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Hospitals are complex systems with essential societal benefits and
huge mounting costs. These costs are exacerbated by inefficiencies in
hospital processes, which are often manifested by congestion and long
delays in patient care. Thus, a queueing-network view of patient flow
in hospitals is natural, for studying and improving its performance.
The goal of our research is to explore patient flow data through the
lenses of a queueing scientist. The means is exploratory data analysis
(EDA) in a large Israeli hospital, which reveals important features
that are not readily explainable by existing models.

Questions raised by our EDA include: Can a simple (parsimonious)
queueing model usefully capture the complex operational reality of
the Emergency Department (ED)? What time scales and operational
regimes are relevant for modeling patient length of stay in the Inter-
nal Wards (IWs)? How do protocols of patient transfer between the
ED and the IWs influence patient delay, workload division and fair-
ness? EDA also underscores the importance of an integrative view of
hospital units by, for example, relating ED bottlenecks to IW physi-
cian protocols. The significance of such questions and our related
findings raises the need for novel queueing models and theory, which
we present here as research opportunities.

Hospital data, and specifically patient flow data at the level of the
individual patient, is increasingly collected but is typically confiden-
tial and/or proprietary. We have been fortunate to partner with a
hospital that allowed us to open up its data for everyone to access.
This enables reproducibility of our findings, through a user-friendly
platform that is accessible through the Technion SEELab.
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1. Introduction. Health care systems in general, and hospitals in par-
ticular, are major determinants of our quality of life. They also require a
significant fraction of our resources and, at the same time, they suffer from
(quoting a physician research partner) “a ridiculous number of inefficiencies;
thus everybody—patients, families, nurses, doctors and administrators are
frustrated.” In (too) many instances, this frustration is caused and exacer-
bated by delays—“waiting for something to happen”; in turn, these delays
and the corresponding queues signal inefficiencies. Hospitals hence present
a propitious ground for research in Queueing Theory and, more generally,
Applied Probability (AP) and Operations Research (OR). Such research
would ideally culminate in reduced congestion (crowding) and its accom-
panying important benefits: clinical, financial, psychological and societal.
And for such benefits to accrue, it is critical that the supporting research is
data-based.

Unfortunately, however, operational hospital data is accessible to very
few researchers, and patient-level data has in fact been publicly unavailable.
The reasons span data nonexistence or poor quality, through concerns for
patient confidentiality, to proprietorial constraints or attitudes of the data
owners. We are thus humbly attempting, in this present work, to change
this landscape of data-based hospital OR and, in doing so, introduce a new
standard. Specifically, we identify and propose research opportunities and
challenges that arise from exploratory analysis of ample hospital data. Just
as significantly, we also open up our data and make it universally accessi-
ble at the Technion IE&M Laboratory for Service Enterprise Engineering
(SEELab): the data can be either downloaded or analyzed online, through a
user friendly platform (SEEStat) for Exploratory Data Analysis (EDA). Our
goal is thus to provide an entry to and accelerate the learning of data-based
OR of hospitals; Interested researchers can reproduce our EDA, and use it
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as a trigger and a starting point for further data mining and novel research
of their own.

1.1. Patient Flow Focus. Of particular interest to both researchers and
practitioners is patient flow in hospitals: improving it can have a significant
impact on quality of care as well as on patient satisfaction; and restricting
attention to it adds a necessary focus to our work. Indeed, the medical
community has acknowledged the importance of patient flow management
(e.g. Standard LD.3.10.10, which the Joint Commission on Accreditation of
Hospital Organizations (JCAHO, 2004) set for patient flow leadership). This
acknowledgment is natural given that operational measures of patient flow
are relatively easy to track, and that they inherently serve as proxies for
other quality of care measures (see Section 6.1). In parallel, patient flow has
caught the attention of researchers in OR in general, and Queueing Theory in
particular. This is not surprising: hospital systems, being congestion-prone,
naturally fit the framework of Queueing Theory, which captures the tradeoffs
between (operational) service quality vs. resource efficiency.

Our starting point is that a queueing network encapsulates the operational
dimensions of patient flow in hospitals, with the medical units being the
nodes of the network, patients are the customers, while beds, medical staff
and medical equipment are the servers. But what are the special features
of this queueing network? To address this question, we study an extensive
data set of patient flow through the lenses of a queueing scientist. Our study
highlights interesting phenomena that arise in the data, which leads to a
discussion of their implications on system operations and queueing modeling,
and culminates in the proposal of related research opportunities.

However, patient flow, as highlighted by our title (“On Patient Flow . . .”),
is still too broad a subject for a single study. We thus focus on the inter-ward
resolution, as presented in the flow chart (process map) of Figure 1; this is
in contrast to intra-ward or out-of-hospital patient flow. We further narrow
the scope to the relatively isolated ED+IW network, as depicted in Figure
2 and elaborated on in §1.2.1.

1.2. Rambam hospital. Our data originates at the Rambam Medical Cen-
ter, which is a large Israeli academic hospital. This hospital caters to a pop-
ulation of more than two million people, and it serves as a tertiary referral
center for twelve district hospitals. The hospital consists of about 1000 beds
and 45 medical units, with about 75,000 patients hospitalized annually. The
data includes detailed information on patient flow throughout the hospital,
over a period of several years (2004–2008), at the flow level of Figure 1,
and the resolution level of individual patients. Thus, the data allows one to
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Fig 1: Patient Flow (Process Map) at inter-ward resolution. (Data animation
is available at SEEnimations). For example, during the period over which
the flow was calculated (August 2004), 326 patients arrived to the ED per
day on average, and 18.3 transferred from the ED to Surgery. (To avoid
clutter, arcs with monthly flow below 4 patients were filtered out; Created
by SEEGraph, at the Technion SEELab.)
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6 ARMONY ET AL.

follow the paths of individual patients throughout their stay at the hospital,
including admission, discharge, and transfers between hospital units.

1.2.1. The ED+IW network. Traditionally, hospital studies have focused
on individual units, in isolation from the rest of the hospital; but this ap-
proach ignores interactions among units. On the flip side, looking at the
hospital as a whole is complex and may lack necessary focus. Instead, and al-
though our data encompasses the entire hospital, we focus on a sub-network
that consists of the main Emergency Department (ED) (adult Internal, Or-
thopedics, Surgery, and Trauma) and five Internal Wards (IWs), denoted
by A through E; see Figure 2. This sub-network, referred to as ED+IW, is

Arrivals
Emergency
Department

Abandonment

Services

IW A

IW C

IW B

IW D

IW E

Discharged
patients

Discharged
patients

Internal
Wards

Other
Medical

Units

53%

     13.6%

"Justice
Table"

Blocked at IWs

3.5%

69.9%

5%

15.7%

23.6%

84.3%

75.4%

245 pat./day

161 pat./day

1%

16.5%

13 pat./day

Fig 2: The ED+IW sub-network

more amenable to analysis than studying the entire hospital. At the same
time, it is truly a system of networked units, which requires an integrative
approach for its study. Moreover, the ED+IW network is also not too small:
According to our data, approximately 53% of the patients entering the hos-
pital remain within this sub-network, and 21% of those are hospitalized in
the IWs; indeed, the network is fairly isolated in the sense that its interac-
tions with the rest of the hospital are minimal. To wit, virtually all arrivals
into the ED are from outside the hospital, and 93.5% of the patient transfers
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into the IWs are either from outside the hospital or from within the ED+IW
network.

1.2.2. Data Description. Rambam’s 2004–2008 patient-level flow data
consists of 4 compatible “tables”, that capture hospital operations as fol-
lows. The first table (Visits) contains records of ED patients, including their
ID, arrival and departure times, arrival mode (e.g. independently or by am-
bulance), cause of arrival, and some demographic data. The second table
(Justice Table) contains details of the patients that were transferred from
the ED to the IWs. This includes information on the time of assignment
from the ED to an IW, the identity of this IW, as well as assignment can-
celations and reassignment times when relevant. The third table (Hospital
Transfers) consists of patient-level records of arrivals to and departures from
hospital wards. It also contains data on the ward responsible for each patient
as, sometimes, due to lack of capacity, patients are not treated in the ward
that is clinically most suitable for them; hence, there could be a distinction
between the physical location of a patient and the ward that is clinically
in charge of that patient. The last table (Treatment) contains individual
records of first treatment time in the IWs. Altogether, our data consists of
over one million records.

1.3. Apologies to the Statistician. Our approach of learning from data
is in the spirit of Tukey’s Exploratory Data Analysis (EDA) (Tukey, 1977),
which gives rise to the following two “apologies”. Firstly, the goals of the
present study, its target audience and space considerations render secondary
the role of “rigorous” statistical analysis (e.g. hypothesis testing, confidence
intervals, model selection).

Secondly, our data originates from a single Israeli hospital, operating dur-
ing 2004–2008. This raises doubts regarding the generality of the scientific
and practical relevance of the present findings, and rightly so. Nevertheless,
other studies of hospitals in Israel (Marmor (2003); Tseytlin (2009) and
Section 5.6 of EV) and in Singapore (Shi et al., 2012), together with other
privately-communicated empirical research by colleagues, reveal phenomena
that are common across hospitals worldwide (e.g. the LOS distributions in
Figure 9). Moreover, the present research has already provided the empirical
foundation for several graduate theses, each culminating in one or several
data-based theoretical papers (see §2.1). All in all, our hope is that read-
ing the manuscript will dispel doubts concerning its broad relevance and
significance.
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8 ARMONY ET AL.

1.4. Paper structure. The rest of the paper is organized as follows: We
start with a short literature review in Section 2. We then proceed to dis-
cuss the gate to the hospital—the ED—in Section 3, followed by the IWs
(§4), and the ED+IW network as a whole (§5). We start each section with
background information. Next, we highlight relevant EDA, and lastly we
propose corresponding research opportunities. In §6, we offer final commen-
tary, where we also provide a broader discussion of some common themes
that arise throughout the paper. Finally, the Appendix covers data access
instructions and documentation, as well as EDA logistics. We encourage
interested readers to refer to EV: a working paper that provides a more
elaborate discussion of various issues raised here, and that covers additional
topics that are not included here due to focus and space considerations.

