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a b s t r a c t

Previous statistical tests showed that call center arrival data were consistent with a non-homogeneous
Poisson process (NHPP) within each day, but exhibit over-dispersion over multiple days. These tests are
applied to arrival data from an endocrinology clinic, where arrivals are by appointment. The clinic data
are also consistent with an NHPP within each day, but exhibit under-dispersion over multiple days. This
analysis supports a newGaussian-uniformarrival processmodel,withGaussian daily totals and uniformly
distributed arrivals given the totals.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

When building stochastic models to help improve the perfor-
mance of service systems, it is important to have an appropriate ar-
rival process model. Since the arrival rate typically varies strongly
over the day, the most common arrival process model is a nonho-
mogeneous Poisson process (NHPP). The Poisson property is math-
ematically supported when arrivals come from the independent
decisions of many different users who use the service system in-
frequently [2].

There is growing interest in testing the usual NHPP assumption
for arrival processes [1,3,7,8,13,12,21]. Kim andWhitt [12] applied
statistical tests to call center arrival data and found that (i) the
data are consistent with an NHPPwithin each day, but (ii) the daily
totals are more variable than Poisson; i.e., there is significant over-
dispersion over multiple days. Fig. 1 shows the arrival counts over
half hours. A casual glance shows no problem, but careful analysis
exposes the over-dispersion: The number of arrivals in each half-
hour interval is vastly different on five different Mondays on the
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same month. In the interval [11, 11.5], the sample mean number
of arrivals is 317.8, with sample variance 12699.2 and variance-
to-mean ratio 40.0. All of the half-hour intervals have variance-to-
mean ratios greater than 1, with minimum of 5.8 in the interval
[13, 13.5].

In this paper, we apply the statistical tests in [13,12] to arrival
data from an endocrinology clinic, where all arrivals are by ap-
pointment for individual doctors. Despite the strongly determin-
istic framework, we show that, because of (i) randomness in the
schedule, (ii) patient no-shows and (ii) early/late arrivals, the ac-
tual arrivals are distributed approximately as a Poisson process
(PP, NHPPwith constant rate) within each shift. However, the vari-
ance of the daily totals is significantly less than would be the case
for Poisson random variables; i.e., we provide evidence of under-
dispersion over multiple days. Based on this analysis, we propose
a new two-time-scale Gaussian-uniform arrival process model for
long-term planning for appointment-generated arrivals (which is
to be examined in future work).

We note that there is extensive literature on appointment
scheduling; see [4,6] for detailed reviews. While most of the early
models assume a simple deterministic arrival pattern, newmodels
are increasingly incorporating no-shows and non-punctuality, e.g.,
see [16,9] and references therein. There are also studies that show
empirical evidence of patient no-shows and non-punctual arrivals.
The estimated no-show rates vary across different services and
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Fig. 1. Arrival counts in half-hour intervals at a call center on five Mondays during
April 2001 (see [12] for details; VRI-Summit type arrival).

patient populations; the reported no-show rates are as low as 4.2%
at a general practice outpatient clinic in United Kingdom [18] and
as high as 31% at a family practice clinic [17].

Here is how the rest of this paper is organized: In Section 2 we
introduce our study data from an endocrinology outpatient clinic.
In Section 3 we compare scheduled arrivals and actual arrivals,
show the presence of no-shows and early and late arrivals, and
conduct statistical tests that show the arrivals are consistent with
a PP within shifts. In Section 4 we statistically substantiate under-
dispersion over multiple days. In Section 5 we propose stochastic
arrival process models based on our data analysis.

2. The study data

The appointment arrival data are from an endocrinology
outpatient clinic of a major teaching hospital in South Korea,
collected over a 13-week period from July 2013 to September 2013.
Sixteen doctors work in this clinic and patients arrive to the clinic
knowingwhich doctor theywill meet; hence, each doctor operates
as a single-server system. Each doctorworks in a subset of available
days and shifts. There are three shifts:morning (am) shifts, roughly
from 8:30 am to 12:30 pm, afternoon (pm) shifts, roughly from
12:30 pm to 4:30 pm, and full-day shifts. During the weekdays of
the 13-week study period, the 16 doctors worked for a total of 228
am shifts, 220 pm shifts, 25 full-day shifts. The shifts are not evenly
distributed among the doctors; the numbers ranged from 11 to 46.

