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|. INTRODUCTION

® ATwo-tier Service System: Two service providers (SPs) — free but

long wait time v.s. toll but short wait time.
e Public hospital v.s. private hospital
® Regular service v.s. expediting service with a fee
® Strategic Customers:
® Delay/ cost sensitive
® Heterogeneous
® Selecting an SP to obtain the service based on “congestion
information”
¢ Information Scenarios
® Real-time queue length at an arrival instant.

® Long term statistics (or no real-time information)

Va

A Two Queue Model for Two-tier systems

Free System My

overflow
D Toll system e

with a price p

e

M=buffer size

Figure 1. A Two-tier Service System with Strategic Customers.
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Research Issues

* How does the real-time queue 1ength information affect the

system performance?

® Is there any significant difference in system performance

behavior between with real-time information and without
real-time information scenarios? (long-asked question by

both practitioners and researchers in academia)

Related Literature

Noar (1969) - a single server queueing system with identical customers
influenced by either real-time information or the long-term statistics.

Schroeter (1982) - heterogeneous customers with uniformly distributed unit-
time waiting costs.

Hassin and Haviv (2003) - a book “To Q or Not to Q” — a survey on more
research in this area

Armony and Maglaras (20044, b) - service systems where an arriving customer
knowing some delay information chooses to balk, wait, or leave a message, in
which case the SP calls back within a guaranteed time.

Guo and Zipkin (2007) - a single server queueing system with heterogeneous
customers who either join or balk and three levels of information.

Guo and Zhang (2012a, b) investigate two-tier service systems motivated by
healthcare and border-crossing systems where customers can choose to join a
free system or a toll system. Either long-terms statistics with two queues or
real-time information with one queue.
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Our Approach

® Consider more realistic factors

® Use exact analysis supplemented by simulation studies

Il Real-time Information Scenario

Customers arrive at the system according to Poisson process with
arrival rate A.

At a customer’s arrival instant, he is provided with the real-time
queue length information for both queues, represented by Xjz),
and X{(t).

service times are exponentially distributed with rates p;and 1,
for the free and toll SPs, respectively.

The toll lane queue has a finite buffer of size M (for maximum
wait time guarantee).

The customer waiting cost parameter, denoted by 0, is distributed
with a cumulative distribution function of Fe.

Indifferent SP condition (waiting cost):

0X5(t)(1/pg) = p+ @ min{ X (¢), M}/ 1)
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Customer’s Decision

® An arriving customer makes the following decisions:
it 0X5(6)(1/p) < p+ Omin{Xo(t), M}(1/p,),

=> he will join the free queue;

i OXF(8)(1/pg) > p+Omin{Xo(£), MI(1/u) and X(t) < M,
—he will join the toll queue;

otherwise, he will be forced to join the free queue when the
toll system buffer is full — overflow of the toll lane => no

balking assumption.

Also assume that the 0 follow a uniform distribution over [0,U]

Recall - Two-tier Service Model

Free System My
;‘.' ' ‘ i .
A .
overflow
Toll system 15
- with a price p
M=buffer size

Figure 1. A Two-tier Service System with Strategic Customers.
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Quasi-Birth-Death (QBD) process - A special structure of Q
matrix can be obtained based on the customer choice behavior. - the
details of this part may be skipped in a time limited presentation.

The system state is defined as (Xy(¢), X.(f)) on the state space

Q={(n,m):n=0,1,..m=0,1,... M}

® Under the steady-state condition, the system reaches steady-

state
limg—oo P{X¢(t) = n, Xe(t) = m) = pom.

¢ The equilibrium arrival rates to the two systems:
14

n/ps—m/u.

Ae(n,m) = A (lng(#))-

n/py —m/ e

Af(n,m) = AFp(

for states with m < M.

Va

Customer self-interest choice behavior =>
Structure of the QBD generator

¢ There exists a threshold n,, for the free queue length

such that Ag(n,m) < 2 whenever n > ng and m < M, where = is a small positive

value. The lower bound ng can be determined by

L L
ol S V3

ng > —g——
Fylz/A)  pe

A
ng = int (ﬁ_ﬁ + (M — l)ﬂ—f) .
U = He
® Using this property, we can develop a level independent QBD process.
® M determines the number of phases

® n, determine the number of boundary states of the QBD process.
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State-Dependent Arrival Rates

A ifn < mlup/p.) orm=M,
Af(n,m) = % (%{%’L—f) if m(pg/pe) <n <mgandm < M,
0 if n=ng and m < M.

