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 Part I: Data 
 

 Part II: Model 
 

 Part III: Analytical analysis 
 

 Part IV: Managerial Insights  
 



Overview 
 Motivation 
 Inpatient flow management 
 Impact of early discharge policy  
 Waiting time for admission to ward 
 Stabilize hourly waiting time performance 

 
 A stochastic network model  
 Allocation delays 
 Overflow policy 
 Endogenous service times 
 

 Predict the time-dependent waiting time 
 A two-time-scale approach 
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Part I 
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 Empirical  observations 
 Online Supplement for “Hospital Inpatient Operations: 

Mathematical Models and Managerial Insights” (68 pages) 

 
 Joint work with 
 James ANG and Mabel CHOU (NUS) 
 Ding DING (UIBE, Beijing) 
 Xin JIN and Joe SIM (NUH) 
 



Capacity and source of admission 
 Patients from 4 admission sources competing for inpatient beds 

 

Total inpatient beds 
~600 
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General 
Wards 

ED-GW 
patients 

ICU-GW 
patients 

SDA 
patients 

Elective 
patients 

66.9    (65%) 

18.5 
(18%) 

9.13     (9%) 

9.12 
(9%) 



Key performance measures 
 Waiting time for admission to ward (Jan 08 – Jun 09) 
 Waiting time = admission time – bed request time  
 Average: 2.82 hour 
 6.52% of ED-GW patients wait more than 6 hours to get a bed 
 6-hour service level 
 MOH cares 

 
  Quality- and Efficiency-Driven (QED) 
  Average waiting time = 2.3% (average service time) 
  Average bed utilization = 90% 
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Time dependency 
 Waiting time depends on patient’s bed request time 
 Can we stabilize?  
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Time-varying bed request rate 
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 ED-GW patient’s bed request rate (red curve) depends on arrival 
rate to ED (blue curve) 

 



Learning from call center research? 
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 Zohar Feldman, Avishai Mandelbaum, William A. Massey and 
Ward Whitt, Management Sciences, 2008 
 Staffing of  Time-Varying Queues to Achieve Time-Stable 

Performance  
 

 Yunan Liu and Ward Whitt, 2012 
 Stabilizing customer abandonment in many-server 

queues with time-varying arrivals 

 



Mismatch between demand and supply of beds 
Jan 08 – Jun 09 
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Discharge policy 
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 Discharge timing affects the waiting time 
 Early discharge policy 
 Moving the discharge time a few hours earlier in the day 

 The hospital implemented early discharge policy since July 
2009 
 Study two periods of data 
 Jan 2008 to Jun 2009 (Period 1) 

 13% before noon  
 Jan 2010 to Dec 2010 (Period 2) 

 26% before noon  

 
 



Waiting time for ED-GW patients 
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1st period 2nd period 

Average waiting time 2.82 h 2.77 h 

6-hour service level 6.52% 5.13% 



Challenges 
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 Does the modest improvement come from the early discharge? 
 Changing operating environment 
 Both arrival volume and capacity increases during 2008 to 2010 
 Bed occupancy rate (BOR) reduces in the Period 2 

 Period 1: 90.3%  
 Period 2: 87.6% 

 
 More importantly, is there any operational policy that can 

stabilize the waiting time?  
 

 Need a model to help 
 

 



Part II: A stochastic model 
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 Model 
 Hospital Inpatient Operations: Mathematical Models and 

Managerial Insights, submitted 

 
 Joint work with Mabel Chou, Ding Ding, and Joe Sim 



A multiclass, multi-server pool system 
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Time-varying arrival rates 
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 Specialty distribution 
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Key modeling components 
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 Service time model 
 Determined by admission time, LOS and discharge distribution 
 An endogenous modeling element 
 No longer i.i.d.  
 

 Allocation delays 
 “Secondary” bottlenecks other than bed availability 
 Yankovic and Green (2011) 
 Armony et al (2011) 
 

 Overflow policy 
 When to overflow a patient 
 Overflow to which server pool 

 
 



Simulation replicates most performance measures 

 Hourly waiting time performances 
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Time-dependent queue length 
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Service times are endogenous 
 Service time model  
 Service time = Discharge time – Admission time 
                          =  LOS + Dis hour – Adm hour 
 

 LOS distribution 
 Average is ~ 5 days 
 Depend on admission source 
     and specialty   
 AM- and PM- dependent  
     for ED-GW patients 
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Verify the service time model 
 Service time model 
 Service time =  LOS + Discharge hour – Adm hour 
 
Matching empirical  
(a) Empirical (Armony et al 2011)   (b) Simulation output 
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Pre- and post-allocation delays 
 Patient experiences additional delays upon arrival and when a 

bed is allocated 
 Pre-allocation delay 
 BMU search/negotiate for beds 

 Post-allocation delay 
 Delays in ED discharge 
 Delays in the transportation 
 Delays in ward admission 

 
 Must model allocation   
    delays 
 If not, hourly queue length 
    does not match (right figure) 23 



Time-dependent allocation delays 
 The mean of allocation delay depends on when it is initiated 
 Use log-normal distribution 
 Pre-allocation delay 