In this paper, we primarily focus on patient arrivals to one doc-
tor, called doctor 9 in our longer more detailed study [11]; doctor
9 was selected because of the relatively high volume and even dis-
tribution between the am and the pm shifts. Analysis of all doctors
is in [11]. During our study period, doctor 9 worked for a total of
22 am shifts (12 on Tuesdays and 10 on Fridays) and 22 pm shifts
(11 on Mondays, 2 on Wednesdays, and 9 on Thursdays).

We first consider the number of daily scheduled and actual ar-
rivals. Patients make appointments for a specific time slot (avail-
able in 10 min intervals and each slot can have multiple patients).
The schedule fills up over time (cancellations are allowed), and we
see in the data that patients book appointments as early as a year
before the appointment date. In this paper, we do not consider the
booking date and examine only whether each patient has an ap-
pointment at the end of the previous day. We then differentiate
between the number of scheduled (scheduled by the night before)
patients (NS) and the number of unscheduled (scheduled and ar-
rived on the same day) patients (NU ). The number of patients who
showupon their appointment date (NA) is always less than or equal
to the sum of NS and NU .

Fig. 2 depicts the values of NS , NU , and NA during the 13-week
study period. The average (standard deviation) values of NS , NU ,
and NA are 66.1 (4.6), 2.2 (1.7), and 62.6 (4.2), respectively, in
am shifts and 58.8 (6.0), 2.1 (1.7), and 55.7 (7.0), respectively, in
pm shifts. Note that NU is so small relative to NS and NA that NU
necessarily has a small impact on NA. Also, note that NS and NA
have low variability; we discuss and statistically test their under-
dispersion in Section 4. On average, NA is 95% of NS in both the am
and pm shifts; in particular, NA ranges from 88% to 102% of NS in
am shifts and from 86% to 110% in pm shifts, and rarely exceedsNS .

3. Arrivals within each shift

We now examine the arrival data within each shift (am or pm)
on a single day. We start by estimating the cumulative arrival rate
and instantaneous arrival rate functions for both the scheduled and
actual arrivals. We then analyze no-shows and the lateness (or
earliness), which explain why the actual arrival process is more
variable than the scheduled arrival process. Afterwards, we test
whether the arrival data within shifts are consistent with an NHPP
or even a PP.

3.1. Estimated arrival rate functions

Patients are scheduled to arrive in 10-min intervals over each
shift. Since about 66 patients arrive in each shift, each slot has on
average 2.6 patients scheduled. Let S(t) (A(t)) be the numbers of
patients within a shift scheduled to arrive (that actually arrive) by
time t , starting from the beginning of the day. Fig. 3 shows (at the
left) the 22 observed functions S(t) and A(t) for the am shifts (top)
and pm shifts (bottom). Moving to the right, Fig. 3 then shows that
averages S̄(t) and Ā(t) and the associated histogram over 30-min
subintervals.

We draw two conclusions from Fig. 3. First, on average the pa-
tients tend to arrive early, i.e., Ā(t) > S̄(t) except at the end of the
shift. Second, from the plots, we can see that there is much more
variability in the actual arrivals than in the scheduled arrivals. In
particular, the plots of S(t) are step functions, whereas the plots of
A(t) are not.

3.2. No-shows and lateness

Let Nno be the number of the NS scheduled arrivals that do not
actually arrive,whichwe call no-shows. Note thatwehave the sim-
ple conservation equation NA = NS −Nno +NU . Let X be the differ-
ence between an actual arrival time from its scheduled arrival time.
We think of observed values of Nno/NS and X as estimates of a no-
show probability and a random deviation X , with associated late-
ness cumulative distribution function (cdf) F , both of which might
depend on the scheduled arrival time. We examine deviations in
more detail by looking at the proportion of arrivals that are late
(P(X > 0)) and the average of the earliness among those that arrive
early (X−) and of the lateness among those that arrive late (X+), as
well as the overall average lateness or deviation (X). Table 1 shows
the details for the scheduled patients in each hour of the am and
pm shifts. A similar analysis of the other 15 doctors appears in [11].

Table 1 supports the following conclusions: (i) the proportion
of no-shows is consistently about 8%, with the hourly values falling
between 6% and 8% except for a rise at the ends of the day, (ii) the
proportion of lateness is about 14% in the amand11% in the pm, but
otherwise roughly stable over time, (iii) the average lateness (X+)
is quite steady at just under 20min, except for an increase to 30min
at the beginning of the day, (iv) the average earliness increases at
the beginning of the day, soon approaching a steady-state value of
about 60min. The low initial earliness is evidently due a fixed start
time. Our data are consistentwith previous empirical evidence that
patients arrive early more often than late [14,15].

