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Abstract: Service systems such as call centers and hospital emergency rooms typically have strongly time-varying arrival rates.
Thus, a nonhomogeneous Poisson process (NHPP) is a natural model for the arrival process in a queueing model for performance
analysis. Nevertheless, it is important to perform statistical tests with service system data to confirm that an NHPP is actually
appropriate, as emphasized by Brown et al. [8]. They suggested a specific statistical test based on the Kolmogorov–Smirnov (KS)
statistic after exploiting the conditional-uniform (CU) property to transform the NHPP into a sequence of i.i.d. random variables
uniformly distributed on [0, 1] and then performing a logarithmic transformation of the data. We investigate why it is important to
perform the final data transformation and consider what form it should take. We conduct extensive simulation experiments to study
the power of these alternative statistical tests. We conclude that the general approach of Brown et al. [8] is excellent, but that an
alternative data transformation proposed by Lewis [22], drawing upon Durbin [10], produces a test of an NHPP test with consistently
greater power. We also conclude that the KS test after the CU transformation, without any additional data transformation, tends
to be best to test against alternative hypotheses that primarily differ from an NHPP only through stochastic and time dependence.
© 2014 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2014
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1. INTRODUCTION

This research was motivated by the desire to develop and
apply appropriate stochastic queueing models to set capac-
ities and analyze the performance of service systems, such
as telephone call centers and hospital emergency rooms;
see [1, 2] for background. Since the arrival rate in these ser-
vice systems typically varies strongly by time of day, a natural
arrival-process model is a nonhomogeneous Poisson process
(NHPP). The Poisson property arises from the independent
decisions of many people, each of whom uses the service
system only rarely. There is a supporting limit theorem, often
called the Poisson superposition theorem or the Poisson law
of rare events; for example, see [4], section 11.2 of [9] and
section 9.8 of [38].

1.1. The Conditional-Uniform Transformation

Despite the theoretical basis, it is important to apply statis-
tical tests with service system data to determine if an NHPP
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is actually appropriate in any instance. A specific statistical
test for this purpose was proposed and applied by Brown
et al. [8]. Their approach effectively addresses the compli-
cated time-varying arrival rate by converting the problem
into a standard statistical test to determine whether data can
be regarded as a sample from a sequence of independent
and identically distributed (i.i.d.) random variables with a
specified distribution.

The first step in [8] is to approximate the NHPP by a
piecewise-constant (PC) NHPP, which is usually reasonable
because the arrival rate in a service system typically changes
relatively slowly compared to the overall arrival rate. We
make the same assumption here, but we separately evaluate
the impact of the PC NHPP approximation on the statistical
tests in [20].

The second step in [8] is to apply the classical conditional-
uniform (CU) transformation to transform the PC NHPP into
a sequence of i.i.d. random variables uniformly distributed on
[0, 1]. The PC rate approximation is an important prerequi-
site, because a PC NHPP can be regarded as a homogeneous
Poisson process (PP) over each subinterval. For a PP on an
interval [0, T ], it is well known that, conditional on the total

© 2014 Wiley Periodicals, Inc.



2 Naval Research Logistics, Vol. 00 (2014)

number of arrivals in that interval, the arrival times divided by
T are distributed as the order statistics of i.i.d. random vari-
ables uniformly distributed on [0, 1]; for example, see section
2.3 of [30]. With that CU transformation, the data from all
the subintervals can be combined to obtain a single sequence
of i.i.d. random variables uniformly distributed on [0, 1].

There are significant costs and benefits associated with the
CU transformation. An important benefit of the CU transfor-
mation is that it eliminates all nuisance parameters; the final
representation is independent of the rate of the PP on each
subinterval. That is crucial for testing a PC NHPP, because
it allows us to combine the data from separate intervals with
different rates on each interval. The test is thus the same as
if it were for a PP with specified rate.

However, there is also a cost of using the CU transfor-
mation. With the CU transformation, the constant rate on
each subinterval could be random. A good test result does
not support any candidate rate or imply that the rate on each
subinterval is deterministic. Thus, those issues remain to be
addressed. For dynamic time-varying estimation needed for
staffing, that can present a challenging forecasting problem,
as reviewed in [14] and references therein.

On the positive side, this limitation of the CU transforma-
tion can be an advantage. By applying the CU transformation
to different days separately, as well as to different subin-
tervals within each day as needed to warrant the PC rate
approximation, this method accommodates the commonly
occurring phenomenon of day-to-day variation, in which the
rate of the PP randomly varies over different days; see, for
example, [3, 14, 18]; that is, when the CU transformation is
applied to different days separately, it will not reject because
of such day-to-day variation. Indeed, the CU transformation
applied in that way makes the statistical test actually be for
a Cox process, that is, for a doubly stochastic PP, where the
random rate is constant over each subinterval over which the
CU transformation is applied. Having a test for a Cox process
can be useful too, because where Cox processes have been
used, as in [6, 14], it has been assumed that the Cox process
is appropriate.

It is significant that we have a choice: If we do not want
to reject the NHPP hypothesis when there is day-to-day vari-
ation, then we can apply the CU transformation to different
days separately; if we do want to reject the NHPP hypothesis
when there is day-to-day variation, then we simply combine
the data over multiple days.

1.2. The Kolmogorov–Smirnov Statistical Test

Given the approximation by a PC NHPP and the CU trans-
formation, the test of an NHPP is transformed into a test of a
sequence of i.i.d. random variables with a specified distrib-
ution. Hence, many standard statistical tests can be applied.

Brown et al. [8] elected to apply the standard Kolmogorov-
Smirnov (KS) test, so we will focus on the KS test here.
However, we also have considered the one-sided KS tests
and the Anderson-Darling (AD) test, for example, see [35],
and give comparative results for them in the appendix [19].
The results for the AD test are similar to the results for the
KS test; we elaborate in section 5.1.

The KS test determines if n observations can be regarded
as a sample from a sequence of i.i.d. random variables
{Xn : n ≥ 1}, each distributed as a random variable X with
a specified continuous cumulative distribution function (cdf)
F(x) ≡ P(X ≤ x), x ∈ R. Just like many of the other
related tests, the KS test is based on the difference between
the empirical cdf (ecdf)

Fn(x) ≡ n−1
n∑

k=1

1{Xk≤x}, x ∈ R, (1)

and the underlying cdf F , where 1A is an indicator function,
equal to 1 if the event A occurs, and equal to 0 otherwise.
The KS test focuses on the maximum difference

Dn ≡ sup
x

{|Fn(x) − F(x)|}, (2)

which has a distribution that is independent of the cdf F

(provided that the cdf is continuous), for example, see [32].
For any observed maximum y from a sample of size n, we
compute the P -value P(Dn > y) using the Matlab program
ksstat and compare it to the significance level α, that is, for
specified probability of rejecting the null hypothesis when it
is in fact correct (type I error), which we take to be α = 0.05.
The other standard tests also look at the difference between
the ecdf in (1) and the cdf F , but using different distance
measures than the uniform distance in (2).

We call the KS test after applying the CU transformation
the CU KS test. However, Brown et al. [8] did not stop with
the CU KS test, but instead proposed a (rather complicated,
scaled) logarithmic transformation of the data (see section
3.2), which under the Poisson null hypothesis produces a sin-
gle sequence of i.i.d. mean-1 exponential random variables.
Then, they applied the KS test (2) with F(x) ≡ 1−e−x ; thus,
we call their test the Log test. They found that their banking
call center data passed their Log test; this reference has since
been highly cited. This article studies the Log KS test of a
NHPP and various alternatives.

1.3. Why Is the Final Logarithmic Data
Transformation Needed?

We conducted this research because we wondered why the
additional logarithmic data transformation was used in [8].
Why not just use the CU KS test?

In this article, we investigate why an additional data trans-
formation is needed and what form it should take. Since we
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approximate by a PC NHPP, it suffices to study alternative
tests of a PP, and we frame the problem that way, but we also
investigate the consequences of combining data from subin-
tervals because of the PC NHPP approximation of a general
NHPP; see section 5.5.

Our experiments show that the CU KS test of a PP has
remarkably little power against standard alternatives, such
as renewal processes with nonexponential interrenewal dis-
tributions. In contrast, the Log data transformation from [8]
produces a KS test of a PP with much greater power against
these alternatives. Moreover, we find another data transfor-
mation that produces a KS test of a PP that has even greater
power. [Recall that the power is the probability of rejecting the
null hypothesis when the null hypothesis is false. Specifically,
for specified significance criterion α, the power of a specified
alternative is the probability 1 − β, where β ≡ β(α) is the
probability of incorrectly failing to reject the null hypothesis
(type II error) when it is false, which of course depends on
the alternative.]

After study, we conclude that the problem with the CU KS
test of a PP is that it is actually subtly different from a standard
KS test of a PP, which focuses on the PP via its interarrival
times. Since a PP is characterized by having its successive
interarrival times be a sequence of i.i.d. exponentially dis-
tributed random variables, the standard KS test of a PP is the
KS test of the exponential distribution, and this standard KS
test does have reasonable power against renewal processes
with nonexponential interrenewal times, as we show. How-
ever, the standard KS test is unattractive for the extension to
NHPP’s, because we would need to estimate the rate of the
PC NHPP over each of the subintervals over which the rate
is assumed to be constant.

Just like the standard KS test of a PP, the CU KS test of
a PP determines if observations can be regarded as coming
from an i.i.d. sequence of random variables with a specified
distribution, but these random variables have a different inter-
pretation. If there are n arrival times Tj in the interval [0, T ],
the ecdf is just as in (1) with Xj ≡ Tj/T and the CU KS
statistic is just as in (2).

The subtle difference between the CU KS test and the stan-
dard KS test is that the CU property of a PP over an interval
[0, T ] produces i.i.d. random variables uniformly distributed
over the entire interval [0, T ]. These variables Tj correspond
to the arrival times (the successive partial sums of the inter-
arrival times), rather than the interarrival times themselves,
which are tested in the standard KS test. As a consequence,
the CU KS test evidently is less able to detect differences in
the interarrival-time distribution.

We provide mathematical support by proving that the ecdf
in (1) used in the CU KS test converges to the uniform cdf as
the sample size n increases for any rate-1 stationary ergodic
point process, that is, for any rate-1 stationary point process
satisfying a strong law of large numbers (LLN) see sections 7

and 8. As a consequence, as the sample size n increases, to
first order, there is asymptotically no power at all against any
of the alternatives in this enormous class.

1.4. Early Papers by Durbin [10] and Lewis [22]

Our study not only strongly supports Brown et al. [8], but
we also found that there is relevant history in the statistical
literature. In particular, Lewis [22] made a significant con-
tribution for testing a PP, recognizing that a transformation
proposed by Durbin [10] could be effectively applied after
the CU transformation to obtain a new KS test; we call that
the Lewis test. From [22], we also discovered that the direct
CU test of a PP had been proposed by Barnard [5], and that
the CU test was known to have little power.

On discovering [22], we first supposed that the Log test
would turn out to be equivalent to the Lewis test, and that
the Lewis test would coincide with the original KS test in
Durbin [10], but neither is the case. Thus, this past work
suggests several different KS tests, providing even more
motivation for our study. The experimental results do not
all agree, but overall we conclude that the Lewis test is the
best; it consistently has higher power than the Log test. How-
ever, the difference is small compared to the advantage over
the virtually powerless CU KS test against renewal process
alternatives with nonexponential interrenewal times.

1.5. Why Does the Lewis KS Test Have More Power?

We have explained that the CU KS test of a PP has rel-
atively low power against alternatives with nonexponential
interarrival times, because the CU transformation focuses on
the arrival times instead of the interarrival times, and thus
produces i.i.d. random variables that are uniformly distrib-
uted over the entire interval. However, the Lewis KS test
of a PP starts with that same CU transformation. Why does
it have significantly greater power against alternatives with
nonexponential interarrival times?

