
IEOR 4106: Introduction to Operations Research: Stochastic Models

Spring 2011, Professor Whitt

Class Lecture Notes: Tuesday, January 25.

Random Variables, Conditional Expectation and Transforms

1. Random Variables and Functions of Random Variables

(i) What is a random variable?

A (real-valued) random variable, often denoted by X (or some other capital letter), is a
function mapping a probability space (S, P ) into the real line R. This is shown in Figure 1.
Associated with each point s in the domain S the function X assigns one and only one value
X(s) in the range R. (The set of possible values of X(s) is usually a proper subset of the real
line; i.e., not all real numbers need occur. If S is a finite set with m elements, then X(s) can
assume at most m different values as s varies in S.)

A random variable: a function
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Figure 1: A (real-valued) random variable is a function mapping a probability space into the
real line.

As such, a random variable has a probability distribution. We usually do not care about



the underlying probability space, and just talk about the random variable itself, but it is good
to know the full formalism. The distribution of a random variable is defined formally in the
obvious way

F (t) ≡ FX(t) ≡ P (X ≤ t) ≡ P ({s ∈ S : X(s) ≤ t}) ,

where ≡ means “equality by definition,” P is the probability measure on the underlying sample
space S and {s ∈ S : X(s) ≤ t} is a subset of S, and thus an event in the underlying sample
space S. See Section 2.1 of Ross; he puts this out very quickly. (Key point: recall that P
attaches probabilities to events, which are subsets of S.)

If the underlying probability space is discrete, so that for any event E in the sample space
S we have

P (E) =
∑

s∈E

p(s),

where p is the probability mass function (pmf), then X also has a pmf pX on a new sample
space, say S1, defined by

pX(r) ≡ P (X = r) ≡ P ({s ∈ S : X(s) = r}) =
∑

s∈{s∈S:X(s)=r}
p(s) for r ∈ S1. (1)

Example 0.1 (roll of two dice) Consider a random roll of two dice. The natural sample space
is

S ≡ {(i, j) : 1 ≤ i ≤ 6, 1 ≤ j ≤ 6},
where each of the 36 points in S is assigned equal probability p(s) = 1/36. (See Example 4 in
Section 1.2.) The random variable X might record the sum of the values on the two dice, i.e.,
X(s) ≡ X((i, j)) = i + j. Then the new sample space is

S1 = {2, 3, 4, . . . , 12}.
In this case, using formula (1), we get the pmf of X being pX(r) ≡ P (X = r) for r ∈ S1, where

pX(2) = pX(12) = 1/36,

pX(3) = pX(11) = 2/36,

pX(4) = pX(10) = 3/36,

pX(5) = pX(9) = 4/36,

pX(6) = pX(8) = 5/36,

pX(7) = 6/36.

(ii) What is a function of a random variable?

Given that we understand what is a random variable, we are prepared to understand what
is a function of a random variable. Suppose that we are given a random variable X mapping
the probability space (S, P ) into the real line R and we are given a function h mapping R into
R. Then h(X) is a function mapping the probability space (S, P ) into R. As a consequence,
h(X) is itself a new random variable, i.e., a new function mapping (S, P ) into R, as depicted
in Figure 2.

As a consequence, the distribution of the new random variable h(X) can be expressed in
different (equivalent) ways:

Fh(X)(t) ≡ P (h(X) ≤ t) ≡ P ({s ∈ S : h(X(s)) ≤ t}),
≡ PX({r ∈ R : h(r) ≤ t}),
≡ Ph(X)({k ∈ R : k ≤ t}),
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A function of a random variable

X
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Figure 2: A (real-valued) function of a random variable is itself a random variable, i.e., a
function mapping a probability space into the real line.

where P is the probability measure on S in the first line, PX is the probability measure on
R (the distribution of X) in the second line and Ph(X) is the probability measure on R (the
distribution of the random variable h(X) in the third line.

