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 Part I: Data 
 

 Part II: Model 
 

 Part III: Analytical analysis 
 

 Part IV: Managerial Insights  
 



Overview 
 Motivation 
 Inpatient flow management 
 Impact of early discharge policy  
 Waiting time for admission to ward 
 Stabilize hourly waiting time performance 

 
 A stochastic network model  
 Allocation delays 
 Overflow policy 
 Endogenous service times 
 

 Predict the time-dependent waiting time 
 A two-time-scale approach 
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Part I 
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 Empirical  observations 
 Online Supplement for “Hospital Inpatient Operations: 

Mathematical Models and Managerial Insights” (68 pages) 

 
 Joint work with 
 James ANG and Mabel CHOU (NUS) 
 Ding DING (UIBE, Beijing) 
 Xin JIN and Joe SIM (NUH) 
 



Capacity and source of admission 
 Patients from 4 admission sources competing for inpatient beds 

 

Total inpatient beds 
~600 
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General 
Wards 

ED-GW 
patients 

ICU-GW 
patients 

SDA 
patients 

Elective 
patients 

66.9    (65%) 

18.5 
(18%) 

9.13     (9%) 

9.12 
(9%) 



Key performance measures 
 Waiting time for admission to ward (Jan 08 – Jun 09) 
 Waiting time = admission time – bed request time  
 Average: 2.82 hour 
 6.52% of ED-GW patients wait more than 6 hours to get a bed 
 6-hour service level 
 MOH cares 

 
  Quality- and Efficiency-Driven (QED) 
  Average waiting time = 2.3% (average service time) 
  Average bed utilization = 90% 
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Time dependency 
 Waiting time depends on patient’s bed request time 
 Can we stabilize?  

 

7 



Time-varying bed request rate 
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 ED-GW patient’s bed request rate (red curve) depends on arrival 
rate to ED (blue curve) 

 



Learning from call center research? 
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 Zohar Feldman, Avishai Mandelbaum, William A. Massey and 
Ward Whitt, Management Sciences, 2008 
 Staffing of  Time-Varying Queues to Achieve Time-Stable 

Performance  
 

 Yunan Liu and Ward Whitt, 2012 
 Stabilizing customer abandonment in many-server 

queues with time-varying arrivals 

 



Mismatch between demand and supply of beds 
Jan 08 – Jun 09 
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Discharge policy 
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 Discharge timing affects the waiting time 
 Early discharge policy 
 Moving the discharge time a few hours earlier in the day 

 The hospital implemented early discharge policy since July 
2009 
 Study two periods of data 
 Jan 2008 to Jun 2009 (Period 1) 

 13% before noon  
 Jan 2010 to Dec 2010 (Period 2) 

 26% before noon  

 
 



Waiting time for ED-GW patients 
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1st period 2nd period 

Average waiting time 2.82 h 2.77 h 

6-hour service level 6.52% 5.13% 



Challenges 
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 Does the modest improvement come from the early discharge? 
 Changing operating environment 
 Both arrival volume and capacity increases during 2008 to 2010 
 Bed occupancy rate (BOR) reduces in the Period 2 

 Period 1: 90.3%  
 Period 2: 87.6% 

 
 More importantly, is there any operational policy that can 

stabilize the waiting time?  
 

 Need a model to help 
 

 



Part II: A stochastic model 
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 Model 
 Hospital Inpatient Operations: Mathematical Models and 

Managerial Insights, submitted 

 
 Joint work with Mabel Chou, Ding Ding, and Joe Sim 



A multiclass, multi-server pool system 
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Time-varying arrival rates 
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 Specialty distribution 
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Key modeling components 
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 Service time model 
 Determined by admission time, LOS and discharge distribution 
 An endogenous modeling element 
 No longer i.i.d.  
 

 Allocation delays 
 “Secondary” bottlenecks other than bed availability 
 Yankovic and Green (2011) 
 Armony et al (2011) 
 

 Overflow policy 
 When to overflow a patient 
 Overflow to which server pool 

 
 



Simulation replicates most performance measures 

 Hourly waiting time performances 
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Time-dependent queue length 
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Service times are endogenous 
 Service time model  
 Service time = Discharge time – Admission time 
                          =  LOS + Dis hour – Adm hour 
 

 LOS distribution 
 Average is ~ 5 days 
 Depend on admission source 
     and specialty   
 AM- and PM- dependent  
     for ED-GW patients 
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Verify the service time model 
 Service time model 
 Service time =  LOS + Discharge hour – Adm hour 
 
Matching empirical  
(a) Empirical (Armony et al 2011)   (b) Simulation output 
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Pre- and post-allocation delays 
 Patient experiences additional delays upon arrival and when a 

bed is allocated 
 Pre-allocation delay 
 BMU search/negotiate for beds 

 Post-allocation delay 
 Delays in ED discharge 
 Delays in the transportation 
 Delays in ward admission 

 
 Must model allocation   
    delays 
 If not, hourly queue length 
    does not match (right figure) 23 



Time-dependent allocation delays 
 The mean of allocation delay depends on when it is initiated 
 Use log-normal distribution 
 Pre-allocation delay 