Fortunately, there seems to be a simple explanation: The
Durbin [10] transformation used by Lewis [22] after the
CU transformation focuses directly on the interarrival times
instead of the arrival times themselves. Indeed, the first step
of the Durbin transformation in (3) of section 3 is to reorder
the interarrival times in ascending order. Of course, the story
must be somewhat more complicated because, under the null
hypothesis, the final transformed random variables are again
i.i.d. uniform random variables on [0, 1], just as in the CU
KS test. However, if the interarrival times in the alterna-
tive hypothesis are substantially different from those of a
PP, then the difference in those interarrival times is likely to
be highlighted by this transformation.
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1.6. But the CU KS Test Is Good for Dependence Alone

We conclude that the Lewis test of a PP tends to have rel-
atively high power for testing the assumed interarrival-time
cdf, as in a non-PP renewal process. However, we also con-
clude that none of the KS tests of a PP has much power for
alternatives that differ only because of dependence among
successive exponential interarrival times.

Surprisingly, given the previous results, we find that the CU
KS test of a PP has more power against alternative hypotheses
involving dependent exponential interarrival times than the
other KS tests. More generally, we find that the CU test of an
NHPP has more power against both time dependence and sto-
chastic dependence. This is important for queueing systems,
because these forms of dependence commonly occur, as we
illustrate for departure processes from many-server queues
in section 6.

We thus ask: Why does the CU KS test of a PP have
more power against alternative hypotheses with dependent
exponential interarrival times?

Fortunately, the same reason seems to apply: For such alter-
native hypotheses, there is no difference in the interarrival-
time cdf, so there should be no gain from reordering the
interarrival times, which is at the heart of the Durbin transfor-
mation. In fact, the dependence is likely to cause a difference
from a PP through the cumulative impact of several consec-
utive interarrival times. This impact may well be reduced by
reordering the interarrival times, because the original order
has been disturbed.

1.7. Our Contributions

Our main contribution is to expose: (i) why the CU KS
test of a PP has remarkably low power against alternative
hypotheses with nonexponential interarrival times, (ii) why
the Lewis test of a PP should have much greater power
against alternative hypotheses with nonexponential interar-
rival times, and (iii) why the CU KS test of a PP may be more
effective than the other KS tests against dependent expo-
nential interarrival times. We also substantiate these insights
with extensive simulation experiments to study how the data
transformations perform.

As usual, the power increases as the distance between
the hypotheses (appropriately defined) and the sample size
increases. To provide insight, we considered a range of nat-
ural alternatives and a range of interval lengths for a rate-1 PP,
which translates immediately into a range of expected sample
sizes. Our base case has the interval [0, 200] and thus expected
sample size 200, which is consistent with call center examples
in which the arrival rate might be regarded as approximately
constant over half hours. (A call center with arrival rate 200
per half hour, handling calls of average duration 6 min, should
have a little over 40 agents responding to the calls.)

We go beyond Lewis [22] in several important ways.
First, instead of actual data sets, we use simulation to have

controlled experiments. Second, we explore the power as a
function of the way the alternative hypothesis differs from
the null hypothesis (all within the setting of stationary point
processes with the same rate). We focus on two important
different aspects of the PP null hypothesis: (i) the assumed
interarrival-time cdf, and (ii) the assumed independence of
successive interarrival times. For the interarrival-time cdf’s,
we primarily consider renewal processes with interarrival-
time cdf’s that are both more variable and less variable than
the exponential cdf. We also consider non-Poisson renewal
processes in which the nonexponential interarrival-time cdf’s
have the same mean and variance as the exponential cdf
associated with the null hypothesis. In addition, we consider
nonrenewal processes with nonexponential interarrival times.

To explore the impact of dependence, we use basic models
of dependent sequences with exponential interarrival times,
as in [15–17]. We find that none of the KS tests has much
power against alternatives with dependent exponential distri-
bution. Consistent with the discussion above, we find that the
CU test can be useful to detect deviations from a PP due to
dependence alone, but that tends to require very large sample
sizes.

Since none of the KS tests of a PP have much power against
alternatives that differ from the PP null hypothesis only via
dependence among exponential interarrival times, one might
well wonder whether the KS test can detect such departures
from a PP with any amount of data. (Indeed, it is common
to ignore the dependence, and regard the KS test as a test
only of the interarrival-time cdf.) However, the KS test can
indeed detect dependence, but it usually requires much more
data. This can be explained by asymptotics for the KS statistic
as the sample size increases, which we review in sections 7
and 8. A difference between the interarrival-time cdf’s of the
two hypotheses is revealed in the LLN, yielding a deviation
in the ecdf’s (which are scaled by dividing by n) of order
O(1) as the sample size n increases, whereas dependence
among exponential interarrival times is only revealed in the
central limit theorem (CLT), but it is revealed there, but yield-
ing a deviation in the ecdf’s of only of order O(1/

√
n) as the

sample size n increases, which is the same order as the KS
statistic under the null hypothesis. Thus, the dependence can
be detected, but it will require a large sample size n.

Because we are primarily interested in testing for an NHPP
with nonstationary data, we also studied the consequence of
combining data from the separate subintervals of a PC NHPP,
over each of which the rate is assumed to be constant. First,
it is not difficult to understand the consequence of the subin-
tervals. It causes the terminal intervals to be truncated, but
of potentially greater importance, it eliminates any depen-
dence extending beyond the subinterval boundary. Thus, we
should anticipate what we see: the use of subintervals has little
impact for renewal process alternative hypotheses with non-
exponential distributions, but it significantly degrades the
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performance of the CU KS test, with dependent exponential
interarrival times, evidently because the use of subintervals
eliminates dependence that extends beyond the subinterval
boundaries.

Because we find that different tests can have advantages
for different alternatives, we also studied composite tests,
obtained by combining the individual tests with fixed overall
significance level, using the Bonferroni inequality and refined
methods in [13, 33]; see [27] for background. For the most
part, we conclude that the Lewis test of a PP alone has high-
est power against the arrival processes with different marginal
interarrival-time cdf’s, whereas other tests have higher power
for various forms of dependence among the interarrival times
with the correct exponential cdf, but the differences are small
for dependence. We find that the CU KS test alone is relatively
good for these cases. We put the details of this investigation
in the appendix [19].

1.8. Organization of the Paper

We now indicate how the rest of the article is organized.
We start in section 2 by carefully defining what is meant by an
admissible data transformation and what is meant for it to be
effective. In section 2.3 we also indicate how to see whether
or not an admissible data transformation will be effective
against a candidate alternative hypothesis through appropri-
ate plots. Next, in section 3 we carefully define the different
KS tests we consider. In section 4, we describe our simulation
experiment. In section 5, we report our results. In section 6,
we present a separate example of the KS tests applied to the
departure process from a many-server queue, which shows
the possible advantages of the CU KS test of an NHPP, where
the alternative has both time and stochastic dependence. In
section 7, we review asymptotic results for the KS statistic.
In section 8, we show that the CU test has low power because
it has no asymptotic power in the LLN scaling. In section
9, we draw conclusions. Additional details, including many
more tables and plots, are given in an appendix [19], which
is available from the authors’ web pages.

2. ADMISSIBLE DATA TRANSFORMATIONS FOR
KS TESTS

In section 3, we define the two data transformations used
after the CU transformation from [8] and [22]. To place them
in perspective, we now formally define what it means to be an
admissible data transformation for a KS test, and specify what
it means for the admissible data transformation to be effec-
tive. That leads naturally to various optimization problems,
which so far remain unsolved.

Finally, we show that we can see if an admissible data trans-
formation will be effective (have significant power) against

any specified alternative hypothesis of interest by estimating
the average ecdf in (1) for that alternative hypothesis, based
on the sample average from many replications of a simula-
tion experiment, and comparing that estimated ecdf to the
theoretical cdf. While doing that, we can estimate the distrib-
ution of the KS test statistic in (2). However, the visual plots
dramatically show the power of alternative KS tests.

As will be clear from section 3, the two data transforma-
tions we consider are somewhat complicated. Even checking
that they are indeed admissible requires some basic stochas-
tic process theory, but that can be done. A good way to think
of these data transformations is that they reorder and modify
the original data, so that deviations from the null hypothesis
are emphasized, producing larger values of the KS statistic
in (2). For example, the data transformations tend to move
small interarrival times toward the left end of the interval.
It is not difficult to see that the Durbin data transformation
in the Lewis test moves all 0-valued interarrival times to the
left end of the interval. However, it remains to develop an
improved understanding. That effort presumably should take
place in the following mathematical framework.

2.1. The Mathematical Framework

The starting point is a KS test (but other statistical tests
could be substituted) and its null hypothesis, which we often
think of as a continuous cdf, but it should also include the
i.i.d. property. Let the sample space be S, which we require
to be a subinterval of the real line.

DEFINITION 2.1: A KS test (of sample size n) uses
the KS test statistic Dn in (2) to test whether or not
an n-dimensional random vector is distributed as the null
hypothesis, which can be characterized by a random vec-
tor X ≡ (X1, . . . , Xn) of i.i.d. random variables on S with
continuous cdf F .

An admissible data transformation maps one KS test into
another, while leaving the distribution of the KS test statis-
tic Dn in (2) under the null hypothesis unchanged. Thus, an
admissible data transformation involves two KS null hypothe-
ses indexed by i, which in turn involves two subintervals of
the real line, S1 and S2. For i = 1, 2 and any specified sample
size n, let X(i) ≡ (X

(i)
1 , . . . , X(i)

n ) be n i.i.d. random variables
with continuous cdf Fi on Si . Let Sn

i be the associated n-
fold product space. The two associated KS tests involve more
general random vectors on Sn

i .

DEFINITION 2.2: An admissible data transformation
for a KS test with null hypothesisX(1) with cdfF1 and sample
size n, defined as above, is a measurable map

T : Sn
1 → Sn

2 ,
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Figure 1. Comparison of the average ecdf based on 104 replications for four KS tests of a rate-1 Poisson process applied to a renewal
process over [0, 200] with mean-1 hyperexponential (H2) interarrival times having c2 = 2: standard, conditional-uniform, log and Lewis KS
tests (from left to right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

such that X(2) ≡ T (X(1)) is itself a bonafide KS null hypoth-
esis with cdf F2 and sample size n, i.e., (X(2)

1 , . . . , X(2)
n ) are n

i.i.d. random variables on S2 with cdf F2, and the distribution
of the KS statistic Dn in (2) under the null hypothesis remains
unchanged.

The two data transformations we consider are admissible
and both have domain Sn

1 for S1 = [0, 1] and F(t) = t ,
the uniform cdf, because they are applied to test a PC NHPP
following the CU transformation. The logarithmic data trans-
formation in [8] has S2 = [0, ∞) and G(t) = 1 − e−t , the
mean-1 exponential cdf. The Durbin [10] data transformation
we propose here has S2 = [0, 1] and G(t) = t , the uniform
cdf.

2.2. The Power of Alternative Admissible Data
Transformations

What we want to achieve with these admissible data trans-
formations is to increase the power for various alternative
hypotheses. Recall that an alternative hypothesis for given
sample size n corresponds to an alternative joint probability
distribution for the random vector X ≡ (X1, . . . , Xn).

DEFINITION 2.3: An admissible data transformation for
a KS test with sample size n and significance level α (a)
increases power for a given alternative hypothesis X if
P(Dn(X) > yα) increases after the transformation and (b) is
more powerful than another admissible data transforma-
tion for that given alternative hypothesis if P(Dn(X) >

yα) is greater with the first than the second, where yα is
the P -value for the specified significance level α, that is,
P(Dn > yα) = α under all null hypotheses.