Overflow policy 
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 When a patient’s waiting time exceeds certain threshold, the 
patient can be overflowed to a “wrong” ward 
 Beds are partially flexible 
 Overflow wards have certain priority 

 

Cluster 1st Overflow 2nd Overflow 3rd Overflow 
Medicine Other Med Surgery/OG Ortho 
Surgery Other Surg Ortho /OG Medicine 
Ortho Other Ortho Surgery Medicine 



Dynamic overflow policy 
Fixed threshold 

 Threshold: 4.0 h 

Dynamic threshold 

 Threshold: 0.5 h for arrival between 
7 pm and 7 am (next day); 5.0 h for 
others 
 



Part III: Analytical analysis 
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 Two-time scale method to predict time-dependent performance 
measures 



Two-time scale 
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 Discrete queue 
 Average LOS and daily arrival rate determine           , and thus 

performances at mid-night (daily level) 
 

 Time-varying performance 
 The arrival rate pattern, discharge timing, and allocation delay 

distribution determine the hour-of-day behavior 



A simplified model 
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 Single cluster 
 No overflow 

 Arrival is periodic Poisson 
 LOS follows a Geometric distribution 
 Discharge follows a simple discrete distribution 

 
 Service time follows the non-iid model: 

 
 Admission time is replaced by allocation time  

 
 Allocation delay 
 Each customer experiences a random delay after allocation time 



Predict the time-dependent average queue length 

30 

 Decompose the queue length into two parts 
 Queue for beds: patients who are waiting for a bed 

 
 Alloc-delay queue: patients who are allocated with beds and are 

experiencing the alloc-delay 



Queue for bed (1/2) 
        denotes the number of customers at midnight of day k 

 
 Discrete queue 

 
 Number of discharges only depends on       since 
 LOS is geometric (“coin toss” every day) 
 LOS starts from 1 (i.e., no same-day discharge) 

 
 Number of arrivals follows Poisson distribution 
 Independent of number of discharges 

 
           is a Markov process 
 Stationary distribution can be solved explicitly 
 Ramakrishnan et al. (2005) 31 



Queue for bed (2/2) 
 Using the stationary distribution of  
 The average number of customers in system and the average queue 

length can be obtained for any time point 
 Average number of customer in system can be solved in a fluid way  

   
 Powell et al. (2012) 

 
 Queue length needs to be obtained from the distribution of  

number of customers in system at each time point   
 Conditioning on 
          is a convolution between arrival (Poisson r.v.) and 

discharge (Binomial r.v. depends on the value of       ) till t 

32 



Related work 

33 

 E. S. Powell, R. K. Khare, A. K. Venkatesh, B. D. Van Roo, J. G. 
Adams, and G. Reinhardt, The Journal of Emergency Medicine, 
2012 
 The relationship between inpatient discharge timing and 

emergency department boarding 
 

 Affiliations: Department of Emergency Medicine, Northwestern 
University; Harvard Affiliated Emergency Medicine Residency, 
Brigham and Women’s Hospital–Massachusetts General Hospital, 
… 



Alloc-delay queue 
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 Each patient experiences a random amount of delay 
 The alloc-delays follow an iid distribution with CDF  
 Patient gets a bed before entering the alloc-delay queue  

 

 Two scenarios 
 Unlucky patient: no bed available upon arrival 
 Waits in the queue for bed first 
 Gets a bed at a discharge time point 
 

 Lucky patient: gets a bed allocated upon arrival 
 Directly joins the alloc-delay queue 



Unlucky patients 
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 Suppose discharges occur at  
 The mean number of admissions at each discharge point can be 

calculated from       , arrivals and discharges  
 

  Given the mean number of admissions  
 Mean number of customers in the alloc-delay queue after s hours is  



Lucky patients 
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 The effective admission process (bed-allocation process) is non-
homogeneous Poisson 
 The probability of an arriving patient being lucky or unlucky is 

independent of the arrival itself 
 The effective admission rate can be calculated from       , arrivals 

and discharges  
 

 Consider the alloc-delay queue as an infinite-server queue 
 Service time is the allocation delay 
 The effective admission process constitutes the arrival 
 Infinite-server queue theory (Eick - 1993): 



Numerical results 
 Alloc delays follow iid exponential distribution with mean 2 hours  

 Simple discrete distribution: 
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Numerical results 
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 Avg queue length 



Insights from the simplified model 
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 The average number of customers in the system remain the 
same in scenarios with and without allocation delays 
 

 Challenging to predicting the hourly queue length 
 Necessary to model allocation delays 
 Slower drop in the queue length after 2pm 

 

 Early discharge helps stabilize the hourly queue length 



Shift the Period 1 discharge curve 
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 Using constant-mean allocation delay 
 Avg queue length   Avg waiting time 

 



Part IV: Managerial insights 
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 Whether early discharge policy is beneficial or not 
 

 What-if analysis 



Simulation results 
 Simulation shows NUH early discharge policy has little improvement 

