Mathematical Models for Hospital Inpatient Flow Management

Jim Dai

School of Operations Research and Information Engineering, Cornell University (On leave from Georgia Institute of Technology)

Pengyi Shi

H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

Outline

- Part I: Data
- Part II: Model
- Part III: Analytical analysis
- Part IV: Managerial Insights

Overview

Motivation

- Inpatient flow management
- Impact of early discharge policy
 - Waiting time for admission to ward
 - Stabilize hourly waiting time performance
- A stochastic network model
 - Allocation delays
 - Overflow policy
 - Endogenous service times
- Predict the time-dependent waiting time
 - A two-time-scale approach

Part I

- Empirical observations
 - Online Supplement for "Hospital Inpatient Operations: Mathematical Models and Managerial Insights" (68 pages)

• Joint work with

- James ANG and Mabel CHOU (NUS)
- Ding DING (UIBE, Beijing)
- Xin JIN and Joe SIM (NUH)

Capacity and source of admission

• Patients from 4 admission sources competing for inpatient beds

Key performance measures

- Waiting time for admission to ward (Jan 08 Jun 09)
 - Waiting time = admission time bed request time
 - Average: 2.82 hour
 - 6.52% of ED-GW patients wait more than 6 hours to get a bed
 - 6-hour service level
 - MOH cares
- Quality- and Efficiency-Driven (QED)
 - Average waiting time = 2.3% (average service time)
 - Average bed utilization = 90%

Time dependency

- Waiting time depends on patient's bed request time
 - Can we stabilize?

Time-varying bed request rate

• ED-GW patient's bed request rate (**red** curve) depends on arrival rate to ED (**blue** curve)

Learning from call center research?

- Zohar Feldman, Avishai Mandelbaum, William A. Massey and Ward Whitt, *Management Sciences*, 2008
 - Staffing of Time-Varying Queues to Achieve Time-Stable Performance
- Yunan Liu and Ward Whitt, 2012
 - Stabilizing customer abandonment in many-server queues with time-varying arrivals

Mismatch between demand and supply of beds

•Jan 08 – Jun 09

Discharge policy

- Discharge timing affects the waiting time
- Early discharge policy
 - Moving the discharge time a few hours earlier in the day
- The hospital implemented early discharge policy since July 2009
 - Study two periods of data
 - Jan 2008 to Jun 2009 (Period 1)
 - 13% before noon
 - Jan 2010 to Dec 2010 (Period 2)
 - 26% before noon

Waiting time for ED-GW patients

	1 st period	2 nd period
Average waiting time	2.82 h	2.77 h
6-hour service level	6.52%	5.13%

Challenges

- Does the modest improvement come from the early discharge?
 - Changing operating environment
 - Both arrival volume and capacity increases during 2008 to 2010
 - Bed occupancy rate (BOR) reduces in the Period 2
 - Period 1: 90.3%
 - Period 2: **87.6%**
- More importantly, is there any operational policy that can stabilize the waiting time?
- Need a model to help

Part II: A stochastic model

- Model
 - Hospital Inpatient Operations: Mathematical Models and Managerial Insights, submitted
- Joint work with Mabel Chou, Ding Ding, and Joe Sim

A multiclass, multi-server pool system

Time-varying arrival rates

Key modeling components

- Service time model
 - Determined by admission time, **LOS** and discharge distribution
 - An endogenous modeling element
 - No longer i.i.d.
- Allocation delays
 - "Secondary" bottlenecks other than bed availability
 - Yankovic and Green (2011)
 - Armony et al (2011)
- Overflow policy
 - When to overflow a patient
 - Overflow to which server pool

Simulation replicates most performance measures

- Hourly waiting time performances
- (a) Hourly average waiting time

(b) Hourly 6-hour service level

Time-dependent queue length

20

Service times are endogenous

- Service time model
 - Service time = Discharge time Admission time

= LOS + Dis hour – Adm hour

• LOS distribution 0.25 • Average is \sim 5 days Period 1 Period 2 Length of Stay (LOS) Depend on *admission source* 0.2 = Discharge day - Adm day and *specialty* AM- and PM- dependent 0.15 for ED-GW patients 0.1 0.05 0 2 10 12 0 6 8 14 16 18 Δ 20

Verify the service time model

- Service time model
 - Service time = LOS + Discharge hour Adm hour

Matching empirical

(a) Empirical (Armony et al 2011)

(b) Simulation output

Pre- and post-allocation delays

- Patient experiences additional delays upon arrival and when a bed is allocated
 - Pre-allocation delay
 - BMU search/negotiate for beds
 - Post-allocation delay
 - Delays in ED discharge
 - Delays in the transportation
 - Delays in ward admission
- Must model allocation delays
 - If not, hourly queue length does not match (right figure)

Time-dependent allocation delays

- The mean of allocation delay depends on when it is initiated
 - Use log-normal distribution
 - Pre-allocation delay

Overflow policy

- When a patient's waiting time exceeds certain threshold, the patient can be overflowed to a "wrong" ward
 - Beds are partially flexible
 - Overflow wards have certain priority