We should point out that there is a large class of admissi-
ble data transformations that do not change the power at all.
They apply identical transformations to each coordinate. We
formalize by stating without proof the following well known
proposition.

PROPOSITION 1: Admissible data transformations of KS
tests can be defined by coordinate transformations

T =
n∏

j=1

Tj , where Tj : S1 → S2

with

Tj (Xj ) = F1(Xj ) or Tj (Xj ) = − log (1 − F1(Xj )) for all j .

The first transformation makes F2 a uniform cdf on [0, 1],
whereas the second makes F2 a mean-1 exponential cdf.
However, both admissible data transformations leave the dis-
tribution of the KS test statistic unchanged for alternative
hypotheses as well as the null hypotheses.

This framework leads to many natural optimization prob-
lems, which evidently all remain unsolved. For given null
hypothesis and alternative hypothesis, is there a most power-
ful admissible data transformation and, if so, what is it? Are
there admissible data transformations that are uniformly most
powerful for large classes of null and alternative hypothe-
ses? The admissibility condition makes these constrained
nonlinear optimization problems.

2.3. Seeing If The Data Transformations Are Effective

Although it remains to develop systematic methods to
construct admissible data transformations and establish the-
oretical results about their power for various sets of alterna-
tives, we conclude that there are good ways to see if these
admissible data transformations are effective. For this pur-
pose, simulation is very useful, because it provides controlled
experiments. For simulation experiments involving a range
of alternative hypotheses, we have found that plots compar-
ing the average ecdf Fn(x) in (1) from many independent
replications to the theoretical cdf F are very revealing.

Figures 1 and 2 illustrate for 10, 000 replications of a test
of a PP applied to two rate-1 renewal process alternative
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Figure 2. Comparison of the average ecdf based on 104 replications for four KS tests of a rate-1 Poisson process applied to a renewal process
over [0, 200] with mean-1 Erlang (E2) interarrival times: standard, conditional-uniform, log and Lewis KS tests (from left to right). [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

hypotheses, the first with interarrival times having a hyperex-
ponential (H2) cdf with squared coefficient of variation (scv,
variance divided by the square of the mean) c2 = 2 and the
second having an Erlang (E2) cdf, both over the time interval
[0, 200]. (See setion 4.1 for more details.)

Figures 1 and 2 compare (from left to right) the standard,
CU, Log, and Lewis KS tests of a PP. For the standard and
Log KS tests, the null hypothesis is a mean-1 exponential
cdf, while for the CU and Lewis KS tests, the null hypothesis
is the uniform cdf on [0, 1]. We could apply Proposition 1 to
make all four null hypotheses identical, but we leave them in
their natural form. These figures dramatically show that the
transformation in the Lewis KS test provides much greater
separation between the average ecdf and the null hypothe-
sis cdf than the other KS tests, while the CU test provides
essentially no separation at all.

Many alternatives to the KS statistical test are also based
on the ecdf Fn(x) in (1), using different measures of the dis-
tance from the cdf F than the uniform distance in (2). From
the plots of the ecdf and cdf such as in Figures 1 and 2, we
can see how these alternative tests will perform. For example,
we expect that the correct one-sided Lewis KS test will have
even greater power than the Lewis KS test itself, whereas
the wrong one-sided Lewis KS test will have essentially no
power at all, like the CU KS test. That is born out in simulation
experiments in the appendix [19]. However, since different
one-sided KS tests are needed for these two different alter-
native hypotheses and since there is not likely to be such a
narrow range of alternative hypotheses in applications, the
standard KS test or possibly the (also symmetric) AD test
seems more appropriate.

3. THE ALTERNATIVE KS STATISTICAL TESTS

As a basis for comparison in our study of the CU, Log,
and Lewis KS tests, we also consider variants of the stan-
dard KS test as described in section 1.1. The standard KS test
applies to a fixed number n of observations with a fully spec-
ified cdf, including the mean of the exponential interarrival
times. However, in our application to a PP or a NHPP, both

these requirements are violated. First, the number of arrivals
in each interval is actually random; second, in an application
we would not know the rate of the PP over each subinterval,
and thus we do not know the mean of the exponential inter-
arrival times in the PP of the null hypothesis. Nevertheless,
we include variants of the standard KS test for comparison.

3.1. Variants of the Standard KS Test

When we consider variants of the standard KS test applied
to the interarrival times directly, we let the required fixed
number of interarrival times, n, be the random number
observed in that sample, and we use the known mean 1. We
find that the Lewis test, without using information about the
rate of the PP, is usually superior, but the difference is not
great.

To understand the implications of the invalid standard KS
test, we also study variants of this base standard KS test. First,
we consider alternative standard KS tests with the same ran-
dom sample size but (i) using the estimated mean and (ii)
the associated Lilliefors [23] test for the exponential distribu-
tion with unknown mean, using the Matlab program lillietest.
Second, we consider alternative experiments based on a fixed
number n of interarrival times. Then the standard KS test of
the PP is valid, provided that the mean is known. In this set-
ting with fixed n, we also consider the consequence of using
the estimated mean and the Lilliefors [23] test.

We find that all these variants of the standard KS test per-
form similarly in our experiments. Thus, we conclude that
the (invalid) standard KS test with random sample size and
known mean provides a reasonable basis of comparison with
the CU, Log, and Lewis tests, which are of primary inter-
est for a NHPP. The invalid standard KS test with estimated
mean or the invalid Lilliefors [23] test with random sample
size can be considered as alternative (approximate) KS tests
to use to test a PP. Nevertheless, the valid Lewis test seems
to be superior.

3.2. The Four Base KS Tests

We now specify the four main KS tests that we consider.
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3.2.1. Standard Test

We use the standard KS test described above to test whether
the random number of observations in the interval [0, t] is
consistent with a rate-1 PP. We act as if the observed random
number is a fixed number and we use the known mean 1 of
an exponential interarrival time in the rate-1 PP.

3.2.2. CU Test

In this test, we exploit the basic conditioning property of a
PP. Given an arrival process over an interval [0, t], we observe
the number n of arrival in this interval and their arrival times
Tj , 1 ≤ j ≤ n. Under the null PP hypothesis, these random
variables are distributed as the order statistics of i.i.d. random
variables uniformly distributed over [0, t]. Thus, the random
variables Tj/t , 1 ≤ j ≤ n, are distributed as the order sta-
tistics of i.i.d. random variables uniformly distributed over
[0, 1]. Thus, the ecdf can be computed via

Fn(x) ≡ n−1
n∑

k=1

1{Tk/t≤x}, 0 ≤ x ≤ 1,

and the KS statistic can be computed as in (2) with uniform
cdf F(x) = x, 0 ≤ x ≤ 1.

3.2.3. Log Test

As observed in [8] (and is shown in the appendix), given
the n observed arrival times {Tj : 1 ≤ j ≤ n} during the
interval [0, t],

X
Log
j ≡ −(n + 1 − j) loge

(
t − Tj

t − Tj−1

)
, 1 ≤ j ≤ n,

are n i.i.d. mean-1 exponential random variables. The KS
test in (2) can then be applied using the exponential cdf
F(x) ≡ 1 − e−x . A variant of the Log test applies to a fixed
sample of size n. With Tj again denoting the time of the j th

arrival,

X
Log,n
j ≡ −j loge

(
Tj

Tj+1

)
, 1 ≤ j ≤ n − 1,

are again i.i.d. rate-1 exponential random variables.

3.2.4. Lewis Test

Lewis [22] proposed using a different modification of the
CU test, exploiting a transformation due to Durbin [10].
Following [10], we start with a sample Uj , 1 ≤ j ≤ n,
hypothesized to be uniformly distributed on [0, 1]. Then
let U(j) be the j th smallest of these, 1 ≤ j ≤ n, so that

U(1) < · · · < U(n). This is applied in [22] with U(j) = Tj/t

from the CU test. Next we look at the successive intervals
between these ordered observations:

C1 = U(1), Cj = U(j) − U(j−1) 2 ≤ j ≤ n,

and Cn+1 = 1 − U(n). (3)

Then let C(j) be the j th smallest of these intervals, 1 ≤ j ≤ n,
so that 0 < C(1) < · · · < C(n+1) < 1. Now let Zj be scaled
versions of the intervals between these new variables, i.e.,

Zj = (n + 2 − j)(C(j) − C(j−1)), 1 ≤ j ≤ n + 1,

(with C(0) ≡ 0). (4)

Remarkably, Durbin [10] showed in a simple direct argument
(by giving explicit expressions for the joint density functions,
exploiting the transformation of random vectors by a func-
tion) that, under the PP null hypothesis, the random vector
(Z1, . . . , Zn) is distributed the same as the random vector
(C1, . . . , Cn). Hence, again under the PP null hypothesis, the
vector of associated partial sums (S1, . . . , Sn), where

Sk ≡ Z1 + · · · + Zk , 1 ≤ k ≤ n, (5)

has the same distribution as the original random vector
(U(1), . . . , U(n)) of ordered uniform random variables. Hence,
we can apply the KS test with the ecdf

Fn(x) ≡ n−1
n∑

k=1

1{Sk≤x}, 0 ≤ x ≤ 1,

for Sk in (5) and (4), comparing it to the uniform cdf F(x) ≡
x, 0 ≤ x ≤ 1. In [10], it is shown that by doing this trans-
formation starting from a sequence of i.i.d. uniform random
variables, we should gain an increase in power. In [22], it
is shown this transformation increases power after the CU
transformation, which is a different setting than in [10].

4. THE EXPERIMENT

In this section, we specify the stochastic processes to which
we apply the different KS tests of a PP. We also indicate how
we performed the simulation.

4.1. Study Cases

We consider nine cases, each with one-to-five subcases,
yielding a total of 26 cases in all. We specify these cases in
terms of the sequence {Xn : n ≥ 1} of interarrival times, each
distributed as a random variable X. In all cases, the sequence
is assumed to be stationary withE[X] = 1. The first five cases
are renewal arrival processes, with i.i.d. interarrival times.
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The first i.i.d. case is our PP null hypothesis with exponential
interarrival times. The other i.i.d. cases have nonexponen-
tial interarrival times. Cases 2 and 3 contain Erlang and
hyperexponential interarrival times, which are, respectively,
stochastically less variable and stochastically more variable
than the exponential distribution in convex stochastic order,
as in section 9.5 of [30]. Thus, they have scv, respectively,
c2 < 1 and c2 > 1. Cases 4 and 5 contain nonexponen-
tial cdf’s with c2

X = 1 as well as E[X] = 1, just like the
exponential cdf.

Case 1, Exponential: The PP null hypothesis with expo-
nential interarrival times (Base Case).

Case 2, Erlang, Ek: Erlang-k (Ek) interarrival times, a
sum of k i.i.d. exponentials for k = 2, 4, 6 with c2

X ≡
c2
k = 1/k.

Case 3, Hyperexponetial, H2: Hyperexponential-2 (H2)
interarrival times, a mixture of 2 exponential cdf’s with
c2
X = 1.25, 1.5, 2, 4, and 10. The cdf is P(X ≤ x) ≡

1 − p1e
−λ1x − p2e

−λ2x . We further assume balanced
means (p1λ

−1
1 = p2λ

−1
2 ) as in (3.7) of [36] so that given

the value of c2
X, pi = [1 ±

√
(c2

X − 1)/(c2
X + 1)]/2 and

λi = 2pi .

Case 4, mixture with c2
X = 1: A mixture of a more vari-

able cdf and a less variable cdf so that the c2
X = 1;

P(X = Y ) = p = 1 − P(X = Z), where Y is H2 with
c2
Y = 4, Z is E2 with c2

Z = 1/2 and p = 1/7.