2. Some hints to the literature. Patient flow in hospitals has been
studied extensively. Readers are referred to the papers in Hall (2013) and
Denton (2013)—both also providing leads to many further references. In
the present subsection, we merely touch on published work, along the three
dimensions that are most relevant to our study: a network view, queueing
models and data-based analysis. Many additional references to recent and
ongoing research, on particular issues that arise throughout the paper, will
be further cited as we go along. This subsection concludes with what can be
viewed as “proof of concept”: a description of some existing research that
the present work and our empirical foundation have already triggered and
supported.

Most research on patient flow has concentrated on the ED and how to
improve ED flows in within. There are a few exceptions that offer a broader
view. For example, Cooper et al. (2001) identifies a main source of ED con-
gestion to be controlled variability, downstream from the ED (e.g. operating-
room schedules). In the same spirit, de Bruin et al. (2007) observes that
“refused admissions at the First Cardiac Aid are primarily caused by un-
availability of beds downstream the care chain.” These blocked admissions
can be controlled via proper bed allocation along the care chain of Cardiac
in-patients; and to support such allocations, a queueing network model was
proposed, with parameters that were estimated from hospital data. Broad-
ening the view further, Hall et al. (2006) develops data-based descriptions of
hospital flows, starting at the highest unit-level (yearly view) down to spe-
cific sub-wards (e.g. imaging). The resulting flow charts are supplemented
with descriptions of various factors that cause delays in hospitals, and then
some means that hospitals employ to alleviate these delays. Finally, Shi et al.
(2012) develops data-based models that lead to managerial insights on the
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ED-to-Ward transfer process.
There has been a growing body of research that treats operational prob-

lems in hospitals with Operations Research (OR) techniques. Brandeau,
Sainfort and Pierskalla (2004) is a handbook of OR methods and appli-
cations in health care; the part that is most relevant to this paper is its
chapter on Health Care Operations Management (OM). Next, Green (2008)
surveys the potential of OR in helping reduce hospital delays, with an em-
phasis on queueing models. A recent handbook on System Scheduling is Hall
(2012)—it includes chapters worth reading and additional leads on OR/OM
and queueing perspectives of patient flow. Of special interest is Chapter 8,
where Hall describes the challenging reality of bed management in hospitals.
Jennings and de Véricourt (2008, 2011) and Green and Yankovic (2011) ap-
ply queueing models to determine the number of nurses needed in a medical
ward. Green (2004) and de Bruin et al. (2009) rely on queueing models
such as Erlang-C and loss systems, to recommend bed allocation strategies
for hospital wards. Lastly, Green, Kolesar and Whitt (2007) survey and de-
velop (time-varying) queueing networks that help determine the number of
physicians and nurses required in an ED.

There is also an increased awareness of the significant role that data can,
and often must, play in patient flow research. For example, Kc and Terwiesch
(2009) is an empirical work in the context of ICU patient flow; it has inspired
the analytical model of Chan, Yom-Tov and Escobar (2014) (see also Chan,
Farias and Escobar (2014) on the correlation between patient wait and ICU
LOS). Another example is Baron et al. (2014) that does both modeling and
data analysis for patient flow in outpatient test provision centers. More on
patient flow in outpatient clinics and the need for relevant data is discussed
in Froehle and Magazine (2013).

2.1. A proof of concept. The present research has provided the empirical
foundation for several graduate theses and subsequent research papers: Mar-
mor (2010) studied ED architectures and staffing (see Zeltyn et al. (2011)
and Marmor et al. (2012)); Yom-Tov (2010) focused on time-varying models
with customer returns to the ED (Yom-Tov and Mandelbaum, 2014) and
the IWs; Tseytlin (2009) investigated the transfer process from the ED to
the IWs (Mandelbaum, Momcilovic and Tseytlin, 2012); Maman (2009) ex-
plored over-dispersion characteristics of the arrival process into the ED (Ma-
man, Zeltyn and Mandelbaum, 2011); and Huang (2013) developed schedul-
ing controls that help ED physicians choose between newly-arriving vs. in-
process patients, while still adhering to triage constraints (Huang, Carmeli
and Mandelbaum, 2011).
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3. Emergency Department. Patient flow in the Emergency Depart-
ment (ED) is a complex process that involves a multitude of interrelated
steps (e.g. Figure 1 in Zeltyn et al. (2011)). This process has been widely
investigated, both academically (Hall et al., 2006; Saghafian, Austin and
Traub, 2014) and in practice (IHI, 2011; McHugh et al., 2011). We shall
hence be content with its empirical macro view, which already turns out
to be highly informative. Specifically, we view the ED as a black-box, and
then highlight interesting phenomena that relate to its patient arrivals, de-
partures, and occupancy counts. Our EDA underscores the importance of
including time- and state-dependent effects in the ED—some of these are
not readily explained by existing queueing models. Yet, and albeit this de-
pendence, it also reveals that a simple stationary model may provide a good
fit for patient-count during periods when the ED is most congested. For
limited purposes, therefore, our EDA supports the use of simple stationary
models for the ED, which has been prevalent in the literature (e.g. Green
et al. (2006) and de Bruin et al. (2009)).

3.1. Basic facts. The main ED has 40 beds and it treats on average 245
patients daily: close to 60% are classified as Internal (general) patients and
the rest are Surgical/Orthopedic, excluding a few per day that suffer from
multiple trauma. The ED has three major areas: Trauma acute, Internal
acute, and Surgical/Orthopedic acute; some of the patients in the latter two
are “Walking” patients that do not require a bed. While there are formally
40 beds in the ED, this bed capacity is highly flexible and can be doubled and
more. Hence there is effectively no upper bound on how many patients can
simultaneously reside within the ED—either in beds or stretchers, chairs,
etc. The hospital has other EDs, physically detached from the main one
discussed here—these are dedicated to other patient types such as Pediatrics
or Ophthalmology. Throughout the rest of our paper, we focus on the main
ED and simply refer to it as the ED. Furthermore, within the ED, we focus on
Internal (general) patients, in beds or walking: they constitute the majority
of ED patients and give rise to most operational challenges.

During weekdays, the average length of stay (ALOS) of patients in the
ED is 4.25 hours: this covers the duration from entry until the decision
to discharge or hospitalize; it does not include boarding time, which is the
duration between hospitalization decision to actual transfer. We estimate
boarding time to be 3.2 hours on average (See Section 5.2). In addition,
10% (5%) of weekday patients experience LOS that is over 8 (11) hours,
and about 3–5% leave on their own (LWBS = left without being seen by a
doctor, LAMA = left against medical advice, or Absconded = disappeared
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PATIENT FLOW IN HOSPITALS 11

throughout the process and are neither LWBS nor LAMA). Finally, out of
the 2004–2005 ED patients, around 37% were eventually readmitted; and,
overall, 3%, 11%, and 16% of the patients returned within 2, 14, and 30
days, respectively.

3.2. Exploratory Data Analysis. In this section we highlight some of our
EDA findings that relate to ED patient arrivals and patient-count distribu-
tion.

3.2.1. Time dependency. As observed also in Green, Kolesar and Whitt
(2007), the ED hourly arrival rate varies significantly during the day. In
Rambam’s ED, it varies by a factor of almost 10; See Figure 3. We also ob-
serve a time-lag between the arrival rate and occupancy levels, which is due
to the former changing significantly during a patient LOS (Bertsimas and
Mourtzinou, 1997). This lag must be accounted for in staffing recommenda-
tions (Feldman et al., 2008; Green, Kolesar and Whitt, 2007; Yom-Tov and
Mandelbaum, 2014).
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Analyzing the same data, Maman (2009) found support for the daily
arrival process to fit a time-varying Poisson process, but with heterogeneity
levels across days such that the arrival rate itself must be random (slightly
over-dispersed). Kim and Whitt (2014) identified similar patterns in a large
Korean hospital. The time-varying arrivals contribute to an overall time
varying ED environment, which we focus on next.

imsart-ssy ver. 2013/03/06 file: Short_Patient*flow*main.tex date: June 2, 2014



12 ARMONY ET AL.

3.2.2. Fitting a simple model to a complex reality. Figure 4 (left) shows
24 patient-count histograms for internal ED patients, each corresponding to
a specific hour of the day, with reference (right) to mean patient count, also
by hour of the day. (Similar shapes arise from total ED patient count—see
Figure 10 in EV.) The figure displays a clear time-of-day behavior: There
are two distinct bell-shaped distributions that correspond to low occupancy
(15 patients on average) during the AM (3–9AM), and high (30 patients)
during the PM (12–11PM); with two transitionary periods of low-to-high
(9AM–12PM) and high-to-low (11PM–3AM). We refer to these four periods
as the four “occupancy regimes”. Interestingly, when asking SEEStat to fit a
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Fig 4: Internal ED Occupancy histogram (left) and Average Census (right),
by hour of the day

mixture of three normal distributions to the ED occupancy distribution, the
fit algorithm automatically detects the low, high and transitionary phases
(See Figure 5a).

Further EDA (Figure 5b) reveals that, during peak times (PM), when con-
trolling for factors such as day-of-the-week, patient type and calendar year,
one obtains a good fit for the empirical distribution by a “steady-state” nor-
mal distribution with equal mean and variance. Hence, one might speculate
that the underlying system dynamics can be modeled by an M/M/∞ queue,
which has a Poisson steady-state (mean=variance). Alternatively, however,
it may also be described as an M/M/N + M model with equal rates of
service and abandonment (LWBS, LAMA, or Absconded). It follows that
one cannot conclusively select a model through its empirical steady-state
distribution—which is a trap that is easy to fall into and from which Whitt
(2012) rescued us.

One is thus led to the relevance-boundary of “black-box” ED models: they
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may support operational decisions that depend only on total patient count
but not on internal dynamics (nor may these decisions alter internal dynam-
ics); or they can model ED sojourn times within a larger hospital model. If
in addition, and following Whitt (2012), a birth-death steady-state model
is found appropriate for the “black-box”, then model reversibility accom-
modates also applications that do change total count: for example, ambu-
lance diversion when total count exceeds a certain threshold, which then
truncates the count to this threshold (and the steady-state distribution is
truncated correspondingly; see Kelly (1979)). On the other hand, black-box
models cannot support ED staffing (e.g. Yom-Tov and Mandelbaum (2014)
acknowledges some internal network dynamics), or ambulance diversion that
depends on the number of boarding patients (awaiting hospitalization). We
discuss this further in Section 3.3.

