function $v=$ stationary (P)
\%
\% This is a MATLAB function that calculates the stationary probability vect \swarrow or v
\% of a Markov chain transition matrix P, i.e., we solve $v=v^{\star} P$.
\% We assume the existence of a unique stationary vector.
\% For a finite-state Markov chain, the condition is that the chain be irred \swarrow ucible.
\%
\% To solve the system of n equations in n unknowns, we use the matrix inver \swarrow se function inv.
\% For a square matrix A, inv(A)*A $=I$, where I is the identity matrix (1's \swarrow on the diagonal, 0's elsewhere).
\%
\% We input the matrix P when we call the function.
\% First find the number n of rows in the transition matrix P.
s = size (P);
$\mathrm{n}=\mathrm{s}(1)$;
\% There is one redundant equation in the n equations $v=v P$.
\% We fill gap by using the fact that $v(1)+\ldots+v(n)=1$.
\% We eliminate redundant equation by replacing last column of P with ones.
PP = P;
$\operatorname{PP}(:$, end $)=[] ;$
w = ones ($\mathrm{n}, 1$);
$P P=[P P W] ;$
\% $P P$ is the matrix P with the last column replaced by a column of 1 's.
\%
\% Note that for the desired v, v*PP equals v except the last element is 1.
\% We thus need to modify the equation.
\% For that purpose, introduce auxiliary matrices I and L.
\% I is the identity matrix.
\% L is all zeros except a 1 in the bottom right.
I = eye(n);
$\mathrm{f}=[\operatorname{zeros}(1, \mathrm{n}-1) 1]$;
L=diag (f);
\% Now $v=v P$ for prob vector v becomes: $v^{*}(P P)=v+f *(1-v(n))$

\% Or $\mathrm{V}^{\star}(\mathrm{PP}-\mathrm{I}+\mathrm{L})=\mathrm{f}$
\%
\% We want to solve $v * R=f$, where $R=P P-I+L$.
\%
$R=P P-I+L ;$
\%
\% We can solve v *R $=\mathrm{f}$ in three ways:
\% First, we can write $v=f / R$, understanding v and f to be row vectors.
\% Second, we can take transposes and work with column vectors.
\% We get ($\left.\mathrm{V}^{*} R\right)^{\prime}=R^{\prime}{ }^{\prime} \mathrm{V}^{\prime}=\mathrm{f}^{\prime}$.
\% We then write v' = R'\f'.
\% Third, we can solve for v by directly inverting the matrix $R=P P-I+L$.

```
C:\work\stationary.m
RR= inv(R);
v = f*RR;
%
% The desired v is the last row of the matrix RR.
% By multiplying RR by f, we get the last row of RR.
```

