
IEOR 3106: Second Midterm Exam, Chapters 5-6, November 7, 2013

SOLUTIONS

Honor Code: Students are expected to behave honorably, following the accepted code of
academic honesty. You may keep the exam itself. Solutions will eventually be posted on line.

1. Copier Breakdown and Repair (35 points)

Three copier machines operate continuously and independently through time. They are
maintained by a single repairman. Each copier functions for an exponentially distributed
amount of time with mean 10 days before it breaks down. The repair times for each copier
are exponential with mean 1 day, but the repairman can only work on one machine at a time.
Assume that the machines are repaired in the order in which they fail.

(a) Suppose that all three copiers are initially working. What is the expected time until
one of the copiers breaks down? (5 points)

————————————————————————
Since the mean time until failure is 10 days for each copier, the failure rate for each copies

is λ = 1/10 per day. The time until the first failure, say T1, is the minimum of three i.i.d.
exponential random variables, each with rate λ = 1/10. Thus the time until the first failure is
also exponential with rate 3λ = 3/10 and mean

E[T1] =
1

3/10
=

10
3

days.

————————————————————————

(b) After the first copier breaks down, what is the probability that a second copier fails
before the first one is repaired? (5 points)

————————————————————————
Let X be the time until the next repair and let Y be the time until the next failure. By the

lack of memory property, these are well defined at the time of the first failure, independent of
the rest of the history. In particular, X is exponential with rate λX = 1 and Y is exponential
with rate λY = 2/10. Hence, we want

P (Y < X) =
λY

λX + λY
=

2/10
1 + (2/10)

=
2
12

=
1
6
.

————————————————————————

(c) Let X(t) be the number of copiers not working at time t. Multiple choice; pick the best
answer(and explain): (5 points)

(i) The stochastic process {X(t) : t ≥ 0} is a Markov process.
(ii) The stochastic process {X(t) : t ≥ 0} is a birth-and-death process.
(iii) Both of the above.
(iv) None of the above.

————————————————————————
The correct answer is (iii). A birth-and-death process IS a CTMC, which IS a Markov

process.

————————————————————————



(d) What is the long-run proportion of time that no copier is working? (10 points for correct
model and analysis for parts (d) and (e), 5 points more for specific answers to questions)

————————————————————————
Let X(t) be the number of copiers not working at time t. (We could also have worked with

the number of copiers working at time t.) The stochastic process {X(t) : t ≥ 0} is a CTMC,
specifically a BD process. For specifying the model, it is good to draw a rate diagram, as
done in §4 of the CTMC notes. Hence, the long run proportion of time that there are j failed
copiers, 0 ≤ j ≤ 3, is αj , where αQ = 0 and, because of the BD property,

αj =
rj∑
k rk

, j ≥ 0, where rj ≡ λ0λ1 × · · ·λj−1

µ1µ2 × · · ·µj
and r0 ≡ 1.

Here the birth rates are
λ0 =

3
10

, λ1 =
2
10

, λ2 =
1
10

,

and the death rates are
µ1 = 1, µ2 = 1, µ3 = 1.

Hence,

r0 = 1, r1 =
3
10

, r2 =
6

100
and r3 =

6
1000

so that
α0 =

1000
1366

, α1 =
300
1366

, α2 =
60

1366
and α3 =

6
1366

Finally, the long-run proportion of time that no copier is working

α3 =
6

1366
.

————————————————————————

(e) What is the long-run proportion of time that the repairman is busy doing repair work
on these copiers? (5 points for specific question)

————————————————————————
Using part (c),

α1 + α2 + α3 = 1− α0 = 1− 1000
1366

=
366
1366

————————————————————————

2. Fishing (35 points, 5 points each part)

Suppose that a fisherman catches fish at random times, according to a Poisson process
with rate 4 fish per hour. Suppose that each fish is either a grouper or a snapper, with the
probability of being a grouper being 1/4 (independent of the history up to that time). Let Wg

and Ws be the random weights of each grouper and snapper, respectively, (also independent
of the history), with means and standard deviations:

E[Wg] = 100, SD[Wg] = 20, E[Ws] = 20, and SD[Ws] = 10,

measured in pounds.

(a) What are the mean and variance of the time until the fisherman catches his fourth fish?