3.2.3. State dependency. In addition to time-dependent effects, we ob-
serve that the Internal ED displays some intriguing state-dependent behav-
ior. Specifically, Figure 6 depicts service (or departure) rates as a function
of the Internal patient count L (in bed or walking): the left graph displays
the total service rate, and the right graph shows the service rate per patient.
These graphs cannot arise from commonly used (birth-death) queueing mod-
els such as M/M/N (total rate that is linearly increasing up to a certain
point and then it is constant) or M/M/∞ (constant rate per patient). In
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14 ARMONY ET AL.

contrast, the per-patient service rate has an interval (11 ≤ L ≤ 20) where
it is increasing in L, which is between two intervals of decrease. (The noise
at the extremes, L ≤ 3 and L ≥ 55, is due to small sample sizes.) Note that
Batt and Terwiesch (2012) and Kc and Terwiesch (2009) also found evidence
for a state-dependent service rate.
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Fig 6: Service rate and service rate per patient as a function of L

What can cause this particular state-dependence of the service rate per
patient? We start with the “slowdown” (L ≥ 25) which, in a congested ED,
is to be expected under any of the following scenarios:

• Multiple resource types with limited capacity: As the number of occu-
pied beds increases, the overall load on medical staff and equipment
increases as well. Assuming a fixed processing capacity, the service rate
per bed must then slow down.
• Psychological: Medical staff could become emotionally overwhelmed,

to a point that exacerbates slowdown (Sullivan and Baghat, 1992).
• Choking: Service slowdown may also be attributed to so-called resource

“choking”: medical staff becomes increasingly occupied with caring for
to-be-transferred (boarding) ED patients (who create work while they
wait and, moreover, their condition could actually deteriorate), that
might end up taking capacity away from the to-be-released patients,
thereby “choking” their throughput (see Figure 13 in Section 5.3).
The choking phenomenon is well known in other environments such as
transportation (Chen, Jia and Varaiya, 2001) and telecommunications
(Gerla and Kleinrock, 1980), where it is also referred to as throughput
degradation.
• Time dependency and patient heterogeneity: Finally, slowdown as well

as speedup may be attributed to the combination of time dependent
arrivals and heterogenous patient mix (Marmor et al., 2013). We now
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expand on this in the context of the speedup effect.

As opposed to the slowdown, the apparent speedup (10 ≤ L ≤ 25) turns
out to be an artifact of biased sampling due to patient-heterogeneity and
time-variability (as observed in Section 3.2.1). To see this, we further in-
vestigate the departure rate per patient, as a function of the patient count,
at four different time-of-day intervals (corresponding roughly to the four
occupancy regimes identified in Figure 4). For each of these, we observe,
in Figure 7, either a constant service rate or a slowdown thereof, but no
speedup.
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Fig 7: Service rate per patient as a function of L by occupancy regime

Now the rate-per-patient in Figure 6 is a weighted average of the four
graphs of Figure 7. But these weights are not constant as a function of the
patient count, as seen in Figure 8. Moreover, the service rate as a function
of patient count varies at different times of the day. It follows that, what
appears to be a speedup (increasing graph), is merely a weighted average of
non-increasing graphs with state-dependent weights.

3.3. Research Opportunities. Our EDA leaves open questions for fur-
ther data-based theoretical exploration. For example: What causes the par-
ticular shape of time-dependent arrival-rates – the two local peaks in Figure
3 – which is common in many service systems (including hospitals across
the globe and call centers)? What is the dominant cause for service-rate
slow-down in Figure 6, and what can be done to alleviate this slowdown?
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Fig 8: Service rate as a function of 10 ≤ L ≤ 20 (left), and Relative frequency
(weight) of occupancy regime per L (right)

How does one separate the effects of time- and state-dependency, which one
is the more dominant and under what circumstances?

In addition, the observations in this section also raise some broader re-
search directions, within several (somewhat overlapping) model dimensions:
granularity, performance metrics, and applications.

3.3.1. Model granularity. Our focus in this section has been on overall
ED (Internal) patient count. This aggregates ED dynamics into merely ar-
rivals and departures which, as described in Subsection 3.2.2, yields a useful
black-box model but with a limited applicability scope. In contrast to this
macro level, one could consider a detailed model (most likely simulation, as
in Zeltyn et al. (2011)), which acknowledges explicitly micro-events at the
level of individual patients and providers (physicians, nurses).

The macro- and micro-models are two extreme cases of model granular-
ity, with a range of levels in between. Such intermediate levels could corre-
spond, for example, to the overall design of ED patient-flow (Marmor et al.,
2012); or to queueing models (Huang, Carmeli and Mandelbaum, 2011; Yom-
Tov and Mandelbaum, 2014) that focus on phenomena (patients re-visiting
physicians) or function (physician staffing and scheduling). The granularity
level to be used depends on the target application, data availability and ana-
lytical techniques. Choosing the “right” level for an OR/queueing model has
been mostly art, which calls for systematizing this choice process. It could
start with Whitt (2012) and (Dong and Whitt, 2014) that fit birth-death
models, and continue with existing and possibly novel statistical techniques
for model selection (Burnham and Anderson, 2002).

3.3.2. Performance metrics. There are numerous ED performance met-
rics that have not been discussed here or have merely been touched upon. Of
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special importance is time-till-first-consultation, which is often part of triage
protocols: e.g. following the Canadian Triage and Acuity Scale (Canadadian-
Triage), 90% of Category 3 (Urgent) patients should be seen by a physician
within 30 minutes of arrival. Another measure that has gained recent promi-
nence is readmission rates: it is being used as a proxy for clinical quality of
care, and we further discuss it in Section 6.1.1.

Additional measures include length of stay (LOS), abandonment (LWBS,
LAMA, absconded), workload and offered load, bed utilization, boarding
times, staff-to-bed ratios, and customers who are blocked upon their ED
arrival (e.g. ambulance diversion). These metrics are mostly related to ED
congestion (Hwang et al. (2011) lists over 70), and they have given rise to
prevalent crowding indices (e.g. Bernstein et al. (2003); Hoot et al. (2007)).
While such indices support daily ED management, they arose from ad-hoc
statistical analysis that seeks to summarize (e.g. via regression) the state of
ED congestion. OR and queueing models, on the other hand, constitute a
natural systematic habitat for congestion indices. The models can thus help
validate existing indices or devise new ones, for example by solving control
problems of patient flow that yields rigorous state-summaries and sufficient
statistics (Huang, Carmeli and Mandelbaum (2011)).

Unfortunately, useful metrics are often difficult or impossible to measure
from data. One can then attempt to infer them from the measurable. An
example is patients’ patience (the time a patient is willing to wait before
abandoning the ED); while the overall abandonment proportion is observ-
able, exact times till abandonment are not. Specifically, patients are either
served, in which case their waiting time provides a lower bound for their pa-
tience, or they are discovered missing when called for service, which provides
an upper bound. Statistical inference of ED (im)patience therefore requires
novel models and methods: these would combine current-status (Sun, 2006)
and survival-analysis (Brown et al., 2005)—in the latter, abandonment times
are observed, while they are not in the former.

3.3.3. Applications. Applications of queueing models to ED patient flow
include the following categories: ED design (e.g., Marmor et al. (2012)),
capacity sizing, staffing (e.g., Yom-Tov and Mandelbaum (2014)), and flow
control (e.g., Allon, Deo and Lin (2013); Dobson, Tezcan and Tilson (2013);
Hagtvedt et al. (2009); Huang, Carmeli and Mandelbaum (2011)). Design
challenges cover, for example, operational (fast-track) vs. clinical priorities
(see also Zeltyn et al. (2011)), physician-led triage vs. the prevalent nurse-led
(Burström et al., 2012; Oredsson et al., 2011), and the creation of a dedi-
cated sub-ED (e.g. for patients with chest-pain; Zalenski et al. (1998)). Ad-
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dressing these challenges, as well as delving into the other above-mentioned
categories, would require data beyond our present resolution and hence we
do not elaborate further.

4. Internal Wards. Internal Wards (IWs), often referred to as Gen-
eral Internal Wards or Internal Medicine Wards, are the “clinical heart” of a
hospital. Yet, relative to EDs, Operating Rooms and Intensive Care Units,
IWs have received less attention in the Operations literature; this is hardly
justified. IWs and other medical wards offer a rich environment in need
of OR/OM research, which our EDA can only tap: It has revealed multiple
time-scales of LOS, intriguing phenomena of scale-diseconomies and coexist-
ing operational-regimes of multiple resource types (beds, physicians). These
characteristics are attributed to IW inflow design, capacity management and
operational policies (e.g. discharge procedures, physician rounds).

4.1. Basic facts. Rambam hospital has five Internal Wards consisting of
about 170 beds that accommodate around 1000 patients per month. Wards
A through D are identical from a clinical perspective; the patients treated in
these wards share the same array of clinical conditions. Ward E is different
in that it admits only patients of less severe conditions. Table 1 summarizes
the operational profiles of the IWs. For example, bed capacity ranges from
24 to 45 beds and Average LOS (ALOS) from 3.7 to 6 days.

Table 1
Internal wards operational profile

Ward A Ward B Ward C Ward D Ward E

Average LOS (days) 6.0 3.9 4.9 5.1 3.7
(STD) (7.9) (5.4) (10.1) (6.6) (3.3)

Mean occupancy level 97.7% 94.4% 86.7% 96.9% 103.2%

Mean # patients per month 206.3 193.5 209.7 216.5 178.7

Standard (maximal) 45 (52) 30 (35) 44 (46) 42 (44) 24
capacity (# beds)

Mean # patients per bed 4.58 6.45 4.77 5.16 7.44
per month

Readmission rate 10.6% 11.2% 11.8% 9.0% 6.4%
(within 1 month)

Data refer to period May 1, 2006–October 30, 2007 (excluding the months
1-3/2007, when Ward B was in charge of an additional 20-bed sub-ward).