Example 0.2 (more on the roll of two dice) As in Example 0.1, consider a random roll of two
dice. There we defined the random variable X to represent the sum of the values on the two
rolls. Now let

h(x) = |x− 7|,
so that h(X) ≡ |X − 7| represents the absolute difference between the observed sum of the
two rolls and the average value 7. Then h(X) has a pmf on a new probability space S2 ≡
{0, 1, 2, 3, 4, 5}. In this case, using formula (1) yet again, we get the pmf of h(X) being
ph(X)(k) ≡ P (h(X) = k) ≡ P ({s ∈ S : h(X(s)) = k}) for k ∈ S2, where

ph(X)(5) = P (h(X) = 5) ≡ P (|X − 7| = 5) = 2/36 = 1/18,
ph(X)(4) = P (h(X) = 4) ≡ P (|X − 7| = 4) = 4/36 = 2/18,
ph(X)(3) = P (h(X) = 3) ≡ P (|X − 7| = 3) = 6/36 = 3/18,
ph(X)(2) = P (h(X) = 2) ≡ P (|X − 7| = 2) = 8/36 = 4/18,
ph(X)(1) = P (h(X) = 1) ≡ P (|X − 7| = 1) = 10/36 = 5/18,

ph(X)(0) = P (h(X) = 0) ≡ P (|X − 7| = 0) = 6/36 = 3/18.
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In this setting we can compute probabilities for events associated with h(X) ≡ |X−7| in three
ways: using each of the pmf’s p, pX and ph(X).

(iii) How do we compute the expectation (or expected value) of a (probability distribution)
or a random variable?

See Section 2.4. The expected value of a discrete probability distribution P is

expected value = mean =
∑

k

kP ({k}) =
∑

k

kp(k) ,

where P is the probability measure on S and p is the associated pmf, with p(k) ≡ P ({k}).
The expected value of a discrete random variable X is

E[X] =
∑

k

kP (X = k) =
∑

k

kpX(k)

=
∑

s∈S

X(s)P ({s}) =
∑

s∈S

X(s)p(s) .

In the continuous case, with pdf’s, we have corresponding formulas, but the story gets
more complicated, involving calculus for computations. The expected value of a continuous
probability distribution P with density f is

expected value = mean =
∫

s∈S
xf(x) dx .

The expected value of a continuous random variable X with pdf fX is

E[X] =
∫ ∞

−∞
xfX(x) dx =

∫
X(s)f(s) ds ,

where f is the pdf on S and fX is the pdf “induced” by X on R.

(iv) How do we compute the expectation of a function of a random variable?

Now we need to put everything above together. For simplicity, suppose S is a finite set,
so that X and h(X) are necessarily finite-valued random variables. Then we can compute the
expected value E[h(X)] in three different ways:

E[h(X)] =
∑

s∈S

h(X(s))P ({s}) =
∑

s∈S

h(X(s))p(s)

=
∑

r∈R
h(r)P (X = r) =

∑

r∈R
h(r)pX(r)

=
∑

t∈R
tP (h(X) = t) =

∑

t∈R
tph(X)(t) .

Similarly, we have the following expressions when all these probability distributions have prob-
ability density functions (the continuous case). First, suppose that the underlying probability
distribution (measure) P on the sample space S has a probability density function (pdf) f .
Then, under regularity conditions, the random variables X and h(X) have probability density
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functions fX and fh(X). Then we have:

E[h(X)] =
∫

s∈S
h(X(s))f(s) ds

=
∫ ∞

−∞
h(r)fX(r) dr

=
∫ ∞

−∞
tfh(X)(t) dt .

Examples 2.24 and 2.26 (in the book) To ways to compute E[X3] when X is uniformly
distributed on [0, 1].

2. Random Vectors, Joint Distributions, and Conditional Distributions

We may want to talk about two or more random variables at once. For example, we may
want to consider the two-dimensional random vector (X,Y ).

(i) A random vector may be constructed just like a real-valued random variable. We may
think of (X,Y ) as a function mapping the underlying probability space (S, P ) into the plane,
R2.

The right representation can make linearity of expectation obvious. Here is the general
property: For constants a and b,

E[aX + bY ] = aE[X] + bE[Y ].

This is easy to show, writing (in the discrete case) the expected value of a function of a
random vector:

E[h(X, Y )] =
∑

s∈S

h((X,Y )(s))P ({s}),

where h is the functions h(x, y) = ax + by. Hence we get

E[aX + bY ] =
∑

s∈S

(aX(s) + bY (s))P ({s})

= a
∑

s∈S

X(s)P ({s}) + b
∑

s∈S

(Y (s)P ({s})

= aE[X] + bE[Y ].

The first line above is a well chosen representation. The rest is simple algebra. Note that we
did not use any special properties such as independence of X and Y .

Examples 2.31 and 2.32: Computing expectation using indicator variables.