Fig. 4 shows the lateness empirical cdf’s (ecdf’s) that are esti-
mates of the lateness cdf F for each hour of the day. Consistent
with the order of the averages seen in Table 1, Fig. 4 shows that
the ecdf’s are stochastically ordered (Section 9.1 of [19]), with the
least earliness (lowest ecdf) in the first hour.
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Fig. 2. Daily totals of NS , NU and NA for am (top) and pm (bottom) shifts.
Fig. 3. Plots of the 22 scheduled arrival functions (S(t)) and actual arrival functions (A(t)) during am (top) and pm (bottom) shifts, followed by the direct averages and
averages within 30-min intervals.
Table 1
Average numbers of scheduled arrivals for each hour, proportions of no-shows and lateness, and the average earliness
(X−), lateness (X+) and overall deviation (X), among the 22 am and 22 pm shifts, plus 95% confidence intervals.

Interval Avg # scheduled % No-show % Late Avg(X+) Avg(X−) Avg(X)

AM shifts

[8, 9] 3.8 ± 0.6 13.6 ± 8.3 25.3 ± 10.9 31.8 ± 22.5 −23.3 ± 4.5 −11.0 ± 6.8
[9, 10] 15.9 ± 0.8 6.3 ± 3.0 16.4 ± 2.8 30.4 ± 16.7 −32.6 ± 3.2 −22.1 ± 3.5
[10, 11] 16.6 ± 0.8 8.9 ± 2.6 16.4 ± 3.1 13.9 ± 5.2 −43.6 ± 4.6 −34.0 ± 4.7
[11, 12] 16.6 ± 0.5 7.8 ± 2.7 12.5 ± 3.7 16.5 ± 7.9 −57.8 ± 6.2 −48.3 ± 6.1
[12, 13] 13.1 ± 1.7 7.3 ± 2.7 7.7 ± 2.9 11.5 ± 5.9 −56.2 ± 8.3 −51.4 ± 8.8
[13.14] 0.1 ± 0.1 100.0

Total 66.1 ± 2.0 8.2 ± 1.6 14.1 ± 1.6 20.8 ± 5.5 −46.2 ± 2.9 −36.7 ± 3.1

PM shifts

[11, 12] 0.1 ± 0.2 50 0 −125.2 −125.2
[12, 13] 3.1 ± 0.7 6.0 ± 5.8 8.8 ± 9.3 56.7 ± 125.5 −67.4 ± 18.8 −57.8±17.9
[13.14] 15.5 ± 1.4 6.3 ± 2.8 10.4 ± 4.0 12.4 ± 5.5 −61.4 ± 7.1 −53.2 ± 6.4
[14, 15] 15.1 ± 0.7 7.2 ± 2.4 8.4 ± 3.2 21.7 ± 9.6 −65.3 ± 9.5 −58.1 ± 9.6
[15, 16] 15.8 ± 0.6 12.4 ± 3.1 11.4 ± 4.0 13.6 ± 5.8 −60.7 ± 10.0 −52.4 ± 9.3
[16, 17] 9.0 ± 1.4 8.0 ± 5.5 13.3 ± 5.1 15.4 ± 6.9 −59.8 ± 13.8 −50.6±13.4
[17, 18] 0.2 ± 0.5 0 0 −34.6 −34.6
Total 58.8 ± 2.7 8.4 ± 1.5 10.9 ± 2.2 17.8 ± 4.9 −61.9 ± 4.6 −53.3 ± 4.5
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Fig. 4. The lateness empirical cdf’s by hour for the am (left) and pm (right) shifts.
3.3. Testing an NHPP within shifts

We now test whether or not the actual arrival process within
each shift can reasonably be regarded as an NHPP or even a PP.
Given the appointments, we would be inclined to immediately
dismiss this idea, but from Sections 3.1 and 3.2 we see that the
presence of no-shows and lateness make the actual arrival process
within the day substantially more random than the schedule.