Ae(n,m) = A—Af(n,m).

n

n=n, | oy L. "'I‘
i " Region (1): for {(n,m) : n<(pf/puc)m or m=M}

| | ]

State Transition Diagram for M=5 case

Region (M): for {(n,m) : (uf/puc)m<n<n, and m<m}

Region (1): for {{n,m) : n=n, and m<M}

M=5

Q BD process (the next few slides will be skipped in a time

limited presentation - the paper is available upon request)

* Infinitesimal generator of the QBD process

Boo Coi
A Bu G
A21 B Cig

Amm-1 Buym Cumir

flﬂu*l.ﬂ072 B!’Iu*l.r107| C‘nu*l.nu
A B C
A B C

®  where
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where all elements are (M + 1) x (M + 1) matrices. For 0 < n < M,

—A
e —(A+p)
Boy = He He
e —(A+pg)
A
Cor = =AI
A
Hf
.-110 = :,LLfI.
—(pg+A) Ac(1,0)
¢ — (A + g +pes)
B, = 7 Hoths
fe  —(A+ ptpy)
Af(1.0)
A
Ci2 =
A
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Hf
4’42l - - = 'Ll,fI
_ uy
_(Nf‘l'-\) Ac(2,0)
Le —(A 4 ptpg) Ae(2.1)
By = He —(A+ potpg)
L te  —(A A+ petus) |
Af(2,0)
/\‘flf‘ 1)
Coz = A
L .\ -

Hf
Aumm—1 = = pgl,
L ,Llf
[ —(ut8)  A(5.0) ]
te —(A+ptry) Ae(51)
Buy = ' '
He (At potpg)  Ae(M, M —1)
L He —(A+ pgtug) |
[ A¢(5.0)
Cum+1 =
Af(M, M 1)
| A




For M+1<n<ng-—1.

33
Appnar = :].éff.
Hf
7(;if+A\) Ae(n,0)
e —(A+petpg) Ac(n,1)
Bayn = i i
Ko —(A+petpg)  Acn, M —1)
e —(A + ptug)
A¢(n,0)
Af(n.1)
(‘n,n-H =
,\ffn. M-=1)
A
For n = ny,
Hf
A = = #fI = A, fori>=1.
L I\Lf
7(ﬁlf+.\) A
B = e —(A+ptpp) A
Mo —(A A+ potpg)
c =
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( Stability Condition

Proposition 1 With real-time delay information, the two-tier service system reaches the steady

state if
(2) ()"
He ) \ Be )
Mg > —————— M+ (3)
- (#)
He
Corollary 2 If A/p, < 1, as M — o0, (3) becomes pg > 0 or there is no requirement for a

positive pig . If N/pe > 1, as M — oo, (3) becomes if + o > A.
Under the stability condition, the stationary probability vector is defined as

Prn = [Pn(]- Pnls s pnM]>

where puy, = limg_og P{X¢(t) = n, X;(t) = m}.We know that when n > ng, the matrix geometric

solution is given by

Pn+1= PRR'

Like any regular QBD process, the rate matrix R should satisty R’A+RB+C =0

A major contribution for this work

® We have developed a new computational algorithm to
calculate the stationary distribution of the QBD process,
called K-Matrix approach.

® Details are presented in the paper.

