected value of E[XT ], where XT is understood to mean Xn with the random index T . In
particular, XT is understood to be Xn when T = n. Hence,

E[XT ] =
∞∑

n=0

E[Xn|T = n]P (T = n) .

Under special conditions, we will have the simple relation E[XT ] = E[X(0)].
Here is a version of the OST with more stringent conditions than are actually required:

Theorem 0.1 Suppose that {Xn : n ≥ 0} is a martingale with respect to {Yn : n ≥ 0} and T
is a stopping time with respect to {Yn : n ≥ 0}. Then {XT∧n : n ≥ 0} is a martingale with
respect to {Yn : n ≥ 0}, where T ∧n ≡ min {T, n}. If, in addition, either (i) T is bounded, i.e.,
P (T < K) = 1 for some K or (ii) {XT∧n : n ≥ 0} is bounded, i.e., P (|XT∧n| < K) = 1 for all
n, then

E[XT ] = E[X(0)] .

We use this last result in the Brownian motion exercises, as explained at the end.

Proof of the first part of Theorem 0.1. By the definition of a stopping time, the event
{T = k} is determined by (Y0, Y1, . . . , Yk) and thus by (Y0, Y1, . . . , Yn) for each k, 0 ≤ k ≤ n.
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Also, the event {T > n}, being the complement of the event {T ≤ n} is determined by
(Y0, Y1, . . . , Yn). Hence,

E[X(T ∧ n + 1)|Y0, . . . , Yn] = E[X(k ∧ n + 1)|Y0, . . . , Yn] = X(k) when T = k

for 0 ≤ k ≤ n, and

E[X(T ∧ n + 1)|Y0, . . . , Yn] = E[X(n + 1)|Y0, . . . , Yn] = X(n) when T > n .

Combining these relations, we see that indeed,

E[X(T ∧ n + 1)|Y0, . . . , Yn] = X(T ∧ n) ,

as claimed. That is the key martingale property. Moreover,

E[|X(T ∧ n)|] =
n−1∑

k=0

E[|X(k)|]P (T = k) + E[|X(n)|]P (T ≥ n) < ∞ ,

using the martingale property for the process {Xn : n ≥ 0}.
2. Gambling
let {Xn : n ≥ 0} be a sequence of independent gambles. let {Wn : n ≥ 0} be a stochas-

tic process, where Wn represents your wealth after gamble n. let {Bn : n ≥ 0} be a se-
quence of bets. We understand that Bn is the bet on gamble Xn. Your net gain from
gamble n is BnXn. We require that your bet on gamble n can only depend on prior in-
formation, which includes the outcome of past gambles and the amounts of past bets. In
other words, Bn is understood to be a function of (W0, X1, . . . , Xn−1, B1, . . . , Bn−1) for each
n ≥ 1. Thus, if (W0 = w0, X1 = x1, . . . , Xn−1 = xn−1, B1 = b1, . . . , Bn−1 = bn−1), then
Bn = bn ≡ gn(w0, x1, . . . , xn−1, b1, . . . , bn−1) where gn : R2n−1 → R is a real-valued function of
2n− 1 real variables for each n. Your wealth at time n (after gamble n) is then

Wn = W0 +
k=n∑

k=1

BkXk, n ≥ 1 .

For example, Xk may be a gamble based on a coin toss. In this gamble you win 1 for each
dollar you bet if heads comes up, but you lose 1 for each dollar you bet if tails comes up. In
other words, if you bet Bk, then you end up with BkXk, where Xk = 1 if heads shows up and
Xk = −1 if tails shows up. The sequence of gambles could be a sequence of coin tosses, so that
the sequence {Xn : n ≥ 0} is i.i.d. or, more generally, it could be a sequence of independent
gambles, where the gamble changes with n. These gambles are fair gambles if E[Xn] = 0 for
all n. Martingales help us analyze the consequence of fair gambles.

Theorem 0.2 Consider the gambling scenario above, in which we have a sequence of inde-
pendent gambles {Xn : n ≥ 1}, where E[|Xn|] < ∞ and E[Xn] = 0 for all n. We require that
your bet on gamble n can only depend on prior information, which includes the outcome of
past gambles and the amounts of past bets. In other words, Bn is understood to be a function
of (W0, X1, . . . , Xn−1, B1, . . . , Bn−1). If E[W0] < ∞ and there exists some constant K such
that Bn ≤ K for all n, then the wealth stochastic process {Wn : n ≥ 0} is a martingale with
respect to the history {W0, B1, X1, . . . , Bn, Xn : n ≥ 1}; i.e.,

(i)E[|Wn|] < ∞ for all n

and
(ii)E[Wn+1|W0, B1, X1, . . . , Bn, Xn] = Wn for all n ≥ 0

which implies that
E[Wn|W0] = W0 and E[Wn] = E[W0] .
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Proof. Since the expected value of a sum of random variables is the sum of expected values,

E[|Wn|] = E[|W0 +
k=n∑

k=1

BkXk|]

≤ E[|W0|] +
k=n∑

k=1

E[|BkXk|]

≤ E[|W0|] +
k=n∑

k=1

E[|KXk|]

≤ E[|W0|] + K

k=n∑

k=1

E[|Xk|] < ∞ .

Next,

E[Wn+1|W0, B1, X1, . . . , Bn, Xn] = E[W0 +
n+1∑

k=1

BkXk|W0, B1, X1, . . . , Bn, Xn]

= W0 +
k=n∑

k=1

BkXk + E[Bn+1Xn+1|W0, B1, X1, . . . , Bn, Xn]

= Wn + E[Bn+1Xn+1|W0, B1, X1, . . . , Bn, Xn]
= Wn + Bn+1E[Xn+1|W0, B1, X1, . . . , Bn, Xn]
= Wn + Bn+1E[Xn+1]
= Wn + Bn+10 = Wn .