To perform our statistical test of an NHPP, we use the
conditional-uniform (CU) Kolmogorov–Smirnov (KS) test and the
Lewis KS test from [13,12]; see those papers for a full development.
The KS test determines if n observations can be regarded as a sam-
ple from a sequence of i.i.d. random variables {Yn : n ≥ 1}, each
distributed as a random variable Y with a specified continuous cu-
mulative distribution function (cdf) G(x) ≡ P(Y ≤ x), x ∈ R. Just
like many of the other related tests, the KS test is based on the dif-
ference between the empirical cdf (ecdf)

Gn(x) ≡ n−1
n

k=1

1{Yk≤x}, x ∈ R, (1)

and the underlying cdf G, where 1A is an indicator function, equal
to 1 if the event A occurs, and equal to 0 otherwise. The KS test
focuses on the maximum difference

Dn ≡ sup
x

{|Gn(x) − G(x)|}, (2)

which has a distribution that is independent of the cdf G (provided
that the cdf is continuous), e.g., see [20].

Both the CU and Lewis KS tests apply the classical CU property
over each interval where the rate is approximately constant. For
a PP, the CU property states that, conditional on the number n of
arrivals in any interval [0, T ], the n ordered arrival times, each di-
vided by T , are distributed as the order statistics of n independent
and identically distributed (i.i.d.) U[0, 1] random variables, each
uniformly distributed on the interval [0, 1]. With this transforma-
tion, the observations become i.i.d. U[0, 1] random variables, even
if the rates of the NHPP’s are different on different intervals of the
day, because the CU property is independent of the rate of each in-
terval. Then the KS test is used to test whether the data comes from
an i.i.d. U[0, 1] sequence.

This general approach to NHPP tests follows Brown et al. [3],
which used a logarithmic data transformation after the CU trans-
formation. Kim and Whitt [13] found that the Brown [3] KS test
has significant power against alternative processes with non-
exponential interarrival-time distributions, but that the Lewis KS
test, which is based on the Durbin [5] transformation, consistently
has more power. Also [13] showed that the direct CU KS test
has especially low power against alternative processes with non-
exponential interarrival-time distributions, whichwe attributed to
the fact that the CU property focuses on the arrival times instead of
the interarrival times, whereas the Durbin [5] transformation re-
orders the interarrival times of the uniform random variables in
ascending order.
In this section, we present the results of both the CU and Lewis
KS tests, because [13] also showed that the CU KS test turns out
to be relatively more effective against alternatives with dependent
exponential interarrival times. (The re-ordering of the interarrival
times by the data transformations evidently make the other
methods less effective in detecting dependence, because the re-
orderingweakens the dependence.)Wenote that the percentage of
unscheduled arrivals among arrivals is so small in our application
(on average 2.2 unscheduled arrivals out of 62.6 arrivals or 3.5%—
see Section 2 and Fig. 2 for details) that it should have no bearing
on the results.

In each day, we consider only the intervals [9, 12] for am shifts
and [13, 16] for pm shifts. Because we have around 60 patient ar-
rivals in each shift, if we apply the KS test to each day, the power
of the test is weak because of the sample size. A common way
to address this problem is to combine data from multiple days.
We use arrival times in [9, 12] from 5–6 am shifts and arrival
times in [13, 16] from 5–6 pm shifts to make sample sizes of about
200–300 interarrival times. From [13], we know that a sample size
of 200–300 is sufficient to have reasonable power. For L = 1, we
apply the CU property to each 1-hr interval; in other words, we
allow each of the 1-hour intervals to have a different arrival rate.
Similarly, when we set L = 3, we require each shift to have con-
stant arrival rate but allow different arrival rates over different
shifts, and L = T means that we require the arrival rate to be con-
stant throughout all of the shifts that are merged to give 200–300
interarrival times.

Table 2 shows the performance of the Lewis KS test as a function
of the subinterval length L, represented by the p-values. In particu-
lar, the p-value is the probability of such a large deviation under the
null hypothesis. We compare the p-value to the significance level
of the test, which we take to be α = 0.05. Consequently, the test
dictates rejecting the NHPP hypothesis if the p-value is less than
α = 0.05. The smaller the p-value, the less likely the data came
from an NHPP.

We apply these KS tests to both the scheduled arrivals and the
actual arrivals. First, we see that the Lewis test consistently rejects
the NHPP hypothesis for the scheduled arrivals for all values of
L. In contrast, for the actual arrivals, no matter what value of L
we use, the Lewis KS test consistently fails to reject the Poisson
property. Just as in [13,12], the plots of the ecdf’s used in the Lewis
KS tests in the left two columns of Fig. 5 for am shifts dramatically
support these results. (We note that the plots look very similar for
pm shifts.) Recall that the cdf of a U[0, 1] cdf is a line with slope 1
on [0, 1].