Overflow policy 
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 When a patient’s waiting time exceeds certain threshold, the 
patient can be overflowed to a “wrong” ward 
 Beds are partially flexible 
 Overflow wards have certain priority 

 

Cluster 1st Overflow 2nd Overflow 3rd Overflow 
Medicine Other Med Surgery/OG Ortho 
Surgery Other Surg Ortho /OG Medicine 
Ortho Other Ortho Surgery Medicine 



Dynamic overflow policy 
Fixed threshold 

 Threshold: 4.0 h 

Dynamic threshold 

 Threshold: 0.5 h for arrival between 
7 pm and 7 am (next day); 5.0 h for 
others 
 



Part III: Analytical analysis 
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 Two-time scale method to predict time-dependent performance 
measures 



Two-time scale 
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 Discrete queue 
 Average LOS and daily arrival rate determine           , and thus 

performances at mid-night (daily level) 
 

 Time-varying performance 
 The arrival rate pattern, discharge timing, and allocation delay 

distribution determine the hour-of-day behavior 



A simplified model 
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 Single cluster 
 No overflow 

 Arrival is periodic Poisson 
 LOS follows a Geometric distribution 
 Discharge follows a simple discrete distribution 

 
 Service time follows the non-iid model: 

 
 Admission time is replaced by allocation time  

 
 Allocation delay 
 Each customer experiences a random delay after allocation time 



Predict the time-dependent average queue length 
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 Decompose the queue length into two parts 
 Queue for beds: patients who are waiting for a bed 

 
 Alloc-delay queue: patients who are allocated with beds and are 

experiencing the alloc-delay 



Queue for bed (1/2) 
        denotes the number of customers at midnight of day k 

 
 Discrete queue 

 
 Number of discharges only depends on       since 
 LOS is geometric (“coin toss” every day) 
 LOS starts from 1 (i.e., no same-day discharge) 

 
 Number of arrivals follows Poisson distribution 
 Independent of number of discharges 

 
           is a Markov process 
 Stationary distribution can be solved explicitly 
 Ramakrishnan et al. (2005) 31 



Queue for bed (2/2) 
 Using the stationary distribution of  
 The average number of customers in system and the average queue 

length can be obtained for any time point 
 Average number of customer in system can be solved in a fluid way  

   
 Powell et al. (2012) 

 
 Queue length needs to be obtained from the distribution of  

number of customers in system at each time point   
 Conditioning on 
          is a convolution between arrival (Poisson r.v.) and 

discharge (Binomial r.v. depends on the value of       ) till t 
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Related work 
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 E. S. Powell, R. K. Khare, A. K. Venkatesh, B. D. Van Roo, J. G. 
Adams, and G. Reinhardt, The Journal of Emergency Medicine, 
2012 
 The relationship between inpatient discharge timing and 

emergency department boarding 
 

 Affiliations: Department of Emergency Medicine, Northwestern 
University; Harvard Affiliated Emergency Medicine Residency, 
Brigham and Women’s Hospital–Massachusetts General Hospital, 
… 



Alloc-delay queue 
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 Each patient experiences a random amount of delay 
 The alloc-delays follow an iid distribution with CDF  
 Patient gets a bed before entering the alloc-delay queue  

 

 Two scenarios 
 Unlucky patient: no bed available upon arrival 
 Waits in the queue for bed first 
 Gets a bed at a discharge time point 
 

 Lucky patient: gets a bed allocated upon arrival 
 Directly joins the alloc-delay queue 



Unlucky patients 

35 

 Suppose discharges occur at  
 The mean number of admissions at each discharge point can be 

calculated from       , arrivals and discharges  
 

  Given the mean number of admissions  
 Mean number of customers in the alloc-delay queue after s hours is  



Lucky patients 
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 The effective admission process (bed-allocation process) is non-
homogeneous Poisson 
 The probability of an arriving patient being lucky or unlucky is 

independent of the arrival itself 
 The effective admission rate can be calculated from       , arrivals 

and discharges  
 

 Consider the alloc-delay queue as an infinite-server queue 
 Service time is the allocation delay 
 The effective admission process constitutes the arrival 
 Infinite-server queue theory (Eick - 1993): 



Numerical results 
 Alloc delays follow iid exponential distribution with mean 2 hours  

 Simple discrete distribution: 
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Numerical results 
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 Avg queue length 



Insights from the simplified model 
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 The average number of customers in the system remain the 
same in scenarios with and without allocation delays 
 

 Challenging to predicting the hourly queue length 
 Necessary to model allocation delays 
 Slower drop in the queue length after 2pm 

 

 Early discharge helps stabilize the hourly queue length 



Shift the Period 1 discharge curve 
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 Using constant-mean allocation delay 
 Avg queue length   Avg waiting time 

 



Part IV: Managerial insights 
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 Whether early discharge policy is beneficial or not 
 

 What-if analysis 



Simulation results 
 Simulation shows NUH early discharge policy has little improvement 