IWs B and E are by far the smallest (least number of beds) and the
“fastest” (shortest ALOS, highest throughput). The superior operational
performance of IW E is to be expected as it treats the clinically simplest
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cases. In contrast, the “speed” of IW B is not as intuitive because this ward
is assigned the same patient mix as IWs A,C, and D.

A shorter ALOS could reflect a more efficient clinical treatment or, al-
ternatively, a less conservative discharge policy. Either must not arise from
clinically premature discharges of patients, which would hurt patients clinical
quality of care. To get a grasp on that quality, we use its operational (acces-
sible hence common) proxy, namely patient readmission rate (proportion of
patients who are re-hospitalized within a pre-specified period of time: one
month in our case). In Table 1 we observe that the readmission rate of IW
B is comparable to the other wards. Moreover, patient surveys by Elkin and
Rozenberg (2007) indicated that satisfaction levels do not differ significantly
across wards. We conclude that IW B appears to be operationally superior
yet clinically comparable to the other wards. This fact may be attributed to
the smaller size of IW B, which we return to in Section 4.3.3.

4.2. EDA: LOS—a story of multiple time scales. Next, we examine the
distribution of LOS in the IWs. While it is to be expected that clinical
conditions affect patients LOS, the influence of operational and managerial
protocols is less obvious. It turns out that some of this influence can be
uncovered by examining the LOS distribution at the appropriate time scale.

Figure 9 shows the LOS distribution in IW A, in two time scales: days
and hours. At a daily resolution, the Log-Normal distribution turns out to fit
the data well. When considering an hourly resolution, however, a completely
different distribution shape is observed: there are peaks that are periodically
24 hours apart, which correspond to a mixture of daily distributions. (We
found that a normal mixture fits quite well, as depicted by the 7 normal
mixture-components over the range of 0–150 hours in the right diagram of
Figure 9.)

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Re
la

tiv
e 

fre
qu

en
ci

es
 %

 

Time (1 day resolution) 

HomeHospital Patient length of stay in Ward (days)  
(by ward_department), Internal Medicine A 

January 2004-October 2007, All days 

Empirical Lognormal (mu=1.38 sigma=0.83) 

Empirical:  N  = 8934, mean = 5.7, std = 6.3 
Lognormal: mean = 5.6, std = 5.6 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 

Re
la

tiv
e 

fre
qu

en
ci

es
 %

 

Time (1 hour resolution) 

HomeHospital Patient length of stay in Ward (hours) (by 
ward_department), Internal Medicine A 
January 2004 - October 2007, all days 

Fitting Mixtures of Distributions 

Empirical Total Normal Normal Normal 
Normal Normal Normal Normal 

Fig 9: LOS distribution of IW A in two time-scales: daily and hourly
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These two graphs reveal the impact of two operational protocols: The
daily time scale represents physician decisions, made every morning, on
whether to discharge a patient on that same day or to extend hospitalization
by at least one more day. The second decision is the hour-of-day at which the
patient is actually discharged. This latter decision is made according to the
following discharge process: It starts with the physician who writes the dis-
charge letters (after finishing the morning rounds); then nurses take care of
paperwork, instructing patients on how to continue medical treatment after
discharge, and then arranging for transportation (if needed). The discharge
procedure is performed over “batches” of patients and, hence, takes a few
hours. The result is a relatively low variance of the discharge time, as most
patients are released between 3pm and 4pm—see Figure 10; which provides
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Fig 10: Arrivals, departures, and average number of patients in Internal
wards by hour of day

an explanation for the observed peaks in the hourly LOS distribution that
are spaced 24 hours apart. The variation around these peaks is determined
by the arrival process: patients are hospitalized in IWs almost exclusively
over a 12-hour period (10am–10pm), with a peak in arrival rate between
3pm–7pm (Figure 10).

Note that the arrival process to the IWs couples almost exclusively with
the departure process from the ED, and hence the timing of its peak (3pm–
7pm) is naturally coupled with IW discharge peaks (3pm–4pm). In other
words, and as further discussed in Section 5.6, the discharge policy from
IWs significantly influences ED congestion. Similar observations in a Singa-
pore hospital led Shi et al. (2012) to model an inpatient ward as a 2-time-
scale system, and to consequently propose flow-stabilization as a means of
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reducing delays.

Who is the Server?: Operational time-resolutions, specifically days/hours
and hours/minutes for IWs, correspond to the time scale by which service
durations are naturally measured which, in turn, identifies a corresponding
notion of “a server”. For example, IW LOS resolution in days corresponds to
conceptualizing beds as servers. This is the setup in de Bruin et al. (2009)
and Bekker and de Bruin (2010) who assume (hyper-) exponential LOS.
(Log-Normal service durations are yet to be accommodated by queueing
models.) Another IW resolution is hours, which is appropriate with servers
being nurses, physicians or special IW equipment. Here service times are
measured in minutes or parts of an hour, and offered load (workload) is
calculated (from arrival and service data) in units of, say, hours of work
that arrive per hour of the day.

4.2.1. Research Opportunities. We discuss here workload character-
ization, protocol mining via LOS distributions, flow control and why Log-
Normal.

Offered Load, or Workload: The offered load is the skeleton around which
capacity (staffing in the case of personnel) is dimensioned (Green, Kolesar
and Whitt, 2007). Consider nurses as an example. Their time-varying offered
load results from both routine and special care, and it varies during the
day for at least two reasons (see Equation (1) in Mandelbaum, Momcilovic
and Tseytlin (2012)): (a) routine care depends linearly on patient count,
which varies over a day (Figure 10), and (b) admission and discharge of
patients require additional work beyond routine, and it is more frequent
during some hours than others (Figure 10). Combining both of these time
variations, it is clear that staffing levels must (and actually do) vary during
the day, hence the importance of observing and understanding the system
in hourly resolution. As mentioned above, some efforts to develop queueing
models for nurse staffing in medical wards have been carried out by Jennings
and de Véricourt (2011), Green and Yankovic (2011) and Yom-Tov (2010).
However, these works neither explain or incorporate the LOS distribution
observed in our data, nor do they distinguish between routine, admission,
and discharge workload. Even such a distinction might not be rich enough:
indeed, the hospital environment calls for a broader view of workload, which
we discuss in Section 5.5.4.

LOS and Protocols: LOS or Delay distributions encapsulate important op-
erational characteristics, and can hence be used to suggest, measure or track
improvements. Consider, for example, the hourly effect of IW LOS (Figure
9), which is due to IW discharge protocols. It calls for an effort in the direc-
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tion of smoothing IW discharge rates over the day (Shi et al., 2012). Taking
an example from elsewhere at the hospital, consider the differences in shape
of LOS distribution between two Maternity wards (§4.2.1 in EV), which re-
sult from differing patient mix; it suggests the redesign of routing protocols
towards a more balanced workload (Plonski et al., 2013). Queueing models
are natural for analyzing the interplay between LOS distributions and oper-
ational protocols. This leads to open data-based questions in two directions:
first, incorporating protocols (e.g. patient priorities, resource scheduling)
in queueing models and validating the theoretical LOS distribution against
data (performance); second and conversely, mining protocols from data. We
now give two examples, one for each of the two directions.

Flow Control: How will changes in the IW discharge process influence
the system? For example, would the balancing of discharges more uniformly
over the day benefit the entire hospital? How would such a change influence
delays of patients waiting to be transferred into the IW from the ED? This
connection between ED boarding and ward discharges was explored by Shi
et al. (2012). We return to it in Section 5.6.

Why Log-Normal? A long-standing challenge is to explain the prevalence
of Log-Normal as a distribution of service durations (e.g. IW LOS in days
here, or durations of telephone calls in Brown et al. (2005)). Is Log-normality
due to service protocols? It is perhaps an inherent attribute of customer ser-
vice requirements? Note that Log-Normal has an intrinsic structure that is
both multiplicative—its logarithm is a central limit, and additive—it is in-
finitely divisible, being an integral against a Gamma process (Thorin, 1977).
Can these properties help one explain the empirical Log-Normal service time
distribution?

4.3. EDA: Operational regimes and economies of scale. An asymptotic
theory of many-server queues has been developed in recent years (Gans,
Koole and Mandelbaum (2003) can serve as a starting point), which has
highlighted three main operational regimes: Efficiency Driven (ED), Quality
Driven (QD) and Quality & Efficiency Driven (QED). The ED-regime pri-
oritizes resource efficiency: servers are highly utilized (close to 100%), which
results in long waits for service. In fact, waiting durations in the ED regime
are at least in the order of service times. In the QD regime, the emphasis
is on the operational quality of service: customers hardly wait for service,
which requires that servers be amply staffed and thus available to serve.
Finally, the QED regime carefully balances service quality and server effi-
ciency, thus aiming at high levels of both and achieving it in systems that are
large enough. Under the QED regime, server utilization could exceed 90%
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while, at the same time, possibly half of the customers are served without
delay, and those delayed wait one order of magnitude less than their service
duration. The QED regime also exhibits economies of scale in the sense that,
as the system grows, operational performance improves.

Many-server queueing theory is based on asymptotic analysis, as the num-
ber of servers grows indefinitely. Nevertheless, QED theory has been found
valuable also for small systems (few servers) that are not exceedingly over-
loaded. This robustness to system size is due to fast rates of convergence
(Janssen, van Leeuwaarden and Zwart, 2011) and, significantly, it renders
QED theory relevant to healthcare systems (Jennings and de Véricourt,
2011; Yom-Tov and Mandelbaum, 2014). One should mention that, prior to
the era of many-server theory, asymptotic queueing theory was mostly con-
cerned with relatively small systems—that is few servers that are too over-
loaded for QED to be applicable (e.g. hours waiting time for service times of
minutes). This regime is nowadays referred to as conventional heavy-traffic
(Chen and Yao, 2001) and, at our level of discussion, it is convenient to
incorporate it into the ED-regime.

In the following subsection, we seek to identify the operational regime that
best fits the IWs. We then investigate (§4.3.3) the existence of economies-
of-scale in the hospital environment. We shall argue that, although IW beds
plausibly operate in the QED regime, there is nevertheless evidence for dis-
economies of scale.