The fact that the Lewis tests fails to reject the Poisson null hy-
pothesis for L = T supports the notion that the arrival data are
not only consistent with an NHPP, but are also consistent with a
PP (with constant rate over the shift). That is not surprising, be-
cause the appointment system serves to stabilize the arrival rate
over time.

Table 3 and the right two columns of Fig. 5 provide the counter-
parts for the CUKS test to the results for the Lewis KS test in Table 2
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Table 2
P-values of the Lewis KS test of an NHPP.

Days Scheduled arrivals Actual arrivals
n L = 1 L = 3 L = T n L = 1 L = 3 L = T

July 2, 5, 9, 12, 16, 19 (T = 18) 279 0.00 0.00 0.00 265 0.35 0.35 0.52
July 23, 26, Aug 6, 9, 13, 16 (T = 18) 287 0.00 0.00 0.00 283 0.77 0.76 0.87
Aug 20, 23, 27, Sept 3, 6 233 0.00 0.00 0.00 220 0.15 0.71 0.96
Sept 10, 13, 17, 24, 27(T = 15) 242 0.00 0.00 0.00 229 0.21 0.39 0.38
All AM shifts (T = 66) 1041 0.00 0.00 0.00 997 0.12 0.60 0.41
July 1, 4, 8, 11, 15, 18 (T = 18) 267 0.00 0.00 0.00 203 0.95 0.99 0.58
July 24, 25, Aug 5, 8, 12, 19 269 0.00 0.00 0.00 219 0.94 0.83 0.77
Aug 21, 22, Sept 2, 5, 9 225 0.00 0.00 0.00 186 0.49 0.62 0.87
Sept 12, 16, 23, 26, 30 (T = 15) 223 0.00 0.00 0.00 168 0.28 0.33 0.63
All PM shifts (T = 66) 984 0.00 0.00 0.00 776 0.15 0.49 0.80
Table 3
P-values of the CU KS test of an NHPP.

Days Scheduled arrivals Actual arrivals
n L = 1 L = 3 L = T n L = 1 L = 3 L = T

July 2, 5, 9, 12, 16, 19 (T = 18) 279 0.00 0.34 0.97 265 0.14 0.00 0.09
July 23, 26, Aug 6, 9, 13, 16 (T = 18) 287 0.00 0.21 0.99 283 0.69 0.00 0.53
Aug 20, 23, 27, Sept 3, 6 233 0.00 0.45 1.00 220 0.44 0.00 0.26
Sept 10, 13, 17, 24, 27(T = 15) 242 0.00 0.19 0.99 229 0.57 0.07 0.76
All AM shifts (T = 66) 1041 0.00 0.00 1.00 997 0.11 0.00 0.93
July 1, 4, 8, 11, 15, 18 (T = 18) 267 0.00 0.37 1.00 203 0.33 0.17 0.91
July 24, 25, Aug 5, 8, 12, 19 269 0.00 0.36 0.96 219 0.14 0.06 0.20
Aug 21, 22, Sept 2, 5, 9 225 0.00 0.47 0.98 186 0.29 0.81 0.90
Sept 12, 16, 23, 26, 30 (T = 15) 223 0.00 0.48 0.94 168 0.34 0.59 0.16
All PM shifts (T = 66) 984 0.00 0.00 1.00 776 0.05 0.05 0.81
Fig. 5. Comparison of the empirical cdf’s of the scheduled arrivals (S(t)) and actual arrivals (A(t)) in the final step of the Lewis KS test (after both the CU and the Lewis
transformations are applied) and the CU KS test (after only the CU transformation is applied) to am shifts. The two columns on the left are after the Lewis KS test, while the
two in the right are after the CU KS test. From top to bottom: L = 1, 3, T .
and the left two columns of Fig. 5. (Again, the plots look very sim-
ilar for pm shifts.) For scheduled arrivals, we observe that the CU
KS test completely misses the non-Poisson property when we use
L = 3 or L = T ; The right two columns of Fig. 5 help explain why:
When L = 1, the almost uniform spacing between appointments is
emphasized more. For actual arrivals, the CU KS test fails to reject
the null hypothesis of an NHPP when L = 1 or L = T .