————————————————————————
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Let T be the time until catching the fourth fish. Since the times between catching successive
fish are i.i.d exponential random variables with mean 1/λ = 1/4 hour,

E[T ] =
4
4

= 1 hour and V ar(T ) =
4
42

=
1
4
.

————————————————————————

(b) What is the probability that the fisherman catches exactly 6 fish in a given 2-hour
period?

————————————————————————
Let N(t) be the number of fish caught up to time t. Since N(t) has a Poisson distribution

and E[N(2)] = 4× 2 = 8,

P (N(t + 2)−N(t) = 6) =
e−8(8)6

6!

————————————————————————

(c) What is the conditional probability that the fisherman catches exactly 6 fish in a given
2-hour period, given that he catches no fish in the previous two hours?

————————————————————————
Again, let N(t) be the number of fish caught up to time t. Since a Poisson process has

independent increments,

P (N(t + 2)−N(t) = 6|N(t)−N(t− 2) = 0) = P (N(t + 2)−N(t) = 6) =
e−8(8)6

6!
,

the same answer as in part (b).

————————————————————————

(d) What is the probability that the fisherman catches exactly 4 grouper in a given 2-hour
period (along with an unspecified number of snapper)?

————————————————————————
Let NG(t) and NS(t) be the number of grouper and snapper, respectively, caught up to time

t. By independent thinning of a Poisson process, the stochastic processes {NG(t) : t ≥ 0} and
{NS(t) : t ≥ 0} are independent Poisson Processes with rates λG = λ/4 = 1 and λS = 3λ/4 = 3.
Hence,

P (NG(t + 2)−NG(t) = 4) =
e−224

4!
————————————————————————

(e) What is the probability that the fisherman catches exactly 4 grouper and 5 snapper in
a given 2-hour period?

————————————————————————
Since the stochastic processes {NG(t) : t ≥ 0} and {NS(t) : t ≥ 0} are independent Poisson

Processes with rates λG = λ/4 = 1 and λS = 3λ/4 = 3, respectively,

P (NG(t + 2)−NG(t) = 4, NS(t + 2)−NS(t) = 5) = P (NG(t + 2)−NG(t) = 4)P (NS(t + 2)−NS(t) = 5)

=
(

e−224

4!

)(
e−665

5!

)

————————————————————————
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(f) What are the mean and variance of the total weight of all fish caught by the fisherman
in a given two-hour period?

————————————————————————
The total weight of all fish caught up to time t, denoted by W (t) is a compound Poisson

process, i.e.,

W (t) =
N(t)∑

i=1

Xi,

where Xi : i ≥ 1} is a sequence of i.i.d. random variables distributed as X, where

E[X] =
E[Wg]

4
+

3E[Ws]
4

=
100
4

+
3(20)

4
= 25 + 15 = 40

and

E[X2] =
E[W 2

g ]
4

+
3E[W 2

s ]
4

=
1002 + 202

4
+

3(202 + 102)
4

= 2600 + 375 = 2975

Then

E[W (t)] = E[N(t)]E[X] = λtE[X] and V ar(W (t)) = E[N(t)]E[X2]λtE[X2]

so that
E[W (2)] = 8E[X] = 320 and V ar(W (2)) = 8E[X2] = 23, 800.

————————————————————————

(g) What is the approximate probability that the total weight of all fish caught by the
fisherman in a given two-hour period exceeds 400 pounds? Multiple choice; pick the best
answer (and explain; justify your answer):

(i) 1.00
(ii) 0.50
(iii) 0.30
(iv) 0.03
(v) 0.00

————————————————————————
Since the stochastic process {W (t) : t ≥ 0} is a compound Poisson process, it has stationary

and independent increments. Hence, once can invoke the central limit theorem and apply a
normal approximation.

P (W (2) > 400) = P

(
W (2)− E[W (2)]

SD(W (2))
>

400− E[W (2)]
SD(W (2))

)

≈ P

(
N(0, 1) >

400− E[W (2)]
SD(W (2))

)

≈ P

(
N(0, 1) >

400− 320√
23, 800

)

≈ P (N(0, 1) > 0.5) ≈ 0.3

using the table of the normal distribution. A rough estimate of the square root is enough:
√

23, 800 = 154 or ≈
√

22, 500 = 150 or ≈
√

25, 600 = 160
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giving ≈ P (N(0, 1) > 0.5) = 0.3, as in (iii). The other choices are not close. A more accurate
value is ≈ P (N(0, 1) > 0.52), but that was not wanted.

