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1. Money Withdrawn from an ATM Machine

Customers arrive at an automated teller machine (ATM) at the times of a Poisson process
with a rate of λ = 10 per hour. Suppose that the amount of money withdrawn on each
transaction has a mean of $30 and a standard deviation of $20.

(a) Find the mean and variance of the total amount of dollars withdrawn in 8 hours.

(b) What is the approximate probability that the total amount of money withdrawn in the
first 8 hours exceeds $3, 400?

(c) How do the answers change if the Poisson arrival process is a nonhomogeneous Poisson
process witharrival rate function λ(t) = 4t, t ≥ 0?

———————————————————————-
(a) Assuming that successive withdrawals are IID, this is a compound Poisson process;

see Section 5.4.2. Let X(t) be the total amount withdrawn in the time interval [0, t]. Let N(t)
be the number of customers to come to the ATM in the interval [0, t]. Let Yn be the amount
of the nth withdrawal. Then X(t) can be represented as the following random sum of random
variables

X(t) =
N(t)∑

i=1

Yi .

Hence, from §5.4 (p. 346 in the last edition),

E[X(t)] = λtE[Y1] and var(X(t)) = λtE[Y 2
1 ] , (1)

so that

E[X(8)] = 10× 8× 30 = 2400 and var(X(t)) = 10× 8× ((302 + (20)2) = 104, 000 .

The standard deviation is
√

104, 000 ≈ 322.49.

But why are those the correct formulas? To see why, look at Examples 3.10 and 3.17 in
Chapter 3. We discuss the harder variance formula. Let

Y =
N∑

i=1

Xi ,

where N is a nonnegative-integer-valued random variable and Xi are IID random variables.
(We are using new notation here.) Then, by the conditional variance formula in Proposition
3.1,

V ar(Y ) = E[V ar(Y |N)] + V ar(E[Y |N ]) = E[N ]V ar(X1) + E[X1]2V ar(N) .

In the Poisson-process case, with rate λ,

E[N(t)] = V ar(N(t)) = λt .

That yields formula (1) above.



(b) Use a normal approximation. It can be justified by applying the central limit theorem,
because the stochastic process {X(t) : t ≥ 0} has stationary and independent increments and
the summands all have finite mean and variance. We can think of

X(t) =
n∑

i=1

[X(k/n)−X((k − 1)/n)],

which is the sum of i.i.d. random variables. Hence,

P (X(t) > 3400) = P

(
X(t)− E[X(t)]

std(X(t))
>

3400−E[X(t)]
std(X(t))

)

≈ P

(
N(0, 1) >

3400− E[X(t)]
std(X(t))

)

≈ P

(
N(0, 1) >

3400− 2400]
322

)

≈ P (N(0, 1) > 3) ≈ 0.0013. (2)

(c) The random variable N(t) is still a Poisson random variable, but we need to calculate
the new mean. In formulas (1), replace λt = 10× 8 = 80 by

∫ 8

0
λ(s) ds =

∫ 8

0
4s ds = 128.

Then (1) is modified to become

E[X(t)] =
∫ 8

0
λ(s) dsE[Y1] and var(X(t)) =

∫ 8

0
λ(s) dsE[Y 2

1 ] , (3)

so that
E[X(8)] = 128E[Y1] and var(X(t)) = 128E[Y 2

1 ] ,

The method from here is the same as in parts (a) and (b).

E[X(8)] = 128× 30 = 3840 and var(X(t)) = 128× ((302 + (20)2) = 166, 400 .

The standard deviation is 407.92.

P (X(t) > 3400) = P

(
X(t)− E[X(t)]

std(X(t))
>

3400− E[X(t)]
std(X(t))

)

≈ P

(
N(0, 1) >

3400−E[X(t)]
std(X(t))

)

≈ P

(
N(0, 1) >

3400− 3840]
408

)

≈ P (N(0, 1) > −1.1) = P (N(0, 1) < 1.1) = 0.8643 (4)

———————————————————————-

2. Columbia Space Company, from 2005 midterm exam

———————————————————————-

3. Typographical Errors, Exercise 5.62 on p. 363.
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Suppose that the number of typographical errors in a new text is Poisson distributed with
mean λ.