On the other hand, for the actual arrivals in the am shifts when
L = 3 (meaning that the CU transformation is applied to each shift
separately), the CU KS test rejects the null hypothesis of an NHPP.
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Table 4
Sample mean and variance, and their ratio, of the number of scheduled arrivals (appointments made before the appointment day) and actual arrivals over am shifts (left)
and pm shifts (right) on different days for all 16 clinic doctors.

Doc AM Shift PM Shift
n Scheduled Actual n Scheduled Actual

µ̄ σ̄ 2 ratio µ̄ σ̄ 2 ratio µ̄ σ̄ 2 ratio µ̄ σ̄ 2 ratio

1 17 76.9 65.1 0.8 73.5 48.5 0.7 19 72.9 50.8 0.7 70.6 54.7 0.8
2 21 53.9 33.6 0.6 50.8 38.6 0.8 18 47.8 58.3 1.2 45.4 23.2 0.5
3 12 51.4 26.6 0.5 50.1 29.7 0.6 11 40.3 46.4 1.2 37.7 30.2 0.8
4 34 65.4 27.9 0.4 63.4 19.6 0.3 12 64.6 16.4 0.3 61.1 14.6 0.2
5 23 105.5 133.8 1.3 101.8 134.2 1.3 19 100.9 70.4 0.7 97.2 75.5 0.8
6 17 102.8 557.4 5.4 96.1 493.4 5.1 4 86.3 42.9 0.5 76.5 73.0 1.0
7 13 90.3 155.6 1.7 86.7 146.1 1.7 8 83.6 75.1 0.9 79.6 82.6 1.0
8 10 56.8 198.2 3.5 57.4 95.4 1.7 19 50.8 180.4 3.6 48.8 103.6 2.1
9 22 66.1 21.3 0.3 62.6 17.4 0.3 22 58.8 35.9 0.6 55.7 49.5 0.9

10 2 19.0 8.0 0.4 24.5 24.5 1.0 9 29.2 16.9 0.6 28.4 11.5 0.4
11 10 46.6 17.2 0.4 44.4 24.7 0.6 12 41.5 22.3 0.5 40.3 17.8 0.4
12 12 42.5 18.6 0.4 39.3 33.8 0.9 10 34.9 51.2 1.5 33.0 10.9 0.3
13 12 40.8 19.1 0.5 38.3 8.6 0.2 13 31.1 23.7 0.8 32.0 19.7 0.6
14 1 25.0 28.0 23 34.4 38.2 1.1 34.1 22.8 0.7
15 10 38.0 15.8 0.4 36.9 13.7 0.4 11 34.5 26.1 0.8 33.6 24.9 0.7
16 12 37.8 23.8 0.6 35.1 17.5 0.5 10 34.6 24.9 0.7 33.3 26.0 0.8
In these cases, the CU KS test evidently detects dependence among
the interarrival times, in away that the Lewis test does not,which is
evidently due to the time-varying arrival rate over the shift, which
is evident from Fig. 3. Overall, we conclude that the arrival data
within the shifts of each day are quite consistent with an NHPP.

4. Under-dispersion over multiple days

Wenow show that there is strong evidence of under-dispersion
in the arrival process A(t) over multiple days. We also show that
this under-dispersion is primarily due to the anticipated under-
dispersion in the scheduled arrival process S(t).

4.1. Low variability of the shift totals

The under-dispersion of the scheduled and actual arrivals over
multiple shifts is easily seen by looking at the ratio of the sample
variance to the sample mean of the shift totals. To emphasize this
point, we show these statistics for all 16 doctors in Table 4.

Table 4 shows consistent variance-to-mean ratios between 0.3
and 0.8, with the exception of doctors 5–8. For these, we see that:
(i) the much higher variability is already present in the scheduled
arrivals and (ii) that a closer examination reveals that there was a
systematic change in the target schedule during the data collection
period. Thus, we conclude that these exceptions should be consid-
ered anomalies and should be ignored.