(ii) What does it mean for two random variables X and Y to be independent random
variables?

See Section 2.5.2. Pay attention to for all. We say that X and Y are independent random
variables if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x and y .

We can rewrite that in terms of cumulative distribution functions (cdf’s) as We say that X
and Y are independent random variables if

FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y) = FX(x)FY (y) for all x and y .
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When the random variables all have pdf’s, that relation is equivalent to

fX,Y (x, y) = fX(x)fY (y) for all x and y .

(iii) What is the joint distribution of (X, Y ) in general?

See Section 2.5.

The joint distribution of X and Y is

FX,Y (x, y) ≡ P (X ≤ x, Y ≤ y) .

(iv) How do we compute the conditional expectation of a random variable, given the value
of another random variable, in the discrete case?

See Section 3.2. There are two steps: (1) find the conditional probability distribution,
(2) compute the expectation of the conditional distribution, just as you would compute the
expected value of an unconditional distribution.

Here is an example. We first compute a conditional density. Then we compute an expected
value.

Example 3.6

Here we consider conditional expectation in the case of continuous random variables. We
now work with joint probability density functions and conditional probability density functions.
We start with the joint pdf fX,Y (x, y). The definition of the conditional pdf is

fX|Y (x|y) ≡ fX,Y (x, y)
fY (y)

,

where the pdf of Y , fY (y), can be found from the given joint pdf by

fY (y) ≡
∫

fX,Y (x, y) dx.

Then we compute E[X|Y = y] by computing the ordinary expected value

E[X|Y = y] =
∫

xfX|Y (x|y) dx,

treating the conditional pdf as a function of x just like an ordinary pdf of x.

Example 3.13 in 10th ed., Example 3.12 in 9th ed.

This is the trapped minor example. It shows how we can compute expected values by setting
up a simple linear equation with one unknown. This is a common trick, worth knowing. As
stated, the problem does not make much sense, because the miner would not make a new
decision, independent of his past decisions, when he returns to his starting point. So think of
the miner as a robot, who is programmed to make choices at random, independently of the
past choices. That is not even a very good robot. But even then the expected time to get out
is not so large.

3. moment generating functions

——————————————–
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Given a random variable X, the moment generating function (mgf) of X (really of its
probability distribution) is

ψX(t) ≡ E[etX ] ,

which is a function of the real variable t, see Section 2.6 of Ross. (I here use ψ, whereas Ross
uses φ.) An mgf is an example of a transform.

The random variable could have a continuous distribution or a discrete distribution;

Discrete case: Given a random variable X with a probability mass function (pmf)

pn ≡ P (X = n), n ≥ 0, ,

the moment generating function (mgf) of X (really of its probability distribution) is

ψX(t) ≡ E[etX ] ≡
∞∑

n=0

pnetn .

The transform maps the pmf {pn : n ≥ 0} (function of n) into the associated function of t.

Continuous case: Given a random variable X with a probability density function (pdf)
f ≡ fX on the entire real line, the moment generating function (mgf) of X (really of its
probability distribution) is

ψ(t) ≡ ψX(t) ≡ E[etX ] ≡
∫ ∞

−∞
f(x)etx dx .

In the continuous case, the transform maps the pdf {f(x) : x ≥ 0} (function of x) into the
associated function of t.

A major difficulty with the mgf is that it may be infinite or it may not be defined. For
example, if X has a pdf f(x) ≡ A/(1 + x)p, x > 0, for p > 1, then the mgf is infinite for
all t > 0. Similarly, if X has the pmf p(n) ≡ A/np for n = 1, 2, . . ., then the mgf is infinite
for all t > 0. As a consequence, probabilists often use other transforms. In particular, the
characteristic function E[eitX ], where i ≡ √−1, is designed to avoid this problem. We will not
be using complex numbers in this class.

Two major uses of mgfs are: (i) calculating moments and (ii) characterizing the probability
distributions of sums of random variables.

Below are some illustrative examples. We did not do the Poisson example, but we did do
the normal example, and a bit more. We showed that the sum of two independent normal
random variables is again normally distributed with a mean equal to the sum of the means
and a variance equal to the sum of the variances. That is easily done with the MGF’s.

Examples 2.37, 2.41 (2.36, 2.40 in 9th ed.): Poisson

Example 2.43 (2.42 in 9th ed.): Normal
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