We can arrive at this model by considering a more detailed model: More specifically,
suppose that the text is 100 pages with 100 lines per page and 100 character spaces per line,
yielding 106 = 1, 000, 000 character spaces in all. As a rough approximation, we may regard
the occurrence of errors in specific characters as being independent and identically distributed
Bernoulli random variables. The total number of errors in any subset of text would then have
a binomial distribution (exactly). However, we can use the Poisson approximation for the
binomial distribution. With that approximation, we might regard the number of errors in
various subsets of the text as a Poisson random measure. Suppose that A is a portion of text
containing k character spaces. The mean number of errors the subset A of the text would be

E[N(A)] =
λ× k

106
.

Then the expected total number of errors in the entire text is simply λ.

Now suppose that two proofreaders independently read the text. Suppose that each error
is independently found by proofreader i with probability pi, i = 1, 2. Let X1 be the number of
errors found by proofreader 1, but not proofreader 2; Let X2 be the number of errors found by
proofreader 2, but not proofreader 1. Let X3 be the number of errors that are found by both
proofreaders; and let X4 be the number of errors found by neither proofreader.

The first goal is to find an estimator for the distribution of X4.

The second goal is to estimate the benefit of having a new third proofreader read the text,
where this proofreader finds each error independently with probability q.

(a) Describe the joint distribution of X1, X2, X3 and X4.

———————————————————————
The random variables X1, X2, X3 and X4 are mutually independent Poisson random vari-

ables with means

E[X1] = λp1(1− p2)
E[X2] = λp2(1− p1)
E[X3] = λp1p2

E[X4] = λ(1− p1)(1− p2) .

———————————————————————

(b) Verify that
E[X1]
E[X3]

=
1− p2

p2
and

E[X2]
E[X3]

=
1− p1

p1
.

———————————————————————
Follows easily from part (a).

———————————————————————

(c) By using Xi as an estimator of E[Xi], present estimators of p1, p2 and λ.

———————————————————————
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First, by (b),

p1 =
1

1 + E[X2]
E[X3]

=
E[X3]

(E[X2] + E[X3]
.

Hence we can estimate p1 by X3/(X2+X3). Thus p1 is estimated by the fraction of error found
by proofreader 2 that are also found by proofreader 1. Similarly (just change the labels!), we
can estimate p2 by X3/(X1 + X3).

The total number of errors found has mean

E[X1 + X2 + X3] = E[X1] + E[X2] + E[X3] = λ(1− (1− p1)(1− p2)) ,

so that

E[X1 + X2 + X3] = λ(1− (1− p1)(1− p2)) = λ(1− E[X2]E[X1]
(E[X2] + E[X3])(E[X1] + E[X3])

.

Hence we can estimate λ by

λ̂ =
(X1 + X2 + X3)

(1− X2X1
(X2+X3)(X1+X3))

.

———————————————————————

(d) Give an estimate of E[X4] the expected number of errors not found by either proof-
reader.

———————————————————————
Note that

E[X4] = λ− (E[X1] + E[X2] + E[X3]) ,

so we can estimate E[X4] by

λ̂− (X1 + X2 + X3) = (X1 + X2 + X3)(
Z

(1− Z)
) ,

where
Z ≡ X2X1

(X2 + X3)(X1 + X3)
.

———————————————————————

(e) Suppose X1 = 60, X2 = 30 and X3 = 40. What is the estimated distribution of X4?

———————————————————————
As stated above, we know that X4 has a Poisson distribution. We estimate its mean E[X4]

by

130(
(18/70)

1− (18/70)
= 130

18
52

= 45 .

———————————————————————

(e) Now we contemplate hiring the third proofreader who independently finds errors with
probability q = .9. How much do we reduce the expected number of uncovered errors by using
this third proof reader.

———————————————————————
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The number of undiscovered errors before using this new proofreader is X4. The number of
undiscovered errors after using this new proofreader is Poisson distributed with mean E[X4](1−
q). We anticipate that the a proportion (1 − q) of the remaining errors will remain. We will
expect to delete E[X4]q errors. That is, we will discover a proportion q of the remaining errors
if we use the third proof reader. We expect to reduce the number of undiscovered errors from
45 to 4.5.

———————————————————————
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