Following Section 4.1 of [12], we can also apply the dispersion
test to statistically test whether or not the dispersion in the
arrival data are consistent with the Poisson property. We apply
the dispersion test to doctor 9 alone, so that the sample size is not
large, as before. The null hypothesis is that the shift arrival counts
constitute i.i.d. Poisson randomvariableswith unknownmean. The
dispersion test uses the statistic

D̄ ≡ D̄n ≡
(n − 1)σ̄ 2

n

x̄n
=

n
i=1

(xi − x̄n)2

x̄n
, where

σ̄ 2
≡ σ̄ 2

n ≡

n
i=1

(xi − x̄n)2

n − 1
and x̄ ≡ x̄n ≡

n
i=1

xi

n
; (3)

e.g., see [10].
Since we are concerned with low variability, we consider the

one-sided test and reject if D̄n < δ(n, 1 − α) where P(D̄n < δ(n,
1 − α)|H0) = α, using α = 0.05. Under the null hypothesis, D̄n is
distributed as χ2

n−1, a chi-squared random variable with n − 1 de-
grees of freedom,which in turn is distributed as the sum of squares
of n − 1 standard normal random variables. Thus, under the null
hypothesis, E[D̄n|H0] = n − 1, Var(D̄n|H0) = 2(n − 1) and (χ2

n −

n)/
√
2n converges to the standard normal as n increases. Thus

δ(n, 0.95) = χ2
n−1,0.05, the 5th percentile of the χ2

n−1 distribution.
Whenwe apply the dispersion test to the data, we find evidence

of under-dispersion in NA of am shifts. Since the sample size for
am shifts is n = 22, E[D̄n|H0] = 21 and Var(D̄n|H0) = 42. The
1st and 5th percentiles of the χ2

21 distribution are, respectively, 8.9
and 11.6. The D̄n of NA in 22 am shifts is 5.8, well below the 1st
percentile of the chi-squared distribution. On the other hand, D̄n of
NA in 22 pm shifts is 18.7, so we cannot reject the null hypothesis
that the daily arrival counts of the pm shifts over the study period
constitute independent Poisson random variables with the same
mean. Thus, from the daily totals for doctor 9 alone, we have weak
evidence of under-dispersion over multiple shifts, but when we
consider all doctors, as in Table 4, the statistical evidence of under-
dispersion is overwhelming.

5. Models for short-term and long-term planning

Our analysis suggests stochastic arrival process models, which
can be applied in simulation planning tools. For short-term plan-
ning, i.e., given the schedule at the end of the previous day, the
total number NS of scheduled arrivals and the number NS,j sched-
uled in time slot j for all j are known. The model then assumes that
no-shows are independent with probability pj and, given an actual
arrival in time slot j, there is an independent lateness (or earliness)
distributed as the cdf Fj, where (pj, Fj) are estimated from the data
as in Section 3.2. We can incorporate the unscheduled arrivals by
letting there be a Poisson random number NU of unscheduled ar-
rivals, distributed as i.i.d. uniform random variables over the shift.

For long-term planning, e.g., a week or a month in advance, our
statistical analysis of the data at least partly supports a new par-
simonious stylized two-time-scale binomial-uniform arrival process
model: The number of actual arrivals during each shift (a longer
time scale) can be assigned a binomial distributionwith probability
mass function b(k; n, p), where the parameters n and p are chosen
so that the mean np and variance np(1 − p) match the estimated
values, assuming that the ratio of the variance to the mean is less
than one, as was observed in Section 4. Then the arrivals through-
out the shift (shorter time scale) can be distributed as i.i.d. uniform
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random variables over the shift. Over many shifts, the various bi-
nomial random variables can be dependent. For any single shift,
this binomial-uniform model is consistent with the KS tests that
exploit the CU transformation in Section 3.3.

More generally, we propose an associated two-time-scale
Gaussian-uniform arrival process model for both call center arrivals
and appointment-generated arrivals. We let the number of actual
arrivals in period j of day d be NA,d,j, where each period is a des-
ignated time interval. We let the stochastic process {NA,d,j : d ≥

1, 1 ≤ j ≤ p} be a Gaussian process, where the mean and vari-
ance of NA,d,j are chosen to match the sample mean and sample
variance, just as for the binomial-uniform model. (The models are
related by using the Gaussian approximation for the binomial dis-
tribution.) We then assume that the NA,d,j arrivals in period j arrive
as i.i.d. uniform randomvariables over interval (d, j). TheGaussian-
uniform model allows dependence among the NA,d,j variables for
different pairs (d, j), which is parsimoniously characterized via the
covariances. We think that the Gaussian-uniform model may pro-
vide a basis for forecasting, as in [7] and references therein, and
then staffing.
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