Case 5, lognormal, LN(1, 1) with c2
X = 1: Lognormal dis-

tribution with mean and variance both equal to 1, so that
c2
X = 1.

Cases 6 and 7 are stationary point processes that devi-
ate from a PP only through dependence among succes-
sive interarrival times, each exponentially distributed with
mean 1:

Case 6, RRI, dependent exponential interarrival times:
randomly repeated interarrival (RRI) times with expo-
nential interarrival times, constructed by letting each
successive interarrival time be a mixture of the previous
interarrival time with probability p or a new independent
interarrival time from an exponential distribution with
mean 1, with probability 1 −p (a special case of a first-
order discrete autoregressive process, DAR(1), studied
by [16, 17]). Its serial correlation is Corr(Xj , Xj+k) =
pk . We consider three values of p : 0.1, 0.5, and 0.9.

Case 7, EARMA, dependent exponential interarrival
times: A stationary sequence of dependent exponen-
tial interarrival times with the correlation structure
of an autoregressive-moving average process, called

EARMA(1,1) in [15]. Starting from three independent
sequences of i.i.d. random variables {Xn : n ≥ 0}, {Un :
n ≥ 1}, and {Vn : n ≥ 1}, where Xn is exponentially
distributed with mean m, while

P(Un = 0) = 1 − P(Un = 1) = β and

P(Vn = 0) = 1 − P(Vn = 1) = ρ, (6)

the EARMA sequence {Sn : n ≥ 1} is defined
recursively by

Sn = βXn + UnYn−1,

Yn = ρYn−1 + VnXn, n ≥ 1. (7)

Its serial correlation is Corr(Sj , Sj+k) = γρk−1 where
γ = β(1 − β)(1 − ρ) + (1 − β)2ρ. We con-
sider five cases of (β, ρ) : (0.75, 0.50), (0.5, 0.5),
(0.5, 0.75), (0.00, 0.75), (0.25, 0.90) so that the cumu-
lative correlations

∑∞
k=1 Corr(Sj , Sj+k) increase: 0.25,

0.50, 1.00, 3.00, and 5.25. For more details, see [28]. We
specify these cases by these cumulative correlations.

The final two cases are stationary point processes that
have both nonexponential interarrival times and dependence
among successive interarrival times:

Case 8, mH2, superposition of m i.i.d. H2 renewal
processes: Superposition of m i.i.d. equilibrium
renewal processes, where the times between renewals
(interarrival times) in each renewal process has a hyper-
exponential (H2) distribution with c2

a = 4 (m H2). As the
number m of component renewal processes increases,
the superposition process converges to a PP, and thus
looks locally more like a PP, with the interarrival distrib-
ution approaching exponential and the lag-k correlations
approaching 0, but small correlations extending further
across time, so that the superposition process retains an
asymptotic variability parameter, c2

A = 4. We consider
four values of m: 2, 5, 10, and 20.

Case 9, RRI (H2), dependent H2 interarrival times with
c2 = 4: RRI times with H2 interarrival times, each hav-
ing mean 1, c2 = 4, and balanced means (as specified
in Case 3). The repetition is done just as in Case 6. We
again consider three values of p : 0.1, 0.5, and 0.9.

Cases 6 and 7 above have short-range dependence, whereas
Case 8 for large m tends to have nearly exponential inter-
arrival times, but longer-range dependence. (but not strong
dependence in the sense of section 4.6 of [38]), and so is
more complicated; see section 9.8 and section 9.9.3 of [38]
and references therein for more discussion. For small m, the
mH2 superposition process should behave much like the H2
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renewal process in Case 3 with the component c2 = 4;
for large m, the mH2 superposition process should behave
more like Cases 6 and 7 with dependence and exponential
interarrival times.

4.2. Corresponding Random Rate Models

As noted in section 1.1, we may prefer to think of the test
being for a doubly stochastic NHPP, with both time-varying
and stochastic rate function. We now want to show that our
experiments studying the power of alternative statistical tests
are still relevant in such a more general setting. We do so by
showing that we can use each of the rate-1 stationary-process
study cases in section 4.1 to construct corresponding alter-
native hypotheses to a doubly stochastic PP with a random
rate function. (For more on this construction, see section 7
of [26].)

Let {�(t) : t ≥ 0} be an arbitrary cumulative rate stochas-
tic process with nondecreasing sample paths, so that �(t) is
the random total rate over [0, t]. Let {A(t) : t ≥ 0} be any
rate-1 arrival counting process with stationary increments,
such as one of the ones in section 4.1, which for simplicity
we take to be independent of {�(t) : t ≥ 0}. Then, we obtain
an alternative hypothesis to a doubly stochastic PP with a
random rate function {�(t) : t ≥ 0} by letting

N(t) ≡ A(�(t)), t ≥ 0. (8)

Since A has rate 1, E[A(s + t) − A(s)] = t for all s, t > 0
and

E[N(s + t) − N(s)|�(u),

0 ≤ u ≤ t] = E[A(�(s + t)) − A(�(s))|�(u),

0 ≤ u ≤ t] = �(s + t) − �(s),

so that

E[N(s + t) − N(s)] = E[E[N(s + t) − N(s)|�(u),

0 ≤ u ≤ t]] = E[�(s + t) − �(s)].
If we can approximate the random rate function by a PC

rate function, so that the random rate is constant over each
subinterval, then the tests we consider are tests of the Pois-
son property, that is, to test if N is a doubly stochastic NHPP.
The construction here makes all our study cases correspond
to legitimate alternative hypotheses.

4.3. Simulation Design

For each arrival process, we simulate 104 replications of
104 interarrival times. We generate much more data than
needed to get rid of any initial effects. We are supposing that
we observe stationary point processes, which are achieved

by having the system operate for some time before collecting
data. The initial effect was observed to matter for the cases
with dependent interarrival times and relatively small sample
sizes.

We use this simulation output to generate arrival data for
both time intervals of a fixed length t and sample sizes of
a fixed size n. Our main results are for time intervals of
fixed length, but we also consider the other scenario. For
the first scenario with specified intervals [0, t] with t = 200,
in each replication we transform the 104 interarrival times
to 104 arrival times starting at t = 0 by taking cumula-
tive sums and then consider the arrival process in the inter-
val [103, 103 + 200]. We treat this as observations from a
stationary point process over the interval [0, 200].

To observe the effect of longer intervals, we subsequently
consider the arrival process in the interval [103, 103 + 2000];
we treat that interval as [0, 2000]. To examine the impact
of introducing subintervals, we use the same arrival process
in the interval [103, 103 + 200], again treated as [0, 200],
and divide it into 10 disjoint contiguous subintervals, each of
length 20. In forming subintervals, we necessarily break up
the subintervals crossing the boundary points. For these sam-
ple sizes, that boundary effect matters; about 5% of the subin-
tervals are altered when the subintervals are of length 20.

In the second scenario with fixed sample size n = 200,
in each replication of the 104 simulated interarrival times we
use interarrival times from the 103th interarrival time to the
103 + 200th interarrival time. We then consider the interar-
rival times from the 103th interarrival time to the 103+2000th
interarrival time to observe the effect of larger sample size.
In addition, the interarrival times from the 103th interarrival
time to the 103 + 200th interarrival time are used to examine
the impact of introducing ten equally sized subsamples, each
with sample size 20, but now no intervals are split up.

For each sample, we checked our simulation results by esti-
mating the mean and scv of each interarrival-time cdf both
before and after transformations; tables of the results and
plots of the average of the ecdf’s appear in [19].

4.4. Performance Implications of the Alternative
Hypotheses

In our experiments, we will see how well the different
KS tests can detect the deviation of each of the alterna-
tive hypotheses from the PP null hypothesis. To show how
different these alternative processes are from a PP from a
performance perspective, we now show steady-state perfor-
mance measures for a G/M/s+M queueing model in which
each alternative process serves, as the arrival process. These
models have i.i.d. exponential service times, s servers, and
customer abandonment with i.i.d. exponential patience times.
We let the arrival, service, and abandonment rates be λ = 25,
μ = 1, and θ = 1, respectively. Corresponding results for
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Table 1. Simulation estimates of steady-state performance measures in the G/M/s + M model (λ = 25, μ = 1, θ = 1) with different
staffing levels based on 100 replications of 105 customers (first 103 customers removed to avoid initial transient behavior).

s Arrival E[W |All] E[W |Serve] E[W |Abandon] %Wait %Abandon

28 M 0.0324 ± 0.0003 0.0348 ± 0.0003 0.1004 ± 0.0006 29.96 ± 0.15 3.49 ± 0.03
(β = 0.5f orM) H2/c

2 = 2 0.0461 ± 0.0003 0.0496 ± 0.0004 0.1165 ± 0.0006 35.93 ± 0.16 4.96 ± 0.03
H2/c

2 = 4 0.0680 ± 0.0005 0.0731 ± 0.0005 0.1384 ± 0.0005 43.23 ± 0.18 7.32 ± 0.05
E2 0.0241 ± 0.0002 0.0258 ± 0.0002 0.0881 ± 0.0006 25.72 ± 0.16 2.58 ± 0.02
E4 0.0197 ± 0.0002 0.0210 ± 0.0002 0.0807 ± 0.0005 23.03 ± 0.16 2.10 ± 0.02
RRI(p = 0.5) 0.0562 ± 0.0004 0.0608 ± 0.0005 0.1316 ± 0.0007 38.79 ± 0.19 6.07 ± 0.05
RRI(p = 0.9) 0.1401 ± 0.0009 0.1552 ± 0.0009 0.2371 ± 0.0009 53.58 ± 0.22 15.52 ± 0.09
EARMA(1) 0.0547 ± 0.0005 0.0590 ± 0.0005 0.1271 ± 0.0006 38.81 ± 0.20 5.91 ± 0.05
EARMA(5) 0.1108 ± 0.0008 0.1218 ± 0.0008 0.2007 ± 0.0008 49.29 ± 0.23 12.19 ± 0.08

30 M 0.0168 ± 0.0002 0.0181 ± 0.0002 0.0878 ± 0.0006 18.23 ± 0.13 1.81 ± 0.02
(β = 1f orM) H2/c

2 = 2 0.0272 ± 0.0003 0.0295 ± 0.0003 0.1031 ± 0.0006 24.75 ± 0.15 2.94 ± 0.03
H2/c

2 = 4 0.0454 ± 0.0004 0.0492 ± 0.0004 0.1233 ± 0.0006 33.33 ± 0.18 4.93 ± 0.04
E2 0.0108 ± 0.0001 0.0115 ± 0.0001 0.0762 ± 0.0007 13.69 ± 0.12 1.15 ± 0.01
E4 0.0079 ± 0.0001 0.0084 ± 0.0001 0.0690 ± 0.0006 11.01 ± 0.11 0.84 ± 0.01
RRI(p = 0.5) 0.0360 ± 0.0003 0.0392 ± 0.0004 0.1181 ± 0.0007 28.47 ± 0.17 3.91 ± 0.04
RRI(p = 0.9) 0.1151 ± 0.0008 0.1290 ± 0.0009 0.2233 ± 0.0009 47.74 ± 0.22 12.90 ± 0.09
EARMA(1) 0.0345 ± 0.0003 0.0374 ± 0.0004 0.1132 ± 0.0007 28.29 ± 0.19 3.75 ± 0.04
EARMA(5) 0.0869 ± 0.0007 0.0964 ± 0.0007 0.1860 ± 0.0008 42.51 ± 0.22 9.66 ± 0.07

35 M 0.0022 ± 0.0001 0.0024 ± 0.0001 0.0647 ± 0.0012 3.41 ± 0.06 0.24 ± 0.01
(β = 2f orM) H2/c

2 = 2 0.0057 ± 0.0001 0.0061 ± 0.0001 0.0776 ± 0.0009 7.11 ± 0.09 0.61 ± 0.01
H2/c

2 = 4 0.0140 ± 0.0002 0.0152 ± 0.0002 0.0939 ± 0.0008 14.11 ± 0.13 1.53 ± 0.02
E2 0.0008 ± 0.0000 0.0009 ± 0.0000 0.0562 ± 0.0014 1.50 ± 0.04 0.09 ± 0.00
E4 0.0004 ± 0.0000 0.0004 ± 0.0000 0.0477 ± 0.0018 0.80 ± 0.02 0.04 ± 0.00
RRI(p = 0.5) 0.0101 ± 0.0002 0.0110 ± 0.0002 0.0924 ± 0.0008 10.61 ± 0.12 1.10 ± 0.02
RRI(p = 0.9) 0.0696 ± 0.0006 0.0796 ± 0.0007 0.1949 ± 0.0010 34.50 ± 0.21 7.96 ± 0.07
EARMA(1) 0.0089 ± 0.0001 0.0097 ± 0.0002 0.0869 ± 0.0008 9.96 ± 0.12 0.96 ± 0.02
EARMA(5) 0.0458 ± 0.0005 0.0515 ± 0.0005 0.1558 ± 0.0008 27.70 ± 0.21 5.15 ± 0.05

The 95% confidence intervals are shown.

models with arrival rate λ = 10 and without customer aban-
donment are given in the appendix [19]. These simulation
estimates are based on 100 replications of 105 customers,
with the first 103 removed to allow the system to approach
steady state.