To explain the sequence of relations above, in the first line we simply write down the expression
for Wn+1. In the second line, the random variables conditioned on those same random variables
are the random variables themselves; i.e., we are using the relation E[X|X] = X. In the third
line we observe that the initial terms combine to give Wn. In the fourth line, Bn+1 factors out
because we have assumed above that Bn+1 is a function of the random variables we condition
upon, namely, the history up to that time (W0, B1, X1, . . . , Bn, Xn). The gambles are assumed
to be independent, so Xn+1 is independent of the history. Next, we have the expected value
E[Xn+1] = 0. Hence we have the desired result.

3. Popular Gambling Strategies

a. Doubling

The doubling strategy for a sequence of i.i.d. gambles with possible outcomes +1 and
−1 is to start by betting some amount b and then the next time bet 2b if you lose. If you lose a
second time, then you bet 4b. If you keep doubling your bet each time you lose until you first
win, then when you first win, you will be exactly b ahead. To see this, consider the following
possible scenario.

Since you will eventually win sometime, you will eventually get b ahead. After you win,
you start over, so that you get kb ahead after repeating this strategy k times. What is the
flaw?

At any time, your expected wealth is the same as your initial wealth, by virtue of Theorem
0.2. We have E[Wn] = E[W0] for all n. You are ahead by b at the first time you win, but your
may lose an arbitrarily large amount before you win. If we let T be the first time you win; i.e.,

T ≡ min {k ≥ 1 : Xk = +1} .
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time period 0 1 2 3 4 5
bet b 2b 4b 8b 16b
outcome L L L L W
wealth w w - b w - 3b w - 7b w - 15b w + b

Table 1: A possible scenario for the doubling strategy. We start by betting b on the first
gamble. In this scenario, we lose four bets and then win one. After these 5 bets, we are ahead
by b.

Then, we are always ahead when we stop:

P (WT = W0 + b) = 1 .

As a consequence, here we have E[WT ] = E[W0] + b, so that here we do not have E[WT ] =
E[W0]. But here the conditions of the OST are not satisfied. We do have E[WT∧n] = E[W0]
for all n, but we do not have E[WT ] = E[W0]. To repeat, the extra conditions of the OST
do not hold here. A careful examination of the OST explains what gambling strategies can
achieve and what they cannot.

b. Constant Betting Until You Win.

Here is a second gambling strategy: The strategy of constant betting until you are
ahead for a sequence of i.i.d. gambles with possible outcomes +1 and −1 is to start by betting
some amount b and then continuing to bet b every time until the random (stopping) time at
which the sum of the gambles is positive. In particular, we define T by

T ≡ min {k ≥ 1 : X1 + · · ·+ Xk ≥ 1}

If E[Xn] = 0, then P (T < ∞) = 1; see Example 4.15 in Ross on pages 194-196. So, when T
occurs, we are exactly b ahead. After winning b in this way, we repeat and win an arbitrarily
large amount?

What is the flaw?
Again, we have

P (WT = W0 + b) = 1 ,

so that again E[WT ] = E[W0] + b. The story is essentially the same as before: At any time n,
your expected wealth is the same as your initial wealth. By virtue of Theorem 0.2. We have
E[Wn] = E[W0] for all n. You are ahead by b at the first time you are ahead, but your may
lose an arbitrarily large amount before you get ahead. If we use this new stopping time T ,
then we are always ahead when we stop:

P (WT = W0 + b) = 1 .

But again here we do not have E[WT ] = E[W0]. Again, the conditions of the OST are
not satisfied. We do have E[WT∧n] = E[W0] for all n by the OST, but we do not have
E[WT ] = E[W0]. To repeat, the extra conditions of the OST do not hold here.

4. Martingales and Brownian motion
The above is intended to supplement the discussion of martingales associated with Brownian

motion on p. 635 of Ross.

a. Exercise 10.17
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Show that standard Brownian motion is a martingale. Since no history is mentioned, this
means with respect to its own internal history. We need to show that (i) and (ii) hold in
Definition 0.1. First,

|B(t)| ≤ 1 + B(t)2 , so that E[|B(t)|] ≤ 1 + V ar(B(t)) ≤ 1 + t < ∞ .

Second, we need to establish the continuous analog of (ii) in Definition 0.1, namely,

E[B(t)|B(u), 0 ≤ u ≤ s < t] = B(s) for all 0 ≤ s < t .

To do so, we exploit independent increments, writing B(t) = B(s) + (B(t)−B(s)). then

E[B(t)|B(u), 0 ≤ u ≤ s < t] = E[B(s) + B(t)−B(s)|B(u), 0 ≤ u ≤ s < t]
= E[B(s)|B(u), 0 ≤ u ≤ s < t] + E[B(t)−B(s)|B(u), 0 ≤ u ≤ s < t]
= B(s) + E[B(t)−B(s)] = B(s) .

b. Exercise 10.5

We use stopping times and the optional stopping theorem to answer question 10.5. Let
T = Ta ∧ Tb be the minimum of the times to hit a and b. If a < 0 < b, then the continuous-
time martingale {B(T ∧ t) : t ≥ 0} is bounded, so that the conditions in the OST are satisfied.
Hence we can solve this problem by using the fact that

E[B(T )] = E[B(0)] = B(0) = 0 .

Hence,
P (T−1 < T1) = 1/2

and
P (T−a < Tb) = b/(a + b) .

Then

P (T1 < T−1 < T2) = P (T1 < T−1)P (T−1 < T2|T1 < T−1)
= P (T1 < T−1)P (T−2 < T1)
= (1/2)(1/3) = 1/6
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