It is important to be able to quickly see that 23, 800 = 238 × 100, so that
√

23, 800 =
10
√

238 ≈ 150.

————————————————————————

3. Cars in a Highway Segment (30 points, 5 points each part)

Suppose that cars enter a (one-way) highway segment at an increasing rate over some
interval of time. Specifically, suppose that cars enter the highway segment according to a
nonhomogeneous Poisson process with rate λ(t) = 18t per minute at time t, starting at time
0. Assume that different cars do not interact. Suppose that the time each car remains in
the highway segment is a random variable uniformly distributed on the interval [2, 4] minutes.
Suppose that these random times for different cars are mutually independent. Let A(t) be the
number of cars to enter the highway segment during [0, t] and let X(t) be the number of cars
in the highway segment at time t.

(a) Give an (exact) expression for E[A(10)].

————————————————————————

E[A(t)] =
∫ t

0
λ(s) ds =

∫ t

0
18s ds = 9t2,

so that
E[A(10)] = 9(10)2 = 900

————————————————————————

(b) Give an approximate expression for P (A(10) > 950).

————————————————————————
Since A(10) has a Poisson distribution and E[A(10] is large, we can use a normal approxi-

mation for the Poisson distribution:

P (A(10) > 950) ≈ P

(
N(0, 1) >

950− 900
30

)
= P (N(0, 1) > 1.67) ≈ 0.0475

using the table of the normal distribution.

————————————————————————

(c) Give an (exact) expression for P (A(2) = 40|A(1) = 20).

————————————————————————
First, A(2) = A(1) + (A(2)−A(1)). Second, because of independent increments,

P (A(2) = 40|A(1) = 20) = P (A(2)−A(1) = 20|A(1) = 20) = P (A(2)−A(1) = 20),

which has a Poisson distribution with mean m, i.e.,

P (A(2)−A(1) = 20) =
e−mm20

20!
,

where

m ≡ E[A(2)−A(1)] =
∫ 2

1
18s ds = 36− 9 = 27
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————————————————————————

(d) Give an (exact) expression for the covariance Cov[A(10)−A(0), A(30)−A(20)]. (Recall
that Cov(X, Y ) = E[XY ]− E[X]E[Y ].)

————————————————————————
Since the NHPP has independent increments, these two increments are independent. Two

independent random variables are always uncorrelated. Thus, we have

Cov[A(10)−A(0), A(30)−A(20)] = 0

————————————————————————

(e) Give an (exact) expression for E[X(10)].

————————————————————————
The random variable X(t) represents the number of busy servers in an infinite-server queue

with an NHPP arrival process. Thus, as given on the formula sheet,

m(t) ≡ E[X(t)] =
∫ t

0
λ(t− s)P (S > s) ds,

where S is a service time (the time that each car remains in the segment). (3 points to here.)
But the distribution of S should be specified. It satisfies

P (S > s) = 1 for s ≤ 2, P (S > s) = 0 for s ≥ 4,

and
P (S > s) = (4− s)/2 for 2 ≤ s ≤ 4.

since S is uniform over [2, 4]. (4 points to here.) One more point for detailed calculation:

However, we can carry out the integration. We can break the integral into two parts:

m(10) ≡ E[X(10)] =
∫ 10

0
λ(10− s)P (S > s) ds,

=
∫ 2

0
λ(10− s) ds +

∫ 4

2
λ(10− s)(4− s)/2 ds,

=
∫ 10

8
λ(s) ds +

∫ 4

2
λ(10− s)(4− s)/2 ds,

=
∫ 10

8
18s ds +

∫ 4

2
(180− 18s)(4− s)/2 ds,

=
∫ 10

8
18s ds +

∫ 4

2
(360− 126s + 9s2) ds,

= 324 + (720− (63× 12) + (3× 56) = 324 + 132 = 456

————————————————————————

(f) Multiple choice; pick the best answer(and explain):

(i) The stochastic process {X(t) : t ≥ 0} is a nonhomogeneous Poisson process.
(ii) The stochastic process {X(t) : t ≥ 0} is a Markov process.
(iii) Both of the above.
(iv) None of the above.
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————————————————————————
The random variable X(t) has a Poisson distribution, but the stochastic process {X(t) :

t ≥ 0} is not an NHPP and not a Markov process. The correct answer is (iv).

————————————————————————
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