Table 1 shows five performance measures for three levels
of staffing s = 28, 30, and 35. The five performance measures
are: the expected waiting time of (i) all customers, (ii) served
customers, and (iii) abandoning customers, and the percent-
age of customers that (i) must wait before entering service and
(ii) who abandon. For example, we see that the abandonment
probability of 0.0515 for an EARMA (5) arrival process with
staffing s = 35 and 0.0493 for an H2 arrival process with
c2 = 4 and staffing s = 30 are higher than the abandonment
probability of 0.0349 for a PP arrival process with staffing
s = 28. Hence, those alternative arrival processes require
7 and 2 extra servers than for a PP to achieve comparable
performance, respectively.

5. RESULTS

We now present the results of applying the four alternative
KS tests in section 3 to the original and transformed arrival

process data in all 26 study cases specified in section 4, with
the goal of comparing the power of the alternative tests of a
PP. We assume that an initial NHPP has been regarded as a PC
NHPP, so that we are looking at a single subinterval, yielding
a PP. Of course, a PP also could be considered directly, as
in [22].

5.1. The Four Alternatives for the Interval [0, 200]
We report the number of KS tests passed out of 10, 000

replications as well as the average P -value with associ-
ated 95% confidence intervals. Thus, the estimated power
is 1 − (number passed/10, 000). The P -value is the signif-
icance level below which the hypothesis would be rejected.
Thus, low P -values indicate greater power.

The difference is most striking for the middle H2 alterna-
tive with c2 = 2, as shown in Table 2. For this case, the Lewis
test has far greater power than all the alternatives.

The results for all 26 cases are given in Table 3. The first
“exponential” case is the PP null hypothesis. The results show
that all tests behave properly for the PP null hypothesis. The
results also show that the tests perform quite differently for
the non-PP alternative hypotheses. Table 3 shows that the
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Table 2. Summary of the performance of alternative KS tests of a
rate-1 Poisson process for the time interval [0, 200] with significance
level α = 0.05: the case of a renewal process with H2 interarrival
times having c2

X = 2.

KS test Lewis Standard Log CU

Power 0.94 0.63 0.51 0.28
Average P -value 0.01 0.10 0.13 0.23

standard, Log, and Lewis tests all perform reasonably well
for the cases with nonexponential interarrival-time cdf’s, in
marked contrast to the CU test. Table 3 also shows that the
Lewis test is consistently most powerful for these cases. For
H2 cdf’s with lower scv, the power of all methods is less
than in Table 2, but the ordering remains; for H2 cdf’s with
higher scv, the power of all methods is greater, but the order-
ing remains. This same conclusion also applies to Case 9 with
the RRI(H2) process.

However, Table 3 tells very different story for Cases 6 and
7 with dependent exponential interarrival times. For the most
part, none of the KS tests has much power, except in the cases
with extreme dependence, for example, RRI with P = 0.9

and EARMA with the larger cumulative correlations (3.0 and
5.25). For RRI, the Lewis and standard tests are somewhat
better than the others; for the EARMA subcases 3.0 and 5.25,
the CU test is best. For those two cases, Table 3 shows the
power ordering of CU > Standard > Log > Lewis, which is
nearly the opposite of the order for the renewal processes.

The two cases RRI and RRI(H2) are somewhat different
from the others because the dependence involves successive
identical exponential interarrival times. Since the successive
interarrival times that are copies are exactly the same length as
the others, they will be kept together after the Durbin reorder-
ing. Thus, the effectiveness of the Lewis KS test should not
be lost.

We see that the advantage of the CU KS test lies in the
other cases, EARMA and mH2 with higher m. Moreover,
the performance in Table 3 seems to be consistent with this
observation.

The lack of uniformity suggests composite statistical tests,
which we consider in the appendix [19]. In retrospect, the lack
of uniformity should perhaps be expected, because the data
transformations emphasize different features of the underly-
ing model. Nevertheless, the differences seem to concentrate
on the two dimensions (2D): (i) whether the interarrival-time

Table 3. Performance of alternative KS tests of a rate-1 Poisson process for the time interval [0, 200]: Number of KS tests passed (denoted by
#P ) at significance level 0.05 out of 10, 000 replications and the average P -values (denoted by E[P -value]) with associated 95% confidence
intervals.

Standard CU Log Lewis

Case Subcase #P E[P -value] #P E[P -value] #P E[P -value] #P E[P -value]
Exp − 9479 0.50 ± 0.006 9503 0.50 ± 0.006 9490 0.50 ± 0.006 9502 0.50 ± 0.006
Ek k = 2 11 0.00 ± 0.000 9991 0.78 ± 0.005 24 0.00 ± 0.000 0 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 10000 0.94 ± 0.002 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 10000 0.98 ± 0.001 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 8757 0.41 ± 0.006 8988 0.41 ± 0.006 8685 0.40 ± 0.006 7558 0.30 ± 0.006
c2 = 1.5 7049 0.27 ± 0.005 8428 0.33 ± 0.005 7081 0.28 ± 0.006 3990 0.11 ± 0.004
c2 = 2 3695 0.10 ± 0.003 7186 0.23 ± 0.005 4059 0.13 ± 0.004 584 0.01 ± 0.001
c2 = 4 231 0.01 ± 0.001 3551 0.08 ± 0.003 934 0.03 ± 0.002 3 0.00 ± 0.000
c2 = 10 13 0.00 ± 0.000 650 0.01 ± 0.001 608 0.02 ± 0.002 2 0.00 ± 0.000

Z − 1200 0.02 ± 0.001 9412 0.57 ± 0.006 1308 0.02 ± 0.001 243 0.01 ± 0.000
LN − 88 0.01 ± 0.000 9525 0.52 ± 0.006 332 0.01 ± 0.000 69 0.00 ± 0.000
RRI p = 0.1 9093 0.41 ± 0.006 9044 0.42 ± 0.006 9037 0.42 ± 0.006 9080 0.41 ± 0.006

p = 0.5 4631 0.11 ± 0.003 5516 0.15 ± 0.004 5204 0.13 ± 0.003 4633 0.11 ± 0.003
p = 0.9 14 0.00 ± 0.000 826 0.02 ± 0.002 95 0.00 ± 0.000 12 0.00 ± 0.000

EARMA 0.25 9260 0.47 ± 0.006 8536 0.36 ± 0.005 9236 0.46 ± 0.006 9477 0.50 ± 0.006
0.5 8848 0.42 ± 0.006 7433 0.26 ± 0.005 8870 0.43 ± 0.006 9406 0.49 ± 0.006
1 8244 0.37 ± 0.006 5964 0.18 ± 0.004 8280 0.37 ± 0.006 8994 0.44 ± 0.006
3 5196 0.21 ± 0.005 1977 0.04 ± 0.002 5725 0.22 ± 0.005 6736 0.29 ± 0.006
5.25 4088 0.14 ± 0.004 1594 0.04 ± 0.002 4512 0.15 ± 0.004 5770 0.22 ± 0.005

mH2 m = 2 4531 0.16 ± 0.005 4231 0.10 ± 0.003 4901 0.18 ± 0.005 1237 0.03 ± 0.002
m = 5 7474 0.32 ± 0.006 5282 0.16 ± 0.004 7706 0.34 ± 0.006 7142 0.29 ± 0.006
m = 10 7812 0.35 ± 0.006 6496 0.23 ± 0.005 8334 0.38 ± 0.006 8980 0.44 ± 0.006
m = 20 8034 0.36 ± 0.006 7751 0.32 ± 0.006 8831 0.43 ± 0.006 9366 0.49 ± 0.006

RRI(H2) p = 0.1 322 0.01 ± 0.001 2841 0.06 ± 0.002 1012 0.03 ± 0.002 4 0.00 ± 0.000
p = 0.5 478 0.01 ± 0.001 884 0.02 ± 0.001 1209 0.03 ± 0.002 69 0.00 ± 0.000
p = 0.9 9 0.00 ± 0.000 772 0.06 ± 0.005 92 0.00 ± 0.000 6 0.00 ± 0.000
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Figure 3. Empirical distribution function of the P -values - H2 (c2 = 2) (left) and E2 (right) Based on 104 replications for the time interval
[0, 200]. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

distribution is nearly exponential, and (ii) whether nearly
exponential interarrival times are nearly independent. For the
first issue, the Lewis test is the clear winner; for the second
issue, none of the tests is especially effective, but the CU test
evidently does capture forms of dependence that are lost by
reordering better than the alternative tests.

We also display the analog of Table 3 for the AD test of a
PP for these same alternative hypotheses in the appendix [19].
(Both start with the CU transformations and thus the same
ecdf.) The results for the AD test are very similar to the results
for the KS test. In fact, the power of the AD test against non-
exponential interarrival times tends to be slightly higher than
that of the KS test in Table 3 for all except the powerless CU
test. The power of the AD log test is almost equivalent to
the power of the AD Lewis test for these cases. On the other
hand, the power of the CU AD test of a PP against dependent
exponential interarrival times is slightly lower than for the
CU KS test.

5.2. Insightful Plots

In section 2.3, we displayed plots comparing the average
of the ecdf’s over many independent replications to the cdf
associated with the null hypothesis (which depends on the
transformation). Figures 1 and 2 illustrate for the renewal
process cases with interarrival times having cdf’s H2 with
c2 = 2 and E2 over the time interval [0, 200]. These figures
show that the transformation in the Lewis KS test provides
much greater separation between the average ecdf and the
cdf. Indeed, for the Lewis test, the ecdf and cdf appear to be
stochastically ordered, whereas the ecdf and cdf cross for the
other KS tests. From these plots, it is evident that the CU test
should perform poorly. For any new contemplated alternative,
we suggest conducting simulations and comparing the plots.

These plots lead to a conjecture about the consequence of
convex stochastic order of the underlying cdf’s, denoted by
≤c; let ≤st denote ordinary stochastic order, as in section 9.1

of [30]. Let E[Fn] be the expected value of the ecdf, which
coincides with the limiting average of the sample ecdf’s.
Since we have convex stochastic order (Ek ≤c Exp ≤c Hk)
among random variables with a given mean, we are led to
make the following conjecture:

CONJECTURE 5.1: Consider a renewal process with
interarrival times distributed as X and let Exp be an expo-
nential random variable. If X ≤c (≥c)Exp, then E[Fn] ≥st

(≤st )F for the Lewis test.