4.3.1. In what regime do IWs operate? Can QED- and ED-regimes co-
exist?. We start by identifying the operational regimes that are relevant to
our system of IWs. This system has multiple types of servers (beds, nurses,
physicians, medical equipment), and each must be considered separately.
Here we focus on beds and physicians.

We argue that IW beds operate (as servers) in the QED regime. To sup-
port this statement, we first note that our system of IWs has many (10’s)
beds/servers. Next we consider three of its performance measures: (a) bed
occupancy levels; (b) fraction of patients that are hospitalized in non-IWs
while still being under the medical care of IW physicians (patients who were
blocked from being treated in IWs due to bed scarcity); (c) ratio between
waiting time for a bed (server) and LOS (service time).

Considering data from the year 2008, we find that 3.54% of the ED pa-
tients were blocked, the occupancy level of IW beds was 93.1%, and patients
waited hours (boarding) for service that lasted days (hospitalization). Such
operational performance is QED—single digit blocking probability, 90+%
utilization and waiting duration that is one order of magnitude less than ser-
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vice. Preliminary formal analysis, carried out in Section 4.3.1 of EV, demon-
strates that QED performance of a loss model (Erlang-B, as in de Bruin et al.
(2009)) usefully fits these operational performance measures of the IWs.

Turning to physicians as servers, we argue that they operate in the ED
regime (conventional heavy traffic). This is based on the following observa-
tion: from 4pm to 8am on the following morning, there is a single physician
on duty in each IW, and this physician admits the majority of new patients
of the day. Therefore, patients that are admitted to an IW (only if there is
an available bed) must wait until both a nurse and the physician on call be-
come available. The admission process by the physician lasts approximately
30 minutes, and waiting time for physicians is plausibly hours (it takes an
average of 3.2 hours to transfer a patient from the ED to the IWs; see Section
5.2). Performance of physicians is therefore Efficiency Driven.

4.3.2. Research Opportunities. We identified two operational regimes,
QED and ED, that coexist within the ED+IW: waiting in the ED for IW ser-
vice. What queueing models and operational regimes can valuably capture
this reality? Note that such models must accommodate three time scales:
minutes for physician treatment, hours for transfer delays, and days for hos-
pitalization LOS. Some questions that naturally arise are the following: How
do the regimes influence each other? Can we assume that the “bottleneck”
of the system is the ED resource (physicians)? Thus, can one conclude that
adding physicians is necessary for reducing transfer delays, while adding
beds would have only a marginal impact on these delays? How would a
change of physician priority influence the system, say giving higher priority
to incoming patients (from the ED) over the already hospitalized (in the
IWs)? Does the fact that physicians operate in the ED-regime eliminate the
economies of scale that one expects to find in QED systems? Empirical ob-
servations that will now be presented suggest that this might indeed be the
case.

4.3.3. Diseconomies of scale (or how ward size affects LOS). Our data
(Table 1) exhibits what appears to be a form of diseconomies of scale: a
smaller ward (IW B) has a relative workload that is comparable to the larger
wards, yet it enjoys a higher turnover rate per bed and a shorter ALOS,
with no apparent negative influence on the quality of medical care. The
phenomenon is reinforced by observing changes in LOS of IW B, when the
number of beds in that ward changes. Figure 11 presents changes in ALOS
and the average patient count, in IWs B and D over the years. During 2007,
the ALOS of Ward B significantly increased. This was due to a temporary
capacity increase, over a period of two months, during which IW B was
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made responsible for 20 additional beds. We observe that, although the same
operational methods were used, they seem to work better in a smaller ward.
In concert with the latter observation, we note a reduction in ALOS of IW
D, mainly from 2007 when ward size decreased as a result of a renovation.
One is thus led to conjecture that there are some drawbacks in operating
large medical units—e.g. larger wards are more challenging to manage, at
least under existing conditions.
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Fig 11: Average LOS and number of patients in Internal wards B and D by
year

Several factors could limit the blessings of scale economies:

• Staffing policy : It is customary, in this hospital, to assign an IW nurse
to a fixed number of beds; then nominate one experienced nurse to
be a floater for solving emerging problems and help as needed. This
setting gives little operational advantage to large units, if at all: the
larger the unit the less a single floater can help each nurse. The trade-
off that is raised is between personal care (dedicated servers hence care
continuity) vs. operational efficiency (pooling). This tradeoff has been
addressed in call centers (Aksin, Karaesmen and Ormeci, 2007; Jouini,
Dallery and Aksin, 2009), and in outpatient medical care (Balasubra-
manian, Muriel and Wang, 2012; Balasubramanian et al., 2010), but
inpatient healthcare will surely add its own idiosyncracies. Another
natural tradeoff that arises is whether the floater should indeed be an
experienced nurse, or is it better to let more junior nurses be floaters
so that they can learn from this broader experience.
• Centralized medical responsibility : Ward physicians share the respon-

sibility over all patients. Every morning, the senior physicians, resi-
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dents, interns, and medical students examine every patient case to-
gether (physicians’ rounds) and discuss courses of treatment. This is
essential as Rambam hospital is a teaching hospital, and one of its cen-
tral missions is the education and training of doctors. Naturally, the
larger the unit the longer its morning round and, consequently, less
capacity is available for other tasks (e.g. admissions and discharges).

4.3.4. Research opportunities. In Section 4.3.2 of EV we provide ad-
ditional plausible explanations for the observed diseconomies of scale. This
phenomenon is important to model carefully and understand, as it can sig-
nificantly affect decisions on unit sizing and operational strategy. While
Queueing Theorist are well equipped to address the operational dimensions
of such decisions, they must collaborate with researchers from other dis-
ciplines such as organizational behavior for complete comprehension. Now
suppose one takes size differences among wards as a given fact (e.g. due
to space constraints that cannot be relaxed). Then the following question
arises: What protocol should be used to route patients from the ED to the
wards, in order to fairly and efficiently distribute workload among them?
This challenge is directly related to the process of transferring patients from
the ED to the IWs, which is the topic of the next section.

5. The ED+IW Network. After discussing the ED and IWs sepa-
rately, in this section we discuss the ED+IW network as a whole. We start
with the “ED-to-IW” process of transferring patients from the ED to the
IWs. One may think of this process as the “glue” that connects the ED to
the IWs. We discuss delays in the transfer process (Sections 5.2-5.4) and
fairness in this process towards both patients and medical staff (Section
5.5). We conclude, in Section 5.6, with an integrative view of the interplay
between the three components: ED, IWs, and ED-to-IW.

5.1. ED-to-IW Transfer Process: Basic facts. The “ED-to-IW” process
covers patient transfers from the ED to the IWs. We view this process in the
context of flow or routing control. Routing in hospitals differs from routing
in other service systems, for various reasons including incentive schemes,
customers’ (patients’) limited control (or even helplessness), and the timing
of the routing decision. Thus, although the transfer process involves routing-
related issues similar to those that have been looked at extensively in the
queueing literature, our data indicate that unusual system characteristics
significantly affect delays and fairness features in a hospital setting, which
creates many research opportunities.
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A patient, whom an ED physician decides to hospitalize in an IW, is as-
signed to one of five wards, according to a certain routing policy (described
momentarily). If that ward is full, its staff may ask for reassignment with
the approval of the hospital’s Head Nurse. Once the assigned ward is set,
the ward staff prepares for this patient’s arrival. In order for the transfer
to commence, a bed and medical staff must be available, and the bed and
equipment must be prepared for the specific patient (including potential re-
arrangement of current IW patients). Up to that point, the patient waits in
the ED and is under its care and responsibility. If none of the IWs is able to
admit the patient within a reasonable time, the patient is “blocked”, namely
transferred to a non-internal ward. Then the latter undertakes nursing re-
sponsibilities while medical treatment is still obtained from an IW physician.

An integral component of the transfer process is a routing policy, or pa-
tient assignment algorithm. As described in Section 4.2, Wards A–D provide
similar medical services, while Ward E treats only the less severe patients.
The similarity between Wards A–D requires a systematic assignment scheme
of patients to these wards. Rambam hospital determines the assignment via
a round-robin (cyclical) order among each patient type (ventilated, special
care, and regular), while accounting for ward size (e.g. if Ward X has twice
as many beds as Ward Y, then Ward X gets two assignments per one as-
signment of Y). This scheme is implemented by a computer software called
“The Justice Table”. As the name suggests, the algorithm was designed by
the hospital to ensure fair distribution of patient load among wards, so that
staff workload will be balanced. It is worth noting that a survey among 5
additional hospitals in Israel (EV, Section 5.6) revealed that a cyclical rout-
ing policy is very common; yet, some hospitals apply alternative assignment
schemes, for example, random assignment by patient ID. Interestingly, only
one of the surveyed hospitals uses an assignment that takes into account
real-time bed occupancy.

5.2. Delays in transfer. As is customary elsewhere, the operational goal
of Rambam hospital is to admit ED boarding patients to the IWs within
four hours from decision of hospitalization. However, the delays are often
significantly longer. The waiting-time histogram in Wards A–D, for the years
2006-2008, is depicted in Figure 12. We observe significant delays: while the
average delay was 3.2 hours, 25% of the patients were delayed for more than
4 hours.

An interesting phenomenon is observed when analyzing transfer delays
by patient type. We note that, on average, ventilated patients wait much
longer (8.4 hours) than regular and special care patients (average of 3 and
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Fig 12: Transfer time by patient type, in hours

* Data refer to period 5/1/06–10/30/08 (excluding the months 1–3/07, when
Ward B was in charge of an additional sub-ward)

3.3 hours respectively)—see Figure 12. In particular, the delay distribution
of these ventilated patients is bi-modal with 41% of such patients delayed
by more than 10 hours. Ventilated patients must have the highest priority
in transfer but, in reality, many do not benefit from it.

How come do many of the ventilated patients experience such long delays?
We observe that the shorter delays of the ventilated patients (≤ 4 hours)
have a pattern that resembles that of the other two patient types. The longer
delays are harder to decipher. Possible explanations include: (a) Ventilated
patients are hospitalized in a sub-ward inside the IW (A–D), often referred
to as Transitional (intensive) Care Unit (TCU) (Armony, Chan and Zhu,
2013). Each such TCU has only 4–5 beds. The average occupancy rate of
the TCUs at Rambam is 98.6%; the combination of high occupancy with a
small number of beds results in long waits during overloaded periods. (b)
Ventilated patients require a highly qualified staff to transfer them to the
ward. Coordinating such transfers takes longer.