 (a) hourly avg. waiting time                (b) 6-hour service level 
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Aggressive early discharge policy 
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Aggressive early discharge + smooth 
allocation delay 
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 Waiting time performances can be stabilized 
(a) hourly avg. waiting time                (b) 6-hour service level 



Only use aggressive early discharge 
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 Cannot be stabilized 
 (a) hourly avg. waiting time                (b) 6-hour service level 

 



Only smooth the allocation delays 
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 Assuming allocation delay has a constant mean 
 (a) hourly avg. waiting time                          (b) 6-hour service level 



Impact of capacity increase 
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 10% reduction in utilization, plus assuming allocation delay has 
a constant mean 
 (a) hourly avg. waiting time                          (b) 6-hour service level 

 



 
Summary 
 Conduct an empirical study of patient flow of the entire 

inpatient department  
 

 Build and calibrate a stochastic model to evaluate the impact of 
discharge distribution on waiting for admission to ward 
 

 Analyze a simplified version of the stochastic model using a 
two-time scale approach 
 

 Achieve stable waiting time by aggressive early discharge +  
smooth allocation delay  

48 



49 

Questions? 



Limitations 
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 Simulation cannot fully calibrate with the overflow rate 
 Bed class (A, B, C) 
 Gender mismatch 
 Hospital acquired infections 
 Example: a female Surg patient has to be overflowed to a Med ward, since 

the only available Surg beds are for males 

 
 Day-of-week phenomenon 
 Admission and discharge both depends on the day of week 
 LOS depends on admission day 
 Performances (BOR, waiting time) varies among days 
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Appendix 



Simulation replicates most performance measures 

 Hourly waiting time performances 
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Average queue length (simulation result) 
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Average waiting time for each specialty 

54 

 Renal patients have longest average waiting time 
 



6-hour service level for each specialty 
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 Cardio and Oncology patients show significant improvement in 
the 6-hour service level 
 



Overflow rate 
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 Overall overflow rate reduces in Period 2 



Background 
 One of the major hospitals in Singapore 
 Around 1,000 beds in total 

 
 38 inpatient wards 
 We focus on 21 general wards 
 ICU, ISO, pediatric wards are excluded 
 Wards are dedicated to one specialty or shared by two and more 

specialties 

 
 Serving around 90,000 patients annually 
 Data from 2008 to 2010 
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Time dependency 
 Waiting time depends on patient’s bed request time  
 Use time exit from ED  
 Jan 08 – Jun 09 
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Waiting time for ED patients 
(using MOH definition) 
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 (a) hourly avg. waiting time                (b) hourly 6-hour service level 

 

1st period 2nd period 

Average waiting time 2.50 h 2.44 h 

6-hour service level 5.24% 3.90% 



Histogram of waiting time (MOH 
definition) 
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Histogram of service time 
 Resolution of 1 hour 
 Period 1    Period 2 
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Log-normal fit for LOS distribution 
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Relation between residual, Tadm, and Tdis 
 Residual 

 



Alternative service time model (1/2) 
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 S = Tdis – Tadm 
 S denote service time (in unit of day) 

 Tadm denote the admission time, Tdis denote the discharge time 

 
 Residual = S – floor(S) 

 histogram (right fig) 

 

 In the alternative model 
 Generate the integer part floor(S) 
     from empirical distribution 
 Independently generate the residual 
     from another empirical distribution 
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Alternative service time model (2/2) 
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 Histogram of residual conditioning on each integer value 
 The conditional distribution are close, except when floor(S) = 0 
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Alternative service time model 
 If directly generating service time 
 Discharge distribution does not match 
 Avg. waiting time does not match 
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Stochastic network models 
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 Multiclass, multi-server pools with some flexible pools 
 30 ~ 60 servers in each pool 
 15 server pools  
 

 Typical  BOR is 86% ~ 93% 
 

 Periodic arrival processes 
 

 Long service times = several arrival periods 
 Average LOS = 5 days 
 

 Waiting time is a small fraction of service time 
 Average waiting time = 2.5 hours = 1/48 average LOS 
 

 Must overflow in a fraction of the service time 



Simulation model 
 Using 9 cluster of patients and 15 server pools 

 Utilization (Sim): 90.5%; (empirical): 88.0% 
 We did not catch gender/ bed class /sub-specialty mismatch in simulation 

 
 4 types of arrivals for each cluster 
 ED-GW 
 EL 
 ICU-GW 
 SDA 
 Use empirical arrival rate and service time for each type of patients 
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Analytical results: no allocation delay 
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 Compare with simulation results 
 Number of customer in system  Avg queue length 



A stochastic model 
 Multi-class, multi-server pool system 
  Each server pool is either dedicated to one class of customer or 

flexible to serve two and more classes of customers 

 
 Periodic arrival 
 4 types of arrival (ED-GW, Elective, ICU-GW, SDA) for each 

specialty 
 

 A novel service time model 
 

  And other key components 
 
 
 

70 



AM PM patients (ED-GW patients) 
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 The admission time affects LOS 
 AM patients: average LOS = 4.24 days 
 PM patients: average LOS = 5.31 days 
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