function absorbing (Q, R)
\%
\% This is a MATLAB function that calculates important characteristics of an \swarrow absorbing Markov chain.
\%
\% The full Markov chain transition matrix P is assumed to be (k+m) by (k+m) \swarrow
\% The first k states are absorbing states; the last m states are transient \swarrow states.
\% Once the chain gets to an absorbing state, it cannot leave it.
\% The chain eventually leaves the transient states.
\%
\% The matrix P is divided into 4 submatrices: k by k, k by m, m by k and m by m.
\% The upper left submatrix is $a \operatorname{k}$ by k identity matrix (1's on the diagonal \swarrow
; 0's elsewhere).
\% The upper right submatrix is a k by m matrix of all 0's.
\% The lower left submatrix is an m by k matrix R.
\% The lower right submatrix is an m by matrix Q.
\% We input the matrices Q and R as data to the function.
\% The matrix Q gives the transition probabilities among the m transient stak tes.
\% The matrix R gives the one-step transition probabilities from the m transk ient states to the k absorbing states.
\%
\% Given the absorbing Markov chain characterized by the two matrices Q and \swarrow R,
\% we calculate three matrices describing the behavior of the Markov chain.
\% We call these new matrices N, m and B.
\%
\% We first echo the input:
Q
R
\%
\%
\% The first matrix we calculate is the fundamental matrix N.
\% The entry $N(i, j)$ gives the expected number of visits to transient state j\swarrow before absorption, starting in transient state i.
\% The fundamental matrix N depends only on the square sub-transition matrixk Q.
\% It is not difficult to see that the total expected number of visits is th久
e sum of the expected number of
\% visits on the different steps, and that the expected number of visits to \swarrow
j on the n^{\wedge} th step, starting in i
\% is just $Q(i, j)$. Thus in matrix form, we have
$\% N=I+Q+Q^{\wedge} 2+Q^{\wedge} 3+Q^{\wedge} 4+\ldots$
\%
\% We now obtain a relatively simple formula for the fundamental matrix N .
\% To do so, we observe that,

```
C:\work\absorbing.m
\% if we multiply the left and right side by (I - Q), we obtain the equationk \(N^{*}(I-Q)=I\)
\% because there is cancellation on the right side (it telescopes).
\% Thus \(N=(I-Q)^{\wedge}\{-1\}=i n v(I-Q)\),
\% where inv is the matrix inverse function.
\% Since Q^n goes to the zero matrix as \(n\) increases, it is possible to show that the inverse of \(I-Q\) always exists.
\%
\%
s = size(Q);
\(\mathrm{n}=\mathrm{s}(1)\);
I = eye(n);
\(\mathrm{N}=\operatorname{inv}(\mathrm{I}-\mathrm{Q})\)
\(\%\)
\% Now we calculate the expected number of transitions before absorption, st arting from each transient state.
\% We let \(m(i)\) be this expected number of transitions before absorption, sta久 rting in state i.
\% Thus \(m\) is an m by 1 column vector. Clearly, \(m\) is made up of the row sums \(\swarrow\) of \(N\).
\%
w = ones (n, 1);
\(\mathrm{m}=\mathrm{N}^{*} \mathrm{w}\)
\%
\% Now we calculate the probability of absorption in each of the \(k\) absorbing \(\swarrow\) states, starting from each transient state.
\% Let \(B(i, j)\) be the probability of being absorbed in absorbing state j stark ting in transient state i.
\% Note that \(B(i, j)=R(i, j)+(Q * R)(i, j)+\left(Q^{\wedge} 2 * R\right)(i, j)+\left(Q^{\wedge} 3 * R\right)(i, j)+\ldots \swarrow\) .
\% so that \(B=\left(I+Q+Q^{\wedge} 2+Q^{\wedge} 3+\ldots\right) * R=N * R\).
\%
\(B=N * R\)
```