 (a) hourly avg. waiting time                (b) 6-hour service level 
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Aggressive early discharge policy 
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Aggressive early discharge + smooth 
allocation delay 
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 Waiting time performances can be stabilized 
(a) hourly avg. waiting time                (b) 6-hour service level 



Only use aggressive early discharge 
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 Cannot be stabilized 
 (a) hourly avg. waiting time                (b) 6-hour service level 

 



Only smooth the allocation delays 
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 Assuming allocation delay has a constant mean 
 (a) hourly avg. waiting time                          (b) 6-hour service level 



Impact of capacity increase 
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 10% reduction in utilization, plus assuming allocation delay has 
a constant mean 
 (a) hourly avg. waiting time                          (b) 6-hour service level 

 



 
Summary 
 Conduct an empirical study of patient flow of the entire 

inpatient department  
 

 Build and calibrate a stochastic model to evaluate the impact of 
discharge distribution on waiting for admission to ward 
 

 Analyze a simplified version of the stochastic model using a 
two-time scale approach 
 

 Achieve stable waiting time by aggressive early discharge +  
smooth allocation delay  

48 
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Questions? 



Limitations 
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 Simulation cannot fully calibrate with the overflow rate 
 Bed class (A, B, C) 
 Gender mismatch 
 Hospital acquired infections 
 Example: a female Surg patient has to be overflowed to a Med ward, since 

the only available Surg beds are for males 

 
 Day-of-week phenomenon 
 Admission and discharge both depends on the day of week 
 LOS depends on admission day 
 Performances (BOR, waiting time) varies among days 
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Appendix 



Simulation replicates most performance measures 

 Hourly waiting time performances 
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Average queue length (simulation result) 
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Average waiting time for each specialty 
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 Renal patients have longest average waiting time 
 



6-hour service level for each specialty 

55 

 Cardio and Oncology patients show significant improvement in 
the 6-hour service level 
 



Overflow rate 
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 Overall overflow rate reduces in Period 2 



Background 
 One of the major hospitals in Singapore 
 Around 1,000 beds in total 

 
 38 inpatient wards 
 We focus on 21 general wards 
 ICU, ISO, pediatric wards are excluded 
 Wards are dedicated to one specialty or shared by two and more 

specialties 

 
 Serving around 90,000 patients annually 
 Data from 2008 to 2010 
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Time dependency 
 Waiting time depends on patient’s bed request time  
 Use time exit from ED  
 Jan 08 – Jun 09 

 

 

58 



Waiting time for ED patients 
(using MOH definition) 
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 (a) hourly avg. waiting time                (b) hourly 6-hour service level 

 

1st period 2nd period 

Average waiting time 2.50 h 2.44 h 

6-hour service level 5.24% 3.90% 



Histogram of waiting time (MOH 
definition) 

60 



Histogram of service time 
 Resolution of 1 hour 
 Period 1    Period 2 
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Log-normal fit for LOS distribution 

62 



Relation between residual, Tadm, and Tdis 
 Residual 

 



Alternative service time model (1/2) 
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 S = Tdis – Tadm 
 S denote service time (in unit of day) 

 Tadm denote the admission time, Tdis denote the discharge time 

 
 Residual = S – floor(S) 

 histogram (right fig) 

 

 In the alternative model 
 Generate the integer part floor(S) 
     from empirical distribution 
 Independently generate the residual 
     from another empirical distribution 
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Alternative service time model (2/2) 
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 Histogram of residual conditioning on each integer value 
 The conditional distribution are close, except when floor(S) = 0 
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Alternative service time model 
 If directly generating service time 
 Discharge distribution does not match 
 Avg. waiting time does not match 
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Stochastic network models 
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 Multiclass, multi-server pools with some flexible pools 
 30 ~ 60 servers in each pool 
 15 server pools  
 

 Typical  BOR is 86% ~ 93% 
 

 Periodic arrival processes 
 

 Long service times = several arrival periods 
 Average LOS = 5 days 
 

 Waiting time is a small fraction of service time 
 Average waiting time = 2.5 hours = 1/48 average LOS 
 

 Must overflow in a fraction of the service time 



Simulation model 
 Using 9 cluster of patients and 15 server pools 

 Utilization (Sim): 90.5%; (empirical): 88.0% 
 We did not catch gender/ bed class /sub-specialty mismatch in simulation 

 
 4 types of arrivals for each cluster 
 ED-GW 
 EL 
 ICU-GW 
 SDA 
 Use empirical arrival rate and service time for each type of patients 
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Analytical results: no allocation delay 
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 Compare with simulation results 
 Number of customer in system  Avg queue length 



A stochastic model 
 Multi-class, multi-server pool system 
  Each server pool is either dedicated to one class of customer or 

flexible to serve two and more classes of customers 

 
 Periodic arrival 
 4 types of arrival (ED-GW, Elective, ICU-GW, SDA) for each 

specialty 
 

 A novel service time model 
 

  And other key components 
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AM PM patients (ED-GW patients) 
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 The admission time affects LOS 
 AM patients: average LOS = 4.24 days 
 PM patients: average LOS = 5.31 days 
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