Cluster	1 st Overflow	2 nd Overflow	3 rd Overflow
Medicine	Other Med	Surgery/OG	Ortho
Surgery	Other Surg	Ortho /OG	Medicine
Ortho	Other Ortho	Surgery	Medicine

Dynamic overflow policy

Fixed threshold

• Threshold: 4.0 h

Dynamic threshold

Threshold: 0.5 h for arrival between 7 pm and 7 am (next day); 5.0 h for others

Part III: Analytical analysis

• Two-time scale method to predict time-dependent performance measures

Two-time scale

• Discrete queue

• Average LOS and daily arrival rate determine $\{X_k\}$, and thus performances at mid-night (daily level)

- Time-varying performance
 - The arrival rate pattern, discharge timing, and allocation delay distribution determine the hour-of-day behavior

A simplified model

- Single cluster
 - No overflow
- Arrival is periodic Poisson
- LOS follows a Geometric distribution
- Discharge follows a simple discrete distribution
- Service time follows the non-iid model:

 $S = LOS + h_{dis} - h_{alloc}$

- Admission time is replaced by allocation time
- Allocation delay
 - Each customer experiences a random delay after allocation time

Predict the time-dependent average queue length

- Decompose the queue length into two parts
 - Queue for beds: patients who are waiting for a bed
 - Alloc-delay queue: patients who are allocated with beds and are experiencing the alloc-delay

Queue for bed (1/2)

• X_k denotes the number of customers at midnight of day k

$$X_{k+1} = X_k - \Phi_k + \Lambda_k$$

• Discrete queue

- Number of discharges only depends on X_k since
 - LOS is geometric ("coin toss" every day)
 - LOS starts from 1 (i.e., no same-day discharge)
- Number of arrivals follows Poisson distribution
 Independent of number of discharges
- $\{X_k\}$ is a Markov process
 - Stationary distribution can be solved explicitly
 - Ramakrishnan et al. (2005)

Queue for bed (2/2)

- Using the stationary distribution of $\{X_k\}$
 - The average number of customers in system and the average queue length can be obtained for any time point
 - Average number of customer in system can be solved in a fluid way
 - $E[Y(t)] = E[X_k] + \int_0^t \lambda(t)dt E[\operatorname{discharge}(0, t)]$
 - Powell et al. (2012)
 - Queue length needs to be obtained from the distribution of number of customers in system at each time point Y(t)
 - Conditioning on X_k
 - Y(t) is a convolution between arrival (Poisson r.v.) and discharge (Binomial r.v. depends on the value of X_k) till t

Related work

- E. S. Powell, R. K. Khare, A. K. Venkatesh, B. D. Van Roo, J. G. Adams, and G. Reinhardt, *The Journal of Emergency Medicine*, 2012
 - The relationship between inpatient discharge timing and emergency department boarding
 - Affiliations: Department of Emergency Medicine, Northwestern University; Harvard Affiliated Emergency Medicine Residency, Brigham and Women's Hospital–Massachusetts General Hospital, ...

Alloc-delay queue

- Each patient experiences a random amount of delay
 - The alloc-delays follow an iid distribution with CDF F(x)
 - Patient gets a bed before entering the alloc-delay queue
- Two scenarios
 - Unlucky patient: no bed available upon arrival
 - Waits in the queue for bed first
 - Gets a bed at a discharge time point
 - Lucky patient: gets a bed allocated upon arrival
 - Directly joins the alloc-delay queue

Unlucky patients

- Suppose discharges occur at t_1 , t_2 , t_3 , t_4
- The mean number of admissions at each discharge point can be calculated from X_k , arrivals and discharges
- Given the mean number of admissions $Z(t_i)$
 - Mean number of customers in the alloc-delay queue after *s* hours is $Z(t_i) \cdot (1 F(s))$

Lucky patients

- The *effective* admission process (bed-allocation process) is nonhomogeneous Poisson
 - The probability of an arriving patient being lucky or unlucky is independent of the arrival itself
 - The effective admission rate can be calculated from X_k , arrivals and discharges
- Consider the alloc-delay queue as an infinite-server queue
 - Service time is the allocation delay
 - The effective admission process constitutes the arrival
 - Infinite-server queue theory (Eick 1993):

 $m(t) = E[\lambda(t - F_e)]E[F]$

Numerical results

- Alloc delays follow iid exponential distribution with mean 2 hours
- Simple discrete distribution:

Numerical results

• Avg queue length

Insights from the simplified model

- The average number of customers in the system remain the same in scenarios with and without allocation delays
- Challenging to predicting the hourly queue length
 - Necessary to model allocation delays
 - Slower drop in the queue length after 2pm
- Early discharge helps stabilize the hourly queue length

Shift the Period 1 discharge curve

- Using constant-mean allocation delay
 - Avg queue length

Avg waiting time

Part IV: Managerial insights

- Whether early discharge policy is beneficial or not
- What-if analysis

Simulation results

Simulation shows NUH early discharge policy has little improvement
 (a) hourly avg. waiting time
 (b) 6-hour service level

Aggressive early discharge policy

Only smooth the allocation delays

- Assuming allocation delay has a constant mean
 - (a) hourly avg. waiting time

(b) 6-hour service level

Impact of capacity increase

• 10% reduction in utilization, plus assuming allocation delay has a constant mean

Summary

- Conduct an empirical study of patient flow of the entire inpatient department
- Build and calibrate a stochastic model to evaluate the impact of discharge distribution on waiting for admission to ward
- Analyze a simplified version of the stochastic model using a two-time scale approach
- Achieve stable waiting time by aggressive early discharge + smooth allocation delay

Questions?