1/12/2015
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Performance measures

The boundary state vector pp has ng components (or M + 1 dimensional vectors) and is
the unique solution of the equation system of pg(Bg + RA) =0 and po(/ — R)~!'1 =0.
® Marginal Probabilities:
Paj = X pneo Pnj Pne = Z;’:o Prj

® Expected Queue Lengths:

E(L¢) = T‘}M:rojp.j and E(Lf) = 0% ) npne.

vy i

Il No Realtime Information Scenario

e Customers make the lane selection based on the long-term

statistics (e.g. expected waiting time).
® Planned and effective arrival rates for a stable system:

Let 7;,(0 < i < M) be the

probability that there are 7 customers in the toll system.
e We have }ﬁ = Af + 7T and AgE = (1 —mum)Ae.
® Stability condition:

Proposition 3 With no real-time delay information, the two-tier service system reaches steady

state if pg > Af + A

1/12/2015
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Equilibrium Analysis

Let W }ﬁ. p¢) and IV (A, i) denote the expected waiting times of the steady-state free and

toll systems.
¢ Indifferent SP condition: A customer with O satisfying:
p+OW(Neypre) = WS, pup), (4)

Ar+Ae = A
is indifferent between the two systems.

Proposition 4 For a stable two-tier service system without real-time queue length information,

there exist a unique 8 satisfying (4) and the equilibrium planned arrival rates Af and Ac.

\

Toll system

® Toll system is treated as an M/M/1/M queue with the

planned equilibrium arrival rate:

e e B
W) = % Lo o "
& pe=1.
(1=ppi .o
- if p. # 1,
I I e i=0,1,.... M,

l B
M+1 Pe= L,

where p, = \¢/p, and )\:.ﬁt = Ae(l—mag).

1/12/2015
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Free System

¢ Treated as an MMPP/M/1 queue to compute WAE, uy)

® The Markov Process modulating the arrival process with

—Ae A
Fe _(luc + /\c) Ac

Fe THe ] (ariyx (41

® The arrival rate matrix

Af 0
0 A

L 4 (M+1)x(M+1)

Introducing matrix B = (—@Q') + L, we can utilize the matrix analytic method (MAM) approach to

evaluate the performance measures of the NINIPP/M/1 queue (see the Appendix| for the free system.

1/12/2015
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However..

® The challenge is that we do not have any explicit expressions
for the equilibrium arrival rates.

® A search algorithm has to be used to numerically compute
these arrival rates and the resulting expected waiting times.

Va

Computing the Nash equilibrium performance
measures (Detailed explanations are in the paper)

A Search Algorithm of Computing W(A.. ) and H'(.\:f'.uf):

e Step 1: Imitialization - Select an initial small (or large) 8y for the right (or left) search,
compute Ay = AFy(6p), Ac = M1—Fy(6p)), 7ar frem (6), W(A, i) from (5), and “'l)\‘,’.uf)
using the MMPP/M/1 queue algorithm such that Ay + Amar < p; ond f(fg) > 0. Use o

positive Af to search to the right (or a negative A8 to search to the left). Set n=10.

Step 2: Let 0,41 = 6, + Af. Use Ay = AFy(8,41) and A, = A(1 — F3(6r+1)) to compute
W(Ac, i) from (6) and check the stability condition for the free system, Ay + AcTar < 4.
1f the free system 13 not stable, increase M until the stability condition 1s satisfied. Then
compute H'(/\;’,yl,) based on the MMPP/M/1 algorithm. Calculate f(85+1) and compared
with f(8,)

Step 3: If the sign of f changes between 8» and fn41, the solution to (9), . exists on the
interval (6,,.0,41). 20 to next step. If the sign of f does not change between @, and 0,4, let

n=n+1, go to Step 2.

Step 4: If AG > ¢, let 6p = 6,, A8 = A8/10, n = 0 go to Step 2. Otherwise, T= 6+ M2

Then use As = AF3(6), A. = A(1 — F3(8)) to compute the equilibrium W (A, ) using (5)

and ll'lt\}glu,) using the MMPP/M/1 queue algorithm (see Appendix) and Little’s Law. O

1/12/2015

15



\

V. Comparison of Two Scenarios

® How much benefit does real-time queue length information

bring to the system? - For a given p=10, vary M.

Expected Queue Length v.s. Buffer Size

e N &

Expected Queue length

o ~ - a =4

Buffer Size M

= E(Lcq) no info E(Lfg) noinfo = — E(Lcq)info = = E(Lfq)info

A Two-tier Service System with py = 0.5, 1, = 0.6,A =1,p=10,U = 10.