5.2.1. Research Opportunities. Delays in transfer add opportunities
to those arising from protocol mining, as discussed at the end of §4.2.1;
relevant here is the specific challenge of deciphering a routing protocol from
data such as in Figure 12. In addition, one would like to be able to analyze
and optimize patient-flow protocols in queueing models, specifically here
fork-join networks (representing synchronization between staff, beds and
medical equipment) with heterogeneous customers. Such models, under the
FCFS discipline, were approximated in Nguyen (1994). Their control was
discussed in Atar, Mandelbaum and Zviran (2012) and Leite and Fragoso
(2013).
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The discussion above also raises the tension between pooling and continuity-
of-care. The fact that Rambam chose to distribute TCU beds among four
IWs, instead of having one larger TCU, definitely increases waiting time for
a TCU bed. Nevertheless, it is also advantageous from the quality-of-care
perspective to have the TCU beds be part of an IW since, when patients’
condition improve, they are transferred from the TCU in the IW to a regu-
lar room in the same IW, while continuing treatment by the same medical
staff (physicians and nurses). This continuity of care reduces the number of
hand-offs, which are prone to loss of information and medical errors. The
tradeoff between pooling and continuity-of-care is an interesting challenge
to navigate using OR methods.

5.3. Influence of transfer delays on the ED. Patients awaiting transfer
(boarding patients) overload the ED: beds remain occupied while new pa-
tients continue to arrive, and the ED staff remains responsible for these
boarding patients. Therefore, the ED in fact takes care of two types of pa-
tients: boarding patients (awaiting hospitalization) and in-process patients
(under evaluation or treatment in the ED). Both types suffer from delays in
the transfer process.

Boarding patients may experience significant discomfort while waiting:
the ED is noisy, it is not private and often does not serve hot meals. In
addition, ED patients do not enjoy the best professional medical treatment
for their particular condition, and do not have dedicated attention as in
the wards. Moreover, longer ED stays are associated with higher risk for
hospital-acquired infections (nosocomial infections). Such delays may in-
crease both hospital LOS and mortality rates, similarly to risks of delays
in ICU transfer (e.g. Chalfin et al. (2007); Long and Mathews (2012); Maa
(2011)). Hence, the longer patients wait in the ED, the higher the likelihood
for clinical deterioration and the lower is their satisfaction.

In-process ED patients may suffer from delays in treatment, as additional
workload imposed by transfer patients on ED staff can be significant. Figure
13 shows our estimates of the fraction of time that ED physicians spent car-
ing for the transfer patients, assuming (the Rambam experience) that every
such patient requires an average of 1.5 minutes of physician’s time every 15
minutes. We observe that transfer patients take up to 11% of physician time
in the ED. This extra workload for the ED staff, that occurs at times when
their workload is already high, results in “wasted” capacity and throughput
degradation, as discussed in Section 3.2.3.

To summarize, by improving patient flow from the ED to the IWs, in
particular reducing transfer times, hospitals can improve the service and
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treatment provided to both transfer and in-process patients. In turn, reduc-
ing the workload in the ED would improve response to arriving patients and
could, in fact, save lives.

5.3.1. Research Opportunities. The delays in transfer give rise to the
following research questions:

1. Modeling transfer queue: Transfer patients may be viewed as customers
waiting in queue to be served in the IW. Traditionally, in Queueing
Theory, it has been assumed that customers receive service only once
they reach a server, and not while waiting in queue. In contrast, here
a waiting patient is “served” by both the ED and the IW. In the
ED, clinical treatment is provided: according to regulations, transfer
patients must be examined at least every 15 minutes. In the ward,
“service” actually starts prior to the physical arrival of the patient,
when the ward staff, once informed about a to-be-admitted patient,
starts preparing for the arrival of this specific patient. The above has
implications on modeling the ED-to-IW process, and it affects staffing,
work scheduling, etc. A natural modeling framework here would be
queueing networks with signals (Chao, Miyazawa and Pinedo, 1999).

2. Emergency Department architecture: As described, ED staff attends to
two types of patients: transfer and in-process. Each type has its own
service requirements, leading to differing service distributions and dif-
fering distribution of time between successive treatments. While trans-
fer patients receive periodic service according to a nearly-deterministic
schedule (unless complications arise), in-process service is random, in
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nature.
One may consider two options for ED architecture: (a) treat transfer
and in-process patients together in the same physical location, as is
done at Rambam, or (b) move the transfer patients to a transitional
unit (sometimes called “delay room” or “observation room”), where
they wait for transfer; this is done, for example, in a Singapore hospi-
tal that we were in contact with. Note that using option (b) implies
having dedicated staff, equipment and space for this unit. The follow-
ing question then arises: Under what conditions is each of these ED
architectures more appropriate?
Note that the Singapore hospital architecture is even more complicated
than (b) above, as the responsibility for the transfer patients is handed
over to IW physicians after a two-hour ED boarding delay. This pro-
vides the IW medical staff with an incentive to transfer the patients to
the ward, as soon as possible, where they can be comfortably treated.
In EV, Section 5.6, we further discuss how different architectures are
related to incentive schemes and, in turn, influence delay times.

5.4. Causes of delay. In order to understand the causes of long delays in
the ED-to-IW transfer, we interviewed hospital staff, conducted a time and
motion study, and further explored our data. We learned that delays are
caused not only by bed unavailability; patients often wait even when there
are available beds. Indeed, our data shows that the fraction of patients who
had an available bed in their designated ward, upon their assignment time,
was 43%, 48%, 76%, 55%, for Wards A–D, respectively. However, as Figure
12 shows, the probability to be admitted to the wards, immediately (or
within a short time) after hospitalization decision, was much smaller. In
fact, over the same period of time, only 4.9% of the patients were admitted
to an IW within 30 minutes from their assignment to this ward. Our findings
identify 13 plausible causes for delay, which are summarized in the Cause-
and-Effect (Fishbone) diagram depicted in Figure 14. We elaborate here on
two that have some interesting modeling aspects.

1. Timing of routing decision: Input-queued vs. Output-queued system.
Recall that preparation for a transfer of a particular patient starts
in the designated ward, prior to the actual transfer. This forces the
hospital to adopt an output-queued scheme (Stolyar, 2005), where each
patient is first assigned to an IW and then waits until the ward is able
to admit. This is in contrast to a scheme where patients are placed
in a “common” queue, then routed to an IW only once at the head
of the line and a bed in any of the IWs becomes available. The latter
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Fig 14: ED-to-IW delays—Causes and effects chart

is referred to as an input-queued scheme. Figure 15 depicts the two
schemes.

Fig 15: Output- vs. Input-queued scheme

Output-queued schemes are inherently less efficient than their input-
queued counterparts, because the routing decision is made at an earlier
time with less information. Moreover, the output-queued scheme is
inequitable towards patients because FCFS is often violated.
The problem of customer routing in input-queued schemes has re-
ceived considerable attention in the queueing literature (e.g. Armony
(2005); Atar and Shwartz (2008); Gurvich and Whitt (2010); Man-
delbaum and Stolyar (2004)). Similar issues in output-queued systems
have been generally overlooked. Exceptions include Stolyar (2005) and
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Tezcan (2008) who establish that the two systems have asymptotically
similar performance, in both the conventional and the many-server
heavy traffic regimes. This implies that inefficiencies, which arise in
our ED-to-IW process due to the use of an output-queued scheme,
become negligible in heavily loaded systems. More generally, insights
gained from studying the input-queued systems, as in the above ref-
erences, may carry over to the output-queued systems. But how well
does that insight translate to an environment such as a medical unit?
This should be tested empirically; a first step was taken by Tseytlin
and Zviran (2008).

2. Not considering ward occupancies: The role of information availability
in routing. An additional important aspect of routing schemes, which
directly affects patient delays, is the availability of information on the
system state, at the moment of the routing decision. On the one hand,
hospitals may base the routing on no information, namely use a static
routing policy like round robin (surprisingly, our experience suggests
that this is a prevalent policy). On the other extreme, a full information
policy that takes into account current occupancy levels and projected
future dismissals and transfers is feasible, if the information system is
accurate and accommodating enough (See Chapter 8 in Hall (2012),
which discusses bed management). It is important to understand the
effect of information availability on system performance and fairness
towards patients and medical staff.

5.5. Fairness in the ED-to-IW process. Transfer policies may have rami-
fications on fairness towards customers (patients) and towards servers (med-
ical and nursing staff). We investigate both aspects next.

5.5.1. Fairness towards patients. In Section 5.4, we pointed out that
output-queued schemes lead to diminished patient fairness, as FCFS order is
often violated. (For references on the significance of FCFS in customer jus-
tice perception, see Mandelbaum, Momcilovic and Tseytlin (2012).) Indeed,
our Rambam data indicate that 45% of the ED-to-IW transfer patients were
“overtaken” by another patient (see Table 2). Moreover, more than a third
of those were overtaken by at least three other patients. Although this fig-
ure includes overtaking between patient types, which may be due to clinical
priorities, within each patient type there were significant FCFS violations
as well. Specifically, 31% were actually overtaken by at least one patient of
the same type, most of them not within the same ward, and hence these
violations are conceivably due to the output-queued scheme.

While output-queues are inherently inefficient and unfair, they are un-
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Table 2
Percentage of FCFS violations per type within each IW

IW \ Type Regular Special care Ventilated Total

Ward A 7.57% 7.33% 0.00% 7.37%

Ward B 3.86% 5.72% 0.00% 4.84%

Ward C 7.09% 6.62% 0.00% 6.80%

Ward D 8.18% 7.48% 2.70% 7.81%

Total within wards 6.91% 6.80% 0.67% 6.80%

Total in ED-to-IW 31% 31% 5%

likely to change in Rambam hospital due to the practical/clinical consid-
erations described above, as well as psychological consideration (e.g., early
ward assignment reduces uncertainty which in turn reduces anxiety for pa-
tients and their families). The use of output-queues in the ED-to-IW process
illustrates some idiosyncrasies of flow control in healthcare.