Verifying the conjecture seems challenging in view of the
complicated construction of the Lewis test.

Also insightful are plots of the empirical distribution func-
tion of the P -values. These plots show that the relative power
tends to remain across allP -values, not just for our type I error
of α = 0.05. Paralleling the plots above, we display the plots
for H2 with c2 = 2 and E2 in Fig. 3. The advantage of the
Lewis KS test for the H2 (c2 = 2) alternative is even more
important in this figure.

5.3. Alternative Standard KS Tests

The standard KS test used to obtain the values reported
in Table 3 is actually invalid because the sample size was
not specified in advance, but instead was the random number
observed in [0, t]. Moreover, it used the true Mean 1, which
would not be known in application. Hence, to put the results
for the standard test Table 3 in perspective, we now give the
alternative results for the valid standard KS test with fixed
sample size n = 200 in the first columns of Table 4. For the
case of a specified interval [0, t], we also used the known
mean in the standard KS test, which would not in fact be
known. Hence, in the later columns of Table 4 we also give
the corresponding standard KS results using the estimated
mean and the Lilliefors [23] test for the exponential cdf with
unknown mean.
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Table 4. Performance of alternative standard KS tests for untransformed interarrival times: number of K-S tests passed (denoted by #P ) at
significance level 0.05 out of 10,000 replications and average P -values (denoted by E[P -value]) with associated 95% confidence intervals.

Fixed number n = 200 Fixed interval [0, t] for t = 200

KS with known mean KS with estimated mean [23] test

Case Subcase #P E[P -value] #P E[P -value] #P E[P -value]
Exp − 9487 0.50 ± 0.006 9942 0.65 ± 0.005 9482 0.37 ± 0.003
Ek k = 2 28 0.00 ± 0.000 8 0.00 ± 0.000 0 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 8843 0.42 ± 0.006 9564 0.50 ± 0.006 8239 0.28 ± 0.004
c2 = 1.5 7204 0.27 ± 0.005 8063 0.29 ± 0.005 5379 0.14 ± 0.003
c2 = 2 3603 0.09 ± 0.003 3752 0.08 ± 0.003 1398 0.03 ± 0.002
c2 = 4 90 0.00 ± 0.000 157 0.00 ± 0.000 23 0.00 ± 0.000
c2 = 10 0 0.00 ± 0.000 76 0.00 ± 0.000 26 0.00 ± 0.000

Z − 1200 0.02 ± 0.001 1230 0.02 ± 0.001 210 0.01 ± 0.000
LN − 98 0.00 ± 0.000 281 0.01 ± 0.000 9 0.00 ± 0.000
RRI p = 0.1 9048 0.41 ± 0.006 9845 0.56 ± 0.005 8971 0.32 ± 0.003

p = 0.5 4659 0.11 ± 0.003 6873 0.18 ± 0.004 3775 0.08 ± 0.002
p = 0.9 16 0.00 ± 0.000 44 0.00 ± 0.000 2 0.00 ± 0.000

EARMA 0.25 9284 0.47 ± 0.006 9942 0.65 ± 0.005 9460 0.37 ± 0.003
0.5 8865 0.43 ± 0.006 9925 0.65 ± 0.005 9420 0.37 ± 0.003
1 8178 0.37 ± 0.005 9845 0.60 ± 0.005 9102 0.34 ± 0.003
3 5209 0.21 ± 0.005 8341 0.43 ± 0.006 6702 0.23 ± 0.004
5.25 4100 0.14 ± 0.004 8015 0.35 ± 0.006 5987 0.19 ± 0.004

mH2 m = 2 4398 0.14 ± 0.004 4949 0.14 ± 0.004 2440 0.06 ± 0.002
m = 5 7514 0.32 ± 0.006 9414 0.49 ± 0.006 7944 0.27 ± 0.004
m = 10 7818 0.35 ± 0.006 9874 0.61 ± 0.005 9177 0.35 ± 0.003
m = 20 7996 0.37 ± 0.006 9935 0.65 ± 0.005 9421 0.37 ± 0.003

RRI(H2) p = 0.1 104 0.00 ± 0.000 202 0.00 ± 0.000 41 0.00 ± 0.000
p = 0.5 253 0.00 ± 0.001 311 0.01 ± 0.001 94 0.00 ± 0.000
p = 0.9 4 0.00 ± 0.000 36 0.00 ± 0.000 1 0.00 ± 0.000

Notice that the simulation results in Table 4 for the valid
KS test with known mean (which is unlikely to be so use-
ful) and the valid Lilliefors [23] test are consistent with the
fixed significance level of α = 0.05, whereas the invalid
standard KS test with estimated mean is not, because the
null hypothesis is not rejected in over 99% of the cases.
Overall, we see that using the estimated mean in this setting
tends to make rejection less likely. To obtain a valid test of
this form, we can conduct additional simulation experiments
with increased α until the null hypothesis is not rejected in
only 95% of the cases, but that is just what has been done
by Lilliefors [23]. Additional simulation experiments (in the
appendix) show that a realized significance level of α = 0.05
is achieved when we estimate the mean if we increase the
nominal significance level to α = 0.18; then the results
are very close to the results for the Lilliefors [23] test in
Table 4.

Since these performance results do not differ greatly, one
might consider the Lilliefors [23] test as a realizable alter-
native to the standard KS test. However, this is evidently
inferior to the Lewis KS test in the cases with nonexponential
interarrival times.

5.4. A Longer Time Interval

Table 3 clearly shows how the power decreases as the alter-
native gets closer to the PP null hypothesis. For the renewal
processes, we see this as the scv c2

X approaches 1; for the
dependent exponential sequences, we see this as the degree of
dependence decreases. However, all of these are for the inter-
val [0, 200] with expected sample size of 200. The power also
increases as we increase the sample size, as we now illustrate
by considering the interval [0, 2000]. In Table 5, we now see
a simple summary story similar to Table 2 when the H2 scv
is reduced to c2

X = 1.25.

Table 5. Summary of the performance of alternative KS tests of
a rate-1 Poisson process for the longer time interval [0, 2000] with
significance level α = 0.05: the case of a renewal process with H2
interarrival times having c2

X = 1.25.

KS test Lewis Standard Log CU

Power 0.974 0.660 0.637 0.105
Average P -value 0.01 0.08 0.10 0.40
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Table 6. Performance of alternative KS tests of a rate-1 Poisson process for the longer time interval [0, 2000]: Number of KS tests passed
(denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average P -values (denoted by E[P -value]) with associated 95%
confidence intervals.

Standard CU Log Lewis

Case Subcase #P E[P -value] #P E[P -value] #P E[P -value] #P E[P -value]
Exp − 9525 0.50 ± 0.006 9491 0.50 ± 0.006 9513 0.50 ± 0.006 9476 0.50 ± 0.006
Ek k = 2 0 0.00 ± 0.000 9983 0.79 ± 0.004 0 0.00 ± 0.000 0 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 10000 0.95 ± 0.002 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 10000 0.98 ± 0.001 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 3402 0.08 ± 0.003 8945 0.40 ± 0.005 3627 0.10 ± 0.003 263 0.01 ± 0.001
c2 = 1.5 86 0.00 ± 0.000 8311 0.32 ± 0.005 200 0.00 ± 0.000 0 0.00 ± 0.000
c2 = 2 0 0.00 ± 0.000 6878 0.21 ± 0.004 0 0.00 ± 0.000 0 0.00 ± 0.000
c2 = 4 0 0.00 ± 0.000 2804 0.06 ± 0.002 0 0.00 ± 0.000 0 0.00 ± 0.000
c2 = 10 0 0.00 ± 0.000 174 0.00 ± 0.000 0 0.00 ± 0.000 0 0.00 ± 0.000

Z − 0 0.00 ± 0.000 9491 0.52 ± 0.006 0 0.00 ± 0.000 0 0.00 ± 0.000
LN − 0 0.00 ± 0.000 9519 0.51 ± 0.006 0 0.00 ± 0.000 0 0.00 ± 0.000
RRI p = 0.1 9010 0.41 ± 0.005 9119 0.41 ± 0.005 9027 0.41 ± 0.005 9009 0.40 ± 0.005

p = 0.5 4449 0.10 ± 0.003 4667 0.11 ± 0.003 4693 0.11 ± 0.003 4502 0.10 ± 0.003
p = 0.9 0 0.00 ± 0.000 21 0.00 ± 0.000 6 0.00 ± 0.000 1 0.00 ± 0.000

EARMA 0.25 9338 0.47 ± 0.006 8318 0.33 ± 0.005 9152 0.46 ± 0.006 9429 0.49 ± 0.006
0.5 8808 0.42 ± 0.006 7029 0.22 ± 0.004 8870 0.42 ± 0.006 9392 0.49 ± 0.006
1 8182 0.37 ± 0.006 4749 0.12 ± 0.003 8017 0.36 ± 0.006 8894 0.43 ± 0.006
3 5233 0.20 ± 0.005 805 0.01 ± 0.001 5465 0.21 ± 0.005 6660 0.29 ± 0.006
5.25 4111 0.14 ± 0.004 179 0.00 ± 0.000 4308 0.14 ± 0.004 5783 0.21 ± 0.005

mH2 m = 2 2 0.00 ± 0.000 3001 0.06 ± 0.002 21 0.00 ± 0.000 0 0.00 ± 0.000
m = 5 3217 0.09 ± 0.003 3376 0.07 ± 0.002 3403 0.10 ± 0.004 139 0.00 ± 0.000
m = 10 6413 0.25 ± 0.005 3752 0.09 ± 0.003 6571 0.26 ± 0.005 4406 0.13 ± 0.004
m = 20 7360 0.31 ± 0.006 4343 0.11 ± 0.003 7655 0.33 ± 0.006 8147 0.35 ± 0.006

RRI(H2) p = 0.1 0 0.00 ± 0.000 1960 0.04 ± 0.001 0 0.00 ± 0.000 0 0.00 ± 0.000
p = 0.5 0 0.00 ± 0.000 154 0.00 ± 0.000 0 0.00 ± 0.000 0 0.00 ± 0.000
p = 0.9 0 0.00 ± 0.000 1 0.00 ± 0.000 0 0.00 ± 0.000 0 0.00 ± 0.000

All the results for the longer interval [0, 2000] are shown in
Table 6. Now, for many cases the three main candidates - stan-
dard, Log, and Lewis–reject the alternatives for all 10, 000
replications and the estimated P -value is 0.00.

5.5. Subintervals as Occur in a PC NHPP

When we apply these KS tests to a NHPP, we regard it as
PC and combine data over subintervals where the rate is con-
stant. Even though we can combine all the data, this process
causes the impact of longer-time behavior (occurring over
multiple subintervals) to be lost. To gain insight into the con-
sequence of having to combine data over subintervals, we
repeat the test for the time interval [0, 200] after dividing that
interval into 10 contiguous disjoint intervals of length 20.
Table 7 summarizes the results of that experiment.

Comparing Table 7 to Table 3, we see that the use of subin-
tervals degrades the power for the cases with nonexponential
interarrival times somewhat for all tests, with the possible
exception of the standard test. Consistent with intuition, we
see a clear impact for the more highly variable H2 inter-
arrival times, but little impact for the less variable Erlang

interarrival times. For the CU test, it loses any advantage
it had for the dependent cases after using subintervals; now
the CU test is uniformly dominated by the Lewis test, even
for the dependent cases. Curiously, we see that the power of
the Lewis tests improves dramatically, whereas the power of
the CU test degrades dramatically when we work with the
subintervals in the EARMA(5.25) case with highest cumu-
lative correlations. Overall, the power of the Lewis test and
standard KS test are similar in this scenario, but recall that
the standard test is invalid and exploits the true mean, even
though it would not be known. Table 8 below shows that the
relatively good power in the standard KS test is lost if we
use the estimated mean or the Lilliefors [23] test. Hence, we
conclude that the Lewis test dominates the others. (Also note
that, just as in Table 4, in Table 8 the invalid standard KS test
with estimated mean fails to reject the null hypothesis too
often, in over 99% of the cases.)