Observations

* At M=10, if real-time info is provided, for the toll system,
the expected queue length can be reduced by almost 45%;
for the free system, the expected length can be reduced by
almost 19%.

¢ The performance behaviors for the two systems remain
similar in the two information scenarios:
® When M is getting smaller, the difference between the toll and
free systems is getting bigger (common sense).

® When M is getting smaller, the information effect is getting
smaller.

1/12/2015
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Comparison between two scenarios

® For a given M=20, vary p:

Expected Queue Length v.s. Toll Price

10
=
¥ e —
5 - -
R
é S—
- 4
g
£ 2
3

V]

5 10 15 20 25 30
Toll Price p
. E(LCqQ) NO info E(Lfq) no info
E(Lcqg) info = = E(Lfq) info

A Two-tier Service System with py = 0.5, 1, = 0.6, A =1, M = 20.U = 10.

\ /

Observations

® At M=20, if real-time info is provided, for the toll system,
the expected queue length can be reduced by average of
40%; for the free system, the expected length can be
reduced by average of 24% over the entire price range
tested.

® The performance behaviors remain similar for the two

information scenarios.

* Implication: Using the “no real-time information”model to study
the “real-time information”model provides some bounds on “first-

moment” based performance measures. . .. but not tight bounds!
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The Effects of Toll System’s Pricing and
Service Guarantee

® Necessary condition for the toll system to exist:

Aep(l = mrr) = Celle
® Inconsistency between the toll system’s goal (max
profit/revenue) and customer service goal (min the overall

waiting time/reduce the performance difference )

Toll Revenue v.s. Toll Price

Expected Waiting Time v.s. Toll Price

op” s 1 15 B 20
Optimalp*=10  Toll Price ¢

——Toll Revenue

(a)

25 o 5 10 15 20
Optimal p*=10  Toll Price p

—Wo ——wal

(b)

Figure 5. A Two-tier System with No Real-time Information,

A=1,py =125 p, = 0.67,M =5, ~ U(0,10)

Ethical Issue

® For the heavy traffic load case (high demand), the toll system
may try to charge very high price and serve only very rich

customers.

® This problem occurred in some practical two-tier service

systems (VIP queue in some Walk-in clinics in Taiwan).
Possible solutions:
* Toll price should be regulated.

® Government may subsidize the customers seeking toll system
service -> reduce the burden of the public free service
system.

1/12/2015
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The Effect of Buffer Size M

® Provide a service guarantee for the maximum expected delay time in the toll
system.

® Again we see the difference between minimizing the overall expected waiting
time and maximizing the toll system’s revenue: implying some kind of
“regulation on service guarantee” may be needed if social welfare goal must be

met.
System Performance v.s. Buffer Size Toll Revenue v.s. Buffer Size

50 13
. :: 58 =
E ) g 58

X

£x —e | %
= : wat E
3 _ . | —— Toll Revenue
R - wITSS L H

—wsTss 4

0 53

\ Figure 7. A Two-tier Service System with No Real-time Information and /

Robustness of Results

® Non exponential service time case — deterministic service

time system

Expected Queue Length v.s. Buffer Size
with Deterministic Service Times

5
-
) —
E 4 -
5 S —-—a ——
;3 _ e
o2 T e —-—
Q -
% - -
g1
&

0

o 2 a 6 8 10 12
Buffer Size M
== == E(lcq) Info == == E(Lfq) INnfo  ======E(Lcq) NO-info === E(Lfq) no-Info