5.5.2. Research Opportunities. A natural question is how to best
maintain patient fairness in the output-queued scheme: What routing poli-
cies will keep the order close to FCFS? Is FCFS asymptotically maintained
in heavy-traffic?

What other fairness criteria should be considered? Assuming that patients
have preferences (clinical or prior experiences) for a specific ward, fairness
may be defined with respect to the number of patients who are not assigned
to their top priority. Related to this is the work of Thompson et al. (2009)
that looks into minimizing the cost that reflects the number of “non-ideal”
ward assignments; we propose to also look at the equity between patients
in this context. One may alternatively consider achieving equity in terms
of blocking probability (recall the discussion in §4.3.1) or patient delay. For
the latter, Chan, Armony and Bambos (2011) show that such fairness may
be achieved via Maximum Weighted Matching.

5.5.3. Fairness towards staff. In Section 5.4 we discussed the implica-
tions of the routing policy on delays in the ED-to-IW process; in addition,
routing also has a significant impact on wards’ workload. High workload
tends to cause personnel burnout, especially if work allocation is perceived
as unjust (references can be found in Armony and Ward (2010)). Rambam
hospital takes fairness into consideration, as is implied from the name “Jus-
tice Table”. However, is the patient allocation to the wards indeed fair?

There are many candidates for defining server “fairness”. One natural
measure is equity in the occupancy level. Since the number of nurses and
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doctors is typically proportional to the number of beds, equal occupancy
levels imply that each nurse/doctor treats the same number of patients, on
average. But does this imply that their workload is evenly distributed?

As mentioned in §4.2.1, staff workload in hospitals is not spread uniformly
over a patient’s stay, as patients admissions/discharges tend to be work
intensive and treatment during the first days of a patient’s hospitalization
require much more time and effort from the staff than in the following days
(Elkin and Rozenberg, 2007). Thus, one may consider an alternative fairness
criterion: balancing the incoming load, or the “flux”—number of admitted
patients per bed per time unit, among the wards. In Table 1 we observe that
Ward B has a high average occupancy rate. In addition, as it is both the
smallest and the “fastest” (shortest ALOS) ward, then (by Little’s law) it
has the highest flux among comparable IWs A–D. The workload of Ward B
staff is hence the highest. We conclude that the most efficient ward is subject
to the highest load—that is, patient allocation appears unfair towards ward
staff.

Our data have already motivated some work on fair routing. Analytical
results for input-queued systems were derived in Mandelbaum, Momcilovic
and Tseytlin (2012), where both occupancy level and flux are taken into
account with respect to fairness. Tseytlin and Zviran (2008) perform a sim-
ulation study of the output-queued system under various routing schemes.
They propose a simulation-supported algorithm that balances a weighted
function of occupancy and flux to achieve both fairness and short delays.

5.5.4. Research Opportunities. In the context of output-queued sys-
tems, a more rigorous analytical study is needed to formalize the conclusions
of Tseytlin and Zviran (2008). Specifically, how to combine the occupancy
and flux criteria into a single effective workload measure, which would be
balanced across wards. Even in the context of input-queued systems, it is our
view that Armony and Ward (2010); Mandelbaum, Momcilovic and Tseytlin
(2012) and Ward and Armony (2013) have just taken the first steps towards
staff fairness, as they do not fully account for the dynamic nature of work-
load in healthcare. As patients progress in their hospital stay, their medical
needs change (mostly reduce) and the accuracy in which one can predict
their LOS increases. This information could be very useful in successfully
balancing workload.

The underlying definition of operational fairness, in our discussion thus
far, proposed equal workload division across medical staff. A prerequisite
for solving the “fairness problem” is then to define and calculate workload
appropriately. However, we argue that such calculations must include not
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only direct time per resource but also emotional and cognitive efforts, as well
as other relevant factors. For example, 1-minute of a standard chore does
not compare with a 1-minute life-saving challenge (Plonski et al., 2013).
Thus, the mix of medical conditions and patient severity should also be
included in workload calculation. For the latter, it is not straightforward to
determine whether wards would be inclined to admit the less severe patients
(who add less workload, and potentially less emotional stress), as opposed
to the more severe patients, who would challenge the medical staff, thus
providing them with further learning and research opportunities; the latter
is especially relevant in teaching hospitals such as Rambam.

5.6. A system view. In this Section we underscore the importance of
looking at this network of ED, IWs and ED-to-IWs as a whole, as these
three components are clearly interdependent. For concreteness, we focus on
how the discharge policy in the IW affects ED-to-IW transfer times which,
in turn, affect ED workload. We thereby argue that an integrative system
view is appropriate.

It is natural to expect that the higher the occupancy in the IWs the
longer the delays in transfer, due to limited IW resources. The left diagram
in Figure 16 displays the average delay in transfer alongside the average
number of patients per ward—in IWs A–D, by day of the week. We observe
that, as expected, the two measures have a similar weekly pattern. The
right diagram in Figure 16 shows delays in the transfer process and the
average number of patients in the IWs, as they vary throughout the day.
The correlation here is not as apparent as in the daily resolution; other
factors, such as the IW discharge process, also play a role.
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Fig 16: ED-to-IW transfer delays and number of patients in IW

We observe that the longest delays are experienced by patients assigned
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to the IWs in early morning (6am–8am)—these patients need to wait on
average 5 hours or more. This is due to the fact that IW physicians perform
their morning rounds at this time and cannot admit new patients. Then
we note a consistent decline in the transfer delay up until noon. Patients
assigned to the IWs during these times are admitted into the IWs between
1–3pm. This is about the time when the physicians’ morning rounds are
complete; staff and beds are starting to become available. Indeed, there is
a sharp decline in the number of IW patients around 3–4pm when most of
the IWs discharges are complete.

Further data analysis reveals that patients who are transferred to the IWs
before 8am experience a significantly shorter LOS; Figure 17 shows that early
hospitalization may reduce ALOS by more than 1 day. A correlation between
hospitalization time and LOS was also reported by Earnest, Chen and Seow
(2006): they observed that patients who are admitted in afternoon/night
hours have ALOS that is longer than patients admitted in the morning.
In contrast, we differentiate between early- and late-morning admissions.
Regardless, in both cases, the plausible explanation for the difference in
ALOS is the same: If patients are admitted to the ward early enough, the
first day of treatment is more effective, as tests, medical procedures and
treatments start earlier, and hence LOS is reduced. Thus, we argue that it
is important to shorten the ED-to-IW transfer process and improve the IW
admission process so that the first day of hospitalization is not “wasted”.
More on that in the research opportunities that follow.
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In Section 5.3, we discussed how transfer delays impact physician work-
load in the ED and hence may influence quality of care there. Thus, we
observe a chain of events in which the discharge policy in the IWs impacts
the delays in transfer, which in turn affects workload in the ED. In partic-
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ular, a system-view perspective is called for.

5.6.1. Research opportunities. Our discussion suggests that daily rou-
tines (schedules) in the IWs have significant impact on transfer delays and
thereby on ED workload. At the same time, these routines also affect IW
LOS. The question arises as to if and how one might wish to change these
daily routines in view of these effects. The question fits well within a queue-
ing context. The present daily routine at Rambam may be viewed as a
priority scheme where currently-hospitalized IW patients enjoy priority dur-
ing morning physicians’ rounds; these patients become low-priority, as dis-
charged patients obtain priority in the afternoon, then followed by newly-
admitted patients. Is it possible to positively affect overall system perfor-
mance by altering these priorities? (e.g. prioritizing newly-admitted and
to-be discharged patient in the morning.) More broadly, the challenge falls
within the uncharted territory of designing priority schemes for time-varying
queueing networks.

Our discussion here brings us back to the broader issue—that is the need
for a system view, in order to understand and relieve delays in patient flow.
Consider, for example, the boarding patients in EDs (Figure 16) or in ICUs
(Long and Mathews, 2012). Delays in transferring these boarding patients
are often due to scarce resources or synchronization gaps (Zaied, 2011),
which are rooted in parts of the system that differ from those where the
delays are manifested. For example, scarce resources in the IWs exacerbate
ED delays, and tardy processing of MRI results can prolong ICU LOS. It
follows that a system view is required for the analysis of patient flow in
hospitals.

When analyzing ED+IWs flows (§5), the wards operate naturally on a
time-scale of days while the ED time scale is hours. Wards thus serve as a
random environment for the ED (Ramakrishnan, Sier and Taylor, 2005). Fig-
ure 9 (§4.2) reveals that the hourly scale is also of interest for IWs. These
empirical observations arise in a service system (hospital) that evolves in
multiple time scales, which are all natural and relevant for measuring and
modeling its performance. The mathematical manifestation of such scales
is asymptotic analysis that highlights what matters at each scale, while av-
eraging out details that are deemed insignificant (e.g., Mandelbaum, Mom-
cilovic and Tseytlin (2012), Shi et al. (2012), Gurvich and Perry (2012) and
Zacharias and Armony (2013)).

6. Discussion and concluding remarks. We have described research
opportunities that arose from EDA of operation patient flow data. We now
discuss the relationship between operational performance measures and over-
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all hospital performance, and conclude with comments on data-based OR
research.

6.1. Operational measures as surrogates to overall hospital performance,
or queueing models reach beyond the operational. Hospital performance is
measured across a variety of dimensions: clinical, financial, operational, psy-
chological (patient satisfaction) and societal. The most important measures
are clearly clinical but, practically, operational performance is the easiest
to quantify, measure, track and react upon in real time. Moreover, opera-
tional performance is tightly coupled with the other dimensions (e.g. rate
of readmissions with quality of clinical care, or LOS and LWBS with finan-
cial performance), which explains its choice as a “language” that captures
overall hospital performance.