5.6. Fixed Sample Sizes

To place the results above in perspective, we also consider
experiments with a fixed sample size of n = 200 in Tables 9
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Table 7. Performance of alternative KS tests for the time interval [0, 200] when we combine the results from 10 disjoint subintervals of
length 20: Number of KS tests passed (denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average P -values (denoted
by E[P -value]) with associated 95% confidence intervals.

Standard CU Log Lewis

Case Subcase #P E[P -value] #P E[P -value] #P E[P -value] #P E[P -value]
Exp − 9206 0.45 ± 0.006 9544 0.50 ± 0.006 9533 0.50 ± 0.006 9495 0.50 ± 0.006
Ek k = 2 87 0.00 ± 0.000 9979 0.74 ± 0.005 79 0.00 ± 0.000 2 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 10000 0.90 ± 0.003 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 10000 0.95 ± 0.002 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 7687 0.32 ± 0.006 9147 0.45 ± 0.006 8993 0.43 ± 0.006 8160 0.35 ± 0.006
c2 = 1.5 5546 0.18 ± 0.005 8848 0.40 ± 0.006 7848 0.33 ± 0.006 5459 0.18 ± 0.005
c2 = 2 2441 0.06 ± 0.003 8214 0.34 ± 0.006 5537 0.19 ± 0.005 1783 0.04 ± 0.002
c2 = 4 118 0.00 ± 0.000 6790 0.25 ± 0.005 2178 0.06 ± 0.003 138 0.00 ± 0.000
c2 = 10 11 0.00 ± 0.000 6323 0.23 ± 0.005 2177 0.06 ± 0.003 260 0.01 ± 0.001

Z − 2274 0.04 ± 0.001 9882 0.64 ± 0.005 2014 0.04 ± 0.002 499 0.01 ± 0.001
LN − 328 0.01 ± 0.000 9730 0.59 ± 0.006 1057 0.02 ± 0.001 175 0.00 ± 0.000
RRI p = 0.1 8768 0.38 ± 0.006 9311 0.46 ± 0.006 9232 0.44 ± 0.006 9054 0.42 ± 0.006

p = 0.5 4824 0.12 ± 0.003 7992 0.33 ± 0.006 6076 0.18 ± 0.004 3199 0.07 ± 0.002
p = 0.9 21 0.00 ± 0.000 5890 0.25 ± 0.006 93 0.00 ± 0.000 1 0.00 ± 0.000

EARMA 0.25 9013 0.44 ± 0.006 9314 0.48 ± 0.006 9453 0.49 ± 0.006 9487 0.50 ± 0.006
0.5 8589 0.41 ± 0.006 8923 0.44 ± 0.006 9295 0.47 ± 0.006 9244 0.47 ± 0.006
1 8084 0.36 ± 0.006 9238 0.48 ± 0.006 8926 0.42 ± 0.006 8117 0.34 ± 0.006
3 5227 0.21 ± 0.005 5869 0.20 ± 0.005 4729 0.14 ± 0.004 4556 0.17 ± 0.005
5.25 4345 0.15 ± 0.005 9154 0.49 ± 0.006 2562 0.06 ± 0.002 352 0.01 ± 0.001

mH2 m = 2 3401 0.11 ± 0.004 8249 0.35 ± 0.006 7250 0.29 ± 0.006 4611 0.15 ± 0.004
m = 5 6747 0.28 ± 0.006 9291 0.46 ± 0.006 9336 0.48 ± 0.006 9182 0.46 ± 0.006
m = 10 7394 0.32 ± 0.006 9465 0.49 ± 0.006 9462 0.50 ± 0.006 9453 0.49 ± 0.006
m = 20 7774 0.34 ± 0.006 9459 0.49 ± 0.006 9505 0.50 ± 0.006 9491 0.50 ± 0.006

RRI(H2) p = 0.1 191 0.00 ± 0.000 6712 0.24 ± 0.005 2500 0.07 ± 0.003 267 0.01 ± 0.001
p = 0.5 435 0.01 ± 0.001 5764 0.19 ± 0.005 4070 0.11 ± 0.004 2151 0.05 ± 0.002
p = 0.9 15 0.00 ± 0.000 4431 0.19 ± 0.006 849 0.04 ± 0.003 497 0.03 ± 0.003

and 10. These experiments take us out of the original setting
of a PC NHPP, because the sample sizes then are necessarily
random over each subinterval. However, the standard KS test
is valid in this setting. The CU, Log, and Lewis tests still apply
because, under the PP null hypothesis, the variables Tk/Tn,
1 ≤ k ≤ n, obtained by dividing the arrival times (sum of
the interarrival times) by the largest arrival time are again
distributed as the order statistics of i.i.d. random variables
uniformly distributed on [0, 1]. These results are consistent
with the results for fixed interval [0, t] with t = 200, again
supporting the Lewis test. And again the invalid standard KS
test with estimated mean fails to reject the null hypothesis
too often, in over 99% of the cases.

6. A DEPARTURE PROCESS EXAMPLE

In this section, we consider a new example of a depar-
ture process from a many-server queue, which is interesting
because it may then become an arrival process to another
subsequent queue. In particular, we consider the departure
process from an Mt/H2/st +M model with an NHPP arrival
process (the Mt ), i.i.d. service times with the H2 distribution

having mean μ−1 = 1, c2 = 4 and balanced means, a time-
varying staffing function (the st ) and customer abandonment
with i.i.d. exponential patience times having mean θ−1 = 2
(the +M). The staffing function st is set to stabilize the
abandonment probability at a target α using the DIS-MOL
approximation in [24]. We consider a sinusoidal arrival rate
function of the form λ(t) = 100(1 + r sin t) for three rel-
ative amplitudes r : r = 0 (PP), r = 0.2, and r = 0.6
(large fluctuations). Since the mean service time is 1 and
the average arrival rate is 100, the staffing fluctuates around
100. The approximate departure rate function for this model
is (1 − α)E[λ(t − w − S)], as shown in (12) of [24]; it has
been found to be very accurate; for example, see the appendix
of [25].

The departure process for this model is relatively well-
understood in the two extreme cases: (i) light load, when
α is low, and (ii) heavy load, when α is high. When α is
low, the servers are only rarely all busy, so that the departure
process is similar to the departure process from the associ-
ated Mt/H2/∞ model, which is known to be exactly NHPP;
see Theorem 1 of [11]; when α is high, all servers tend to be
busy most of the time, so that the departure process is simi-
lar to the superposition of st i.i.d. renewal processes with the
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Table 8. Performance of alternative tests for untransformed interarrival times on [0, 200] with 10 equally sized subintervals of length 20:
Number of KS tests passed (denoted by #P ) at significance level 0.05 out of 10, 000 replications and the average P -values (denoted by
E[P -value]) with associated 95% confidence intervals.

KS with estimated mean Lilliefors test

Case Subcase #P E[P -value] #P E[P -value]
Exp − 9949 0.65 ± 0.005 9493 0.37 ± 0.003
Ek k = 2 20 0.00 ± 0.000 1 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 9681 0.54 ± 0.006 8550 0.30 ± 0.004
c2 = 1.5 8601 0.35 ± 0.005 6257 0.18 ± 0.004
c2 = 2 5290 0.13 ± 0.004 2397 0.05 ± 0.002
c2 = 4 908 0.02 ± 0.001 183 0.01 ± 0.001
c2 = 10 971 0.02 ± 0.001 324 0.01 ± 0.001

Z − 1276 0.02 ± 0.001 233 0.01 ± 0.000
LN − 297 0.01 ± 0.000 15 0.00 ± 0.000
RRI p = 0.1 9847 0.57 ± 0.005 9031 0.32 ± 0.003

p = 0.5 7235 0.20 ± 0.004 4224 0.09 ± 0.002
p = 0.9 69 0.00 ± 0.000 7 0.00 ± 0.000

EARMA 0.25 9949 0.66 ± 0.005 9485 0.38 ± 0.003
0.5 9930 0.65 ± 0.005 9439 0.37 ± 0.003
1 9878 0.61 ± 0.005 9142 0.35 ± 0.003
3 8432 0.44 ± 0.006 6795 0.24 ± 0.004
5.25 8324 0.37 ± 0.006 6294 0.20 ± 0.004

mH2 m = 2 6883 0.22 ± 0.005 4023 0.10 ± 0.003
m = 5 9645 0.53 ± 0.006 8462 0.30 ± 0.004
m = 10 9905 0.63 ± 0.005 9284 0.36 ± 0.003
m = 20 9940 0.65 ± 0.005 9446 0.37 ± 0.003

RRI(H2) p = 0.1 873 0.02 ± 0.001 220 0.01 ± 0.001
p = 0.5 715 0.01 ± 0.001 200 0.00 ± 0.001
p = 0.9 503 0.02 ± 0.002 314 0.01 ± 0.001

H2 service times as the interrenewal times. Thus, the high-α
case with r = 0 is similar to our m-H2 superposition process
experiment, but here with even larger m, namely m = 100,
for which it is known that the interarrival times are approxi-
mately exponential and the deviation from a PP is due to the
cumulative impact of many small correlations; see [12, 34]
and references therein. In [25], it is also shown that the his-
togram of the interarrival times of the departure process for
r = 0 matches an exponential pdf perfectly.

This example is interesting for us because the process we
are looking at locally looks like a PP, but it has two-forms of
dependence: (i) stochastic dependence from the many small
correlations over many interdeparture times and (ii) time
dependence due to the sinusoidal arrival rate function when
r > 0.

Table 11 shows the results of the CU and Lewis KS tests
of an NHPP applied to the departure process data over [6, 20]
obtained from independent replications of a simulation of the
Mt/H2/st + M model starting out empty for the two targets:
α = 0.3 (heavily loaded) and α = 0.01 (lightly loaded) for
three forms of evenly divided subintervals: L = 0.5, L = 2,
and L = 14 (no subintervals). For small (large) L, the
impact of both the stochastic and time dependence is reduced

(increased). As in previous tables, Table 11 shows the average
P -value and the number of the 50 KS tests that fails to reject
the PP null hypothesis. Even though there are random fluc-
tuations, Table 11 strongly confirms our conclusions about
stochastic and time dependence. Both forms of dependence
increase as L increases and as r increases. We see the impact
of stochastic dependence alone for the cases with r = 0. We
see that this dependence is only detected by the CU KS test
and then only when L = 14.

On the other hand, when the short subintervals of length
L = 0.5 are used, it is evident that these tests conclude
that both forms of dependence are eliminated completely;
the results are essentially the same as for a PP. As L and
r increase, these KS tests begin to detect the two forms of
dependence, with the CU KS test doing so sooner and more
decisively. For the extreme case of r = 0.6 and L = 14,
both KS tests decisively reject the PP null hypothesis. For
r = 0.2 and L = 14, the CU KS test is evidently substan-
tially more powerful than the Lewis test. The overall power
is not great here, but it would be more decisive with a much
larger sample size.

The impact of this departure process on the performance
of a subsequent queue for which it is the arrival process is
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Table 9. Performance of the alternative KS tests for a fixed sample size n = 200: Number of KS tests passed (denoted by #P ) at significance
level 0.05 out of 10, 000 replications and the average P -values (denoted by E[P -value]) with associated 95% confidence intervals.

