```
function v = stat(P)
```

\%
\% This is a MATLAB function that calculates the stationary probability vect \swarrow or v
\% of a Markov chain transition matrix P, i.e., we solve $v=v * P$.
\% We assume the existence of a unique stationary vector.
\% For a finite-state Markov chain, the condition is that the chain be irred \swarrow ucible.
\%
\% We input the matrix P when we call the function.
\% First find the number n of rows in the transition matrix P.
s = size (P);
$\mathrm{n}=\mathrm{s}(1)$;
\%
\% There is one redundant equation in the n equations $v=v P$.
\% We fill gap by using the fact that $v(1)+\ldots+v(n)=1$.
\% First, we can rewrite $v=v P$ by $v(P-I)=z$ where I is an identity matrix̌ and z is a vector of zeros.
\% We then add a column of l's to make a new equation
\%
I = eye(n); \%the identity matrix
$z=$ zeros $(1, n)$; \%a row of zeros
$\mathrm{w}=$ ones $(\mathrm{n}, 1)$; \%a column of 1's
$A=[P-I \quad w] ;$
\%
\% The desired system of equations is $v A=\left[\begin{array}{ll}z & 1] \text {, where } A \text { is } n \text { by }(n+1) ~\end{array}\right.$
\% We solve it by writing v = [z 1]/A
\%
$\mathrm{v}=\left[\begin{array}{ll}\mathrm{z} & 1\end{array}\right] / \mathrm{A}$;
\%
\% Using transposes, we could also write $\mathrm{v}^{\prime}=\mathrm{A}^{\prime} \backslash\left[\begin{array}{ll}\mathrm{z} & 1\end{array}{ }^{\prime}\right.$
\% We could also use the matrix inverse applied to square matrices.
\% That approach is in the other program stationary.m