Operational performance measures are often associated with patient flow.
Among these, we discussed LWBS (Section 3) and “blocking” (where pa-
tients end up being hospitalized in a ward different from that which is med-
ically best for them - Section 4.3.1); boarding (transfer) time from the ED
to the appropriate medical unit; and measures related to LOS, in the ED
or IWs, such as merely averages (or medians), or fractions staying beyond
a desired threshold. Other measures that have not been mentioned require
intra-ward data, which is beyond our data granularity. Examples include
the time until triage or until a patient is first seen by an ED physician (Zel-
tyn et al., 2011), the number of visits to a physician during an ED sojourn
(Huang, Carmeli and Mandelbaum, 2011) and the time-ingredients of an
ED visit (treatment and waiting—for a resource, for synchronization or for
a treatment to take its effect; see Zaied (2011) and Atar, Mandelbaum and
Zviran (2012)).

6.1.1. Readmissions. As already indicated in Sections 3.1 and 4.1, our
data supports the analysis of readmissions (Mandelbaum et al., 2013). We
now elaborate on this operational measure of performance since policy mak-
ers are increasingly focusing on, as part of efforts to extend quality of care
measures from within-hospital processes to after-hospital short-term out-
comes (Medicare USA, 2013). As mentioned, the likelihood of readmission
to the hospital, within a relatively short time, is a natural indirect measure
for quality of care (similarly to first-call-resolution rates in call centers).
Consequently, readmission rates are accounted for when profiling hospitals’
quality and determining reimbursements for their services.

One should consider readmissions judiciously as some of them could be
due to factors outside the hospital control, or they may be an integral part
of the treatment regiment. For example, returns within a few months to
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chemotherapy are typically planned and are unrelated to poor quality. But
there are also unplanned chemotherapy returns after 1–2 weeks, which arise
from complications after treatment. To properly incorporate readmissions
in a queueing model (such as in Yom-Tov and Mandelbaum (2014)) one
should distinguish between these two readmission types by, for example,
modeling planned (unplanned) readmissions as deterministic (stochastic)
returns. Also note that readmissions should be measured in their natural
time-scale. For example, readmission to an ED should be measured in a
time scale of days-weeks, while readmissions to an IW have a natural time-
scale of weeks-months.

6.1.2. Capacity and Cost of Care. Of utter importance to hospital man-
agers and policy makers is hospital costing. Kaplan and Porter (2011) argue
that the mapping of patient / process flow, and the association of its activi-
ties with their supporting resources, should constitute the first step in under-
standing the cost of care. This is nothing but promoting a queueing-network
view for understanding and calculating cost-of-care. Indeed, (Kaplan and
Porter, 2011) further submit that most hospital costs are mistakenly judged
as fixed while they ought to be viewed as variable costs; it follows that
the corresponding resource levels are flexible, an observation that renders
controllable most resources in a hospital.

This viewpoint naturally connects with the distinction between static and
dynamic capacity, which we now explain. Capacity of a hospital or a ward is
commonly expressed in terms of the number of beds (or rooms, or physical
space). However, it is also necessary to associate with a ward its process-
ing capacity, which is determined by its human and equipment resources:
nurses, physicians, support personnel, and medical apparatus. One thus dis-
tinguishes between static capacity (e.g. beds) and dynamic (processing) ca-
pacity of a resource. (Note that bed capacity plays the dual role of static
capacity—capping the number of patients that can be simultaneously hos-
pitalized, and dynamic capacity—serving as a proxy for the processing ca-
pacity of medical personnel.). And this distinction connects back to costs in
that static capacity is thought of as fixed over the relevant horizon, hence its
cost is fixed; processing capacity, on the other hand, is considered variable
in that its level (and hence also cost) is flexible (controllable).

6.2. Some concluding comments on data-based research—a great oppor-
tunity but no less of a challenge. The goal of the present work has been
two-fold: first, to encourage and strengthen, through data and its EDA, the
natural link between queueing theory and its application to patient flow in
healthcare; and second, facilitate data-based learning for researchers who
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seek to reinforce this important link.
While theory has been the comfort zone of Operations Research (OR) and

Applied Probability (AP), the situation dramatically differs when (big) data
is brought into the picture. Fundamental changes are therefore essential—
both within our OR/AP community as well as our potential healthcare
partners: changes in accessibility to healthcare data, in education (e.g. con-
cerning the necessity of data-based OR research, importance and need to
publish EDA, benefits of research reproducibility) and in funding priorities
(e.g. for developing and sustaining the infra-structure that is a prerequisite
for a research such as the one reported here.)

But we are cautiously optimistic. Indeed, comprehensive data-collection
is becoming increasingly feasible, systematic and cheaper, for example via
Real-time Location Systems (RTLS), which will ultimately integrate with
Personal-Health and Financial Records. This will enable partnerships with
providers of healthcare services, that are based on multidisciplinary (clinical,
operational, financial, psychological) tracking of complete care-paths. Also,
tracking resolution and scope will be at the level of the individual patient
and provider while covering the full cycle of care. The process of data-based
OR research in hospitals is thus only beginning.
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Appendix 1: A framework for OR/AP data-based research. The
traditional still prevalent model for data-based OR/AP research has been
one where an individual researcher, or a small group, obtains and analyzes
data for the sake of an isolated research project. Our experience is that such a
model cannot address today’s empirical needs. For example, hospital data is
typically large, complex, contaminated and incomplete, which calls for a pro-
fessional inevitably time-consuming treatment. Next, using data in a single
project, or a few for that matter, is wasteful—on the other hand, data-reuse
and sharing, across student generations or research groups, requires infras-
tructure, documentation, maintenance and coordination. Finally, healthcare
data is often confidential and proprietary, and that prevents reproducibility
and slows down progress.

Towards a culture of reproducible research in empirical OR/AP. Data-
based OR/AP research must strive for reproducibility of research outcomes—
a fundamental principle in the traditional sciences. Reproducibility enables
scrutiny of analysis and recommendations. This yields credibility and trust,
which is an absolute prerequisite for influencing hospital practices.

Reproducible (Operations) Research is discussed in Nestler (2011), which
is also a source for additional references and links. There have been some sys-
tematic attempts to establish a reproducibility culture in research (Donoho
et al., 2009). It ought to start with funding agencies and journal policies: e.g.
the Editorial Statement of the Finance Department in Management Science
reads: “Authors of empirical and quantitative papers should provide or make
available enough information and data so that the results are reproducible.”
It can advance with research such as Karr (2009), that aims at statistical
analysis of distributed (unsharable) databases (e.g. hospital data); it will
ideally culminate in a multitude of research labs, each providing free access
to its data and serving its own research community and beyond.

A feasible model. A model for such a lab is the Technion SEELab, where
readers can access RambamData. Little effort will be then required to re-
produce our present EDA and going beyond it. In fact, most of our figures
were created by SEEStat—a SEELab-developed user-friendly platform for
online (real-time) EDA—and readers can recreate this process by following
Nadjhahrov et al. (2013).
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Appendix 2: Accessing data repositories and EDA tools at the
SEELab. SEELab is a data-based research laboratory, residing at the
IE&M Faculty of the Technion in Haifa, Israel. (SEE stands for “Service
Enterprise Engineering”.) SEELab maintains a repository for transaction-
level operational data (log-files) from large service operations. This data is
collected and cleaned, thus preparing it for research and teaching. Currently,
SEELab databases include call-by-call multi-year data from 4 call centers,
an internet academic website, 8 emergency departments (mainly their ar-
rivals data) and 4 years of data from the Rambam Hospital—the latter is
the empirical foundation for the present paper.

The EDA environment of SEELab is SEEStat—a software platform that
enables real-time statistical analysis of service data at seconds-to-months
time resolutions. SEEStat was used to create most of our figures. It imple-
ments many statistical algorithms: parametric distribution fitting and selec-
tion, fitting of distribution mixtures, survival analysis and more—with all
algorithms interacting seamlessly with all the databases. SEEStat also inter-
acts with SEEGraph, a pilot-environment for structure-mining, on-demand
creation, display and animation of data-based process maps (e.g. Figure 1,
and the animation of its underlying data).

Three SEELab data-bases are publicly accessible at the SEELab server
SEEServer: two from call centers and one from the Rambam hospital. For
example, data from a U.S. banking call center covers the operational his-
tory of close to 220 million calls, over close to 3 years; 40 million of these
calls were served by (up to 1000) agents and the rest by a VRU (answering
machine). The Rambam data is described in §1.2. Our analysis of the cur-
rent data greatly benefitted from our call-center experience. Moreover, the
completeness of call-center data provides an ideal to strive for, with the typ-
ically partial hospital data - this gap is now narrowing with the increasing
prevalence of real-time locating systems (RTLS) data.

SEEStat Online: The connection protocol to SEEStat, for any research or
teaching purpose, is simply as follows: go to the SEELab webpage
http://ie.technion.ac.il/Labs/Serveng;
then proceed, either via the link SEEStat Online, or directly through
http://seeserver.iem.technion.ac.il/see-terminal, and complete the
registration procedure. Within a day or so, you will receive a confirma-
tion of your registration, plus a password that allows you access to SEE-
Stat, SEELab’s EDA environment, and via SEEStat to the above-mentioned
databases. Note that your confirmation email includes two attachments: a
trouble-shooting document and a self-taught tutorial that is based on call
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center data and the Rambam hospital data. We propose that you print out
the tutorial, connect to SEEStat and then let the tutorial guide you, hands-
on, through SEEStat basics—this should take no more than 1.5 hours.

On data cleaning and maintenance. There were plenty of records that
were flawed due to archiving or simply system errors. These were identified
via their inconsistency with trustable data and hence corrected or removed.
But more challenging was the identification of records that had been included
in the data due to some regulations, rather than physical transactions. For
example, some unreasonable workload profiles led to the discovery of a high
fraction of “transfers” from the ED to a virtual ward, all occurring precisely
at 11:59pm; subsequent analysis managed to associate each of these transfers
with a physical transfer, from the ED to some actual ward on the following
day. The reason for the inclusion of such virtual transfers was financial,
having to do with regulations of insurance reimbursement. And this is just
the tip of the iceberg.

Reproducing our EDA and beyond. Rambam data is publicly available,
either for downloading (RambamData consists of records per individual cus-
tomers) or through SEEStat, as discribed above. The download link includes
data documentation. To facilitate reproducibility, the document Nadjhahrov
et al. (2013) provides a detailed description of the creation process of our
EDA, which includes all figures (except for Figure 12) in the present paper.
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