Limitations

- Simulation cannot fully calibrate with the overflow rate
 - Bed class (A, B, C)
 - Gender mismatch
 - Hospital acquired infections
 - Example: a female Surg patient has to be overflowed to a Med ward, since the only available Surg beds are for males
- Day-of-week phenomenon
 - Admission and discharge both depends on the day of week
 - LOS depends on admission day
 - Performances (BOR, waiting time) varies among days

Appendix

Simulation replicates most performance measures

- Hourly waiting time performances
- (a) Hourly average waiting time

(b) Hourly 6-hour service level

Average queue length (simulation result)

Average waiting time for each specialty

• Renal patients have longest average waiting time

6-hour service level for each specialty

• Cardio and Oncology patients show significant improvement in the 6-hour service level

55

Overflow rate

• Overall overflow rate reduces in Period 2

Background

- One of the major hospitals in Singapore
 - Around 1,000 beds in total
- 38 inpatient wards
 - We focus on 21 general wards
 - ICU, ISO, pediatric wards are excluded
 - Wards are dedicated to one specialty or shared by two and more specialties
- Serving around 90,000 patients annually
 - Data from 2008 to 2010

Time dependency

- Waiting time depends on patient's bed request time
 - Use time exit from ED
 - Jan 08 Jun 09

Waiting time for ED patients (using MOH definition)

	1 st period	2 nd period
Average waiting time	2.50 h	2.44 h
6-hour service level	5.24%	3.90%

• (a) hourly avg. waiting time

Histogram of waiting time (MOH definition)

60

Log-normal fit for LOS distribution

Relation between residual, T_{adm}, and T_{dis} Residual

$$\begin{aligned} \operatorname{res}(S) &= S - \lfloor S \rfloor \\ &= T_{\operatorname{dis}} - T_{\operatorname{adm}} - \lfloor (T_{\operatorname{dis}} - T_{\operatorname{adm}}) \rfloor \\ &= (T_{\operatorname{dis}} - \lfloor T_{\operatorname{dis}} \rfloor - (T_{\operatorname{adm}} - \lfloor T_{\operatorname{adm}} \rfloor)) \mod 1, \end{aligned}$$

where for two real numbers x and $y \neq 0$, $x \mod y = x - \lfloor x/y \rfloor \cdot y$.

Alternative service time model (1/2)

- $S = T_{dis} T_{adm}$
 - S denote service time <u>(in unit of day)</u>
 - T_{adm} denote the admission time, T_{dis} denote the discharge time
- Period 1 0.08 Period 2 • Residual = S - floor(S)0.07 • histogram (right fig) 0.06 0.05 In the alternative model 0.04 0.03 • Generate the integer part **floor(S)** 0.02 from empirical distribution 0.01 • *Independently* generate the **residual** 0 from another empirical distribution 0.2 0.3 0.4 0.5 0.7 0.6 0 0.1 0.8 0.9

0.09

Alternative service time model (2/2)

- Histogram of residual conditioning on each integer value
 - The conditional distribution are close, except when floor(S) = 0

Alternative service time model

- If directly generating service time
 - Discharge distribution does not match
 - Avg. waiting time does not match

Stochastic network models

- Multiclass, multi-server pools with some flexible pools
 - 30 ~ 60 servers in each pool
 - 15 server pools
- Typical BOR is 86% ~ 93%
- Periodic arrival processes
- Long service times = several arrival periods
 - Average LOS = 5 days
- Waiting time is a small fraction of service time
 - Average waiting time = 2.5 hours = 1/48 average LOS
- Must overflow in a fraction of the service time

Simulation model

- Using 9 cluster of patients and 15 server pools
 - Utilization (Sim): 90.5%; (empirical): 88.0%
 - We did not catch gender/ bed class /sub-specialty mismatch in simulation
- 4 types of arrivals for each cluster
 - ED-GW
 - EL
 - ICU-GW
 - SDA
 - Use empirical arrival rate and service time for each type of patients

Analytical results: no allocation delay

- Compare with simulation results
 - Number of customer in system Avg queue length

A stochastic model

- Multi-class, multi-server pool system
 - Each server pool is either dedicated to one class of customer or flexible to serve two and more classes of customers
- Periodic arrival
 - 4 types of arrival (ED-GW, Elective, ICU-GW, SDA) for each specialty
- A novel service time model
- And other key components

AM PM patients (ED-GW patients)

- The admission time affects LOS
 - AM patients: average LOS = 4.24 days
 - PM patients: average LOS = 5.31 days