A Two-tier Service System with the deterministic service times and

\_ py=05p,=06A=1p=10U=10. Y,

1/12/2015
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Service times with a range of COVs
Dist. Erlang | k=infty | Erlang k=9 Erlang k=8 Erlang k=7 Erlang k=6
cov 0 0.333333 0.353553 0.377964 0.408248
M E(Lc) Imp | E(Lf) Imp | E(Lc) Imp | E(Lf) Imp | E(Lc) Imp [ E(Lf) Imp | E{Lc) Imp| E(Lf) Imp | E(Lc) Imp | E(Lf) Imp
10 -42.85% | -25.70% | -42.73% | -24.80% | -42.38% | -24.33% | -42.73% | -23.95% | -43.37% | -23.41%
9 -42.45% | -23.34% | -42.35% | -22.44% | -42.06% | -21.43% | -43.63% | -23.11% | -43.47% | -21.18%
8 -42.19% | -20.40% | -42.64% | -19.37% | -42.78% | -18.63% | -42.56% | -18.77% | -42.03% | -16.46%
7 -42.21% | -16.77% | -43.13% | -17.00% | -43.86% | -16.33% | -42.30% | -14.50% | -43.43% | -15.17%
6 -42.13% | -13.07% | -41.36% | -10.11% | -41.39% | -9.95% | -42.76% | -13.61% | -42.81% | -13.26%
5 -40.63% | -9.04% | -40.11% | -11.04% | -39.19% | -7.63% | -40.45% | -12.24% | -38.86% | -7.64%
4 -36.05% | -5.75% | -34.42% | -6.99% | -33.78% | -3.40% | -33.76% | -6.50% | -32.87% | -4.93%
Average Imp | -41.21% | -16.30% | -40.96% | -15.97% | -40.78% | -14.53% | -41.17% | -16.10% | -40.98% | -14.58%
Dist. Erlang k=5 Erlang k=4 Erlang k=3 Erlang k=2 Erlang k=1
cov 0.447214 0.5 0.57735 0.707107 1
M E(Lc) Imp| E(Lf) Imp | E(Lc) Imp| E(Lf) Imp | E(Lc) Imp | E(Lf) Imp | E(Lc) Imp| E(Lf) Imp | E(Lc) Imp | E(Lf) Imp
10 -42.74% | -22.50% | -42.28% | -21.09% | -43.89% | -22.29% | -44.86% | -18.93% | -46.26% | -19.03%
9 -41.95% | -19.02% | -43.36% | -19.96% | -44.21% | -19.86% | -44.48% | -15.45% | -44.00% | -16.92%
8 -42.03% | -15.89% | -43.41% | -16.57% | -44.09% | -16.76% | -44.65% | -13.70% | -41.59% | -13.77%
7 -42.57% | -13.25% | -42.87% | -12.63% | -44.57% | -16.33% | -43.57% | -13.10% | -38.45% | -13.34%
6 -41.64% | -10.08% | -41.46% | -9.74% | -41.28% | -11.17% | -39.49% | -10.30% [ -33.76% | -9.94%
5 -38.46% | -7.57% | -38.19% | -7.76% | -36.89% | -6.85% | -34.92% | -8.70% | -27.67% | -7.22%
4 -32.35% | -5.71% | -32.23% | -5.69% | -30.62% | -4.20% | -28.01% | -4.19% | -21.35% | -7.02%
Average Imp | -40.25% | -13.43% | -40.54% | -13.35% | -40.79% | -13.92% | -40.00% | -12.05% | -36.16% | -12.46%
\
/
Dist. Hyperexponential
cov 1.732050808 1.457737974
M E(Lc) Imp E(Lf) Imp
10 -35.56% -18.53%
9 -32.76% -19.39%
8 -28.98% -10.11%
7 -25.61% -11.59%
6 -21.74% -11.95%
5 -16.28% -7.57%
4 -10.52% -0.81%
Average Imp -24.49% -11.42%
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V Conclusion

® For a real-time information scenario, we develop a QBD
process model where the transition matrix structure is
determined by the customer’s choice behavior.

® Under a stability condition, we compute the stationary
performance measures by utilizing the special structure of
QBD process.

® For a non real-time information scenario, we treat the toll
and free systems as an M/M/1/K and MMPP/M/ 1 models,
respectively.

® Under the equilibrium condition, we develop a search
algorithm for computing the performance measures.

Conclusion...

* With the two models developed, we discover:

® Real-time queue length information reduces expected waiting
times of both free and toll systems — about 40-45% reduction
for the toll system and 15-20% reduction for the free system.

® The performance characteristics remain similar for both
information scenarios.

® We also examine:

® The effect of decision variables of the toll system — toll price
and buffer size => inconsistency between the social welfare
goal and the private firm’ profit goal.

® The effect of the government subsidy on the performance of
the two-tier service systems.

1/12/2015
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