Standard CU Log Lewis

Case Subcase #P E[P -value] #P E[P -value] #P E[P -value] #P E[P -value]
Exp − 9487 0.50 ± 0.006 9511 0.50 ± 0.006 9478 0.50 ± 0.006 9493 0.50 ± 0.006
Ek k = 2 28 0.00 ± 0.000 9985 0.78 ± 0.004 21 0.00 ± 0.000 0 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 10000 0.94 ± 0.002 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 10000 0.98 ± 0.001 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 8843 0.42 ± 0.006 9169 0.45 ± 0.006 9015 0.43 ± 0.006 8138 0.35 ± 0.006
c2 = 1.5 7204 0.27 ± 0.005 8811 0.40 ± 0.006 7940 0.33 ± 0.006 5441 0.18 ± 0.005
c2 = 2 3603 0.09 ± 0.003 7186 0.24 ± 0.005 4447 0.15 ± 0.004 695 0.02 ± 0.001
c2 = 4 90 0.00 ± 0.000 3648 0.08 ± 0.003 1323 0.04 ± 0.002 22 0.00 ± 0.000
c2 = 10 0 0.00 ± 0.000 935 0.02 ± 0.001 1205 0.04 ± 0.003 67 0.00 ± 0.001

Z − 1200 0.02 ± 0.001 9438 0.57 ± 0.006 1228 0.02 ± 0.001 187 0.00 ± 0.000
LN − 98 0.00 ± 0.000 9517 0.53 ± 0.006 219 0.01 ± 0.000 24 0.00 ± 0.000
RRI p = 0.1 9048 0.41 ± 0.006 9044 0.42 ± 0.006 9056 0.42 ± 0.006 9121 0.41 ± 0.005

p = 0.5 4659 0.11 ± 0.003 5587 0.16 ± 0.004 5118 0.13 ± 0.003 4624 0.11 ± 0.003
p = 0.9 16 0.00 ± 0.000 701 0.01 ± 0.001 83 0.00 ± 0.000 13 0.00 ± 0.000

EARMA 0.25 9284 0.47 ± 0.006 8564 0.36 ± 0.005 9266 0.47 ± 0.006 9498 0.50 ± 0.006
0.5 8865 0.43 ± 0.006 7519 0.27 ± 0.005 8908 0.43 ± 0.006 9393 0.49 ± 0.006
1 8178 0.37 ± 0.006 9238 0.48 ± 0.006 8918 0.42 ± 0.006 8115 0.34 ± 0.006
3 5209 0.21 ± 0.005 5671 0.19 ± 0.005 4534 0.13 ± 0.004 4686 0.17 ± 0.005
5.25 4100 0.14 ± 0.004 1598 0.03 ± 0.002 4216 0.14 ± 0.004 5680 0.21 ± 0.005

mH2 m = 2 4398 0.14 ± 0.004 4355 0.11 ± 0.003 5332 0.21 ± 0.005 1546 0.04 ± 0.002
m = 5 7514 0.32 ± 0.006 5400 0.17 ± 0.004 7922 0.35 ± 0.006 7228 0.29 ± 0.006
m = 10 7818 0.35 ± 0.006 9446 0.48 ± 0.006 9475 0.49 ± 0.006 9457 0.50 ± 0.006
m = 20 7996 0.37 ± 0.006 9494 0.50 ± 0.006 9517 0.50 ± 0.006 9489 0.50 ± 0.006

RRI(H2) p = 0.1 104 0.00 ± 0.000 2986 0.07 ± 0.002 1432 0.04 ± 0.002 37 0.00 ± 0.000
p = 0.5 253 0.00 ± 0.001 1105 0.02 ± 0.001 1738 0.04 ± 0.002 215 0.00 ± 0.001
p = 0.9 4 0.00 ± 0.000 229 0.00 ± 0.001 52 0.00 ± 0.000 5 0.00 ± 0.000

examined in [25]. The performance impact on the second
queue of the departure process from the first queue was found
to be roughly consistent with the cumulative impact of the sto-
chastic dependence over longer time intervals, which in turn
is well-captured by the index of dispersion for counts (IDC),
that is, the ratio of the variance to the mean of the departure
counting process. For the case α = 0.3, the estimated IDC
is increasing in t and approximately 2.1 for time 4. That is
consistent with what the CU KS test shows for L = 14. Both
substantiate that the stochastic dependence is present over
longer time intervals.

7. ASYMPTOTICS OF THE KS TESTS

To understand the power of the different KS tests, it is use-
ful to consider the functional law of large numbers (FWLLN)
and CLT (FCLT) for the empirical process (the empirical cdf
as a function of its argument x) and the associated LLN and
CLT for the KS statistic in (2) applied to alternative stochastic
processes; see [31, 38] for background. In addition to the PP
associated with the null hypothesis, we want to cover a wide
range of alternative hypotheses, including all the ones we
analyzed. In particular, we want to include renewal processes

with nonexponential distributions, but also more general sta-
tionary point processes with dependence among successive
interarrival times. We want to see how these two distinct
departures from the PP affect the asymptotic behavior.

The desired results apply to all those alternative arrival
processes provided that the interarrival times are only weakly
dependent, which is the common case in service system appli-
cations. For this purpose, it suffices to apply the FCLT for
empirical processes as in [31]. We use the version stated
in Theorem 2.1 of [29], where explicit conditions for weak
dependence are stated and references are given, from which
one can find the extensive literature.

Let {Xk : k ≥ 1} be the sequence of interarrival times,
and let F(x) ≡ P(Xk ≤ x) be the marginal cdf, which we
assume is continuous and strictly increasing, and so has a
well-defined inverse F−1. Let Fn(x) be the ecdf as in (1) and
let Dn be the KS statistic as in (2).

As is customary with ecdf’s, we work with an associated
sequence {Uk : k ≥ 1} of random variables that individually
are uniformly distributed on [0, 1]. In particular, we let

Uk ≡ F(Xk), k ≥ 1, (9)
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Table 10. Performance of alternative standard Tests n = 200: Number of KS tests passed (denoted by #P ) at significance level 0.05 out of
10, 000 replications and the average P -values (denoted by E[P -value]) with associated 95% confidence intervals.

KS with estimated mean Lilliefors test

Case Subcase #P E[P -value] #P E[P -value]
Exp − 9945 0.65 ± 0.005 9495 0.37 ± 0.003
Ek k = 2 2 0.00 ± 0.000 0 0.00 ± 0.000

k = 4 0 0.00 ± 0.000 0 0.00 ± 0.000
k = 6 0 0.00 ± 0.000 0 0.00 ± 0.000

H2 c2 = 1.25 9516 0.50 ± 0.006 8161 0.28 ± 0.004
c2 = 1.5 8030 0.29 ± 0.005 5260 0.14 ± 0.003
c2 = 2 3818 0.09 ± 0.003 1507 0.03 ± 0.002
c2 = 4 348 0.01 ± 0.001 90 0.00 ± 0.000
c2 = 10 360 0.01 ± 0.001 153 0.01 ± 0.001

Z − 1042 0.02 ± 0.001 161 0.00 ± 0.000
LN − 147 0.01 ± 0.000 4 0.00 ± 0.000
RRI P = 0.1 9842 0.56 ± 0.005 9020 0.32 ± 0.003

P = 0.5 6857 0.19 ± 0.004 3820 0.08 ± 0.002
P = 0.9 50 0.00 ± 0.000 4 0.00 ± 0.000

EARMA 0.25 9947 0.65 ± 0.005 9521 0.37 ± 0.003
0.5 9918 0.65 ± 0.005 9415 0.37 ± 0.003
1 9829 0.60 ± 0.005 9073 0.34 ± 0.003
3 8387 0.43 ± 0.007 6744 0.23 ± 0.004
5.25 8002 0.34 ± 0.006 5891 0.18 ± 0.004

mH2 m = 2 4908 0.15 ± 0.004 2628 0.07 ± 0.003
m = 5 9421 0.49 ± 0.006 7946 0.27 ± 0.004
m = 10 9877 0.62 ± 0.005 9183 0.35 ± 0.003
m = 20 9929 0.65 ± 0.005 9487 0.37 ± 0.003

RRI(H2) P = 0.1 432 0.01 ± 0.001 122 0.00 ± 0.000
P = 0.5 674 0.01 ± 0.001 216 0.01 ± 0.001
P = 0.9 19 0.00 ± 0.000 0 0.00 ± 0.000

so that P(Uk ≤ x) = P(Xk ≤ F−1(x)) = F(F−1(x)) = x,
0 < x < ∞. and F−1(Uk) = Xk , k ≥ 1. Hence,

1{Uk≤F(xk):1≤k≤k0} = 1{Xk≤xk :1≤k≤k0}. (10)

Hence, we can apply a FCLT for uniform random variables
and then transform by the cdf F when we are done. For this
purpose, let

Yk(x) ≡ 1{Uk≤x} − x, k ≥ 1, 0 ≤ x ≤ 1, (11)

Table 11. The CU and Lewis KS tests applied to the departure processes over [6, 20] from the Mt/H2/st + M model with the sinusoidal
arrival rate function in 18 cases: three relative amplitudes [r = 0 (constant), 0.2, and 0.6], 2 abandonment probability targets [α = 0.3, heavily
loaded, and α = 0.01, lightly loaded] and three subinterval lengths [L: 0.5, 2, and 14].

Arrival rate Aband. Sample
Rel. Prob. Size L = 0.5 L = 2 L = 14

Amplitude Target Result # n CU Lewis CU Lewis CU Lewis

r = 0.0 α = 0.3 P -val 9717 0.50 0.48 0.54 0.53 0.20 0.58
# pass 44 47 46 49 30 50

α = 0.01 P -val 13, 709 0.46 0.45 0.54 0.46 0.40 0.48
# pass 47 47 47 45 41 44

r = 0.2 α = 0.3 P -val 9586 0.56 0.54 0.46 0.55 0.00 0.27
# pass 47 47 38 50 0 47

α = 0.01 P -val 13, 690 0.46 0.51 0.27 0.56 0.00 0.52
# pass 47 47 38 50 0 47

r = 0.6 α = 0.3 P -val 9344 0.47 0.40 0.18 0.12 0.00 0.00
# pass 46 46 27 16 0 0

α = 0.01 P -val 13, 672 0.47 0.48 0.04 0.02 0.00 0.00
# pass 46 48 10 6 0 0

The KS tests are applied 50 times, once for each 10 replications.
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be the process constructed from mean-0 centered indicator
variables associated with Uk , let

Ûn(x) ≡ 1√
n

n∑
j=1

Yk(x), 0 ≤ x ≤ 1, (12)

be the FCLT-scaled uniform empirical process on [0, 1] and
let

	(x, y) ≡ E[Y1(x)Y1(y)] +
∞∑

j=2

(E[Y1(x)Yk(y)]

+ E[Y1(y)Yk(x)]) (13)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The elements E[Y1(x)Yk(y)]
in the sum in the second term of (13) are covariance terms,
capturing the dependence. Let D[0, 1] be the usual function
space of right-continuous real-valued functions on [0, 1], for
example, see [38].

In this framework, here is the FCLT for the uniform
empirical process, without giving a full description of weak
dependence:

THEOREM 7.1 (FCLT for the uniform empirical process):
Let {Uk : k ≥ 1} be a weakly dependent stationary sequence
of random variables uniformly distributed on [0, 1], either (i)
φ-mixing or (ii) S-mixing. Assume that

∞∑
i=1

‖E[Ui+k|Fk]‖L2 =
∞∑
i=1

(E[(E[Ui+k|Fk])2]) 1
2 < ∞,

(14)

where Fk ≡ σ {Ui : 1 ≤ i ≤ k} for each k ≥ 1. Then, the
series 	(x, y) in (13) converges absolutely, and

Ûn ⇒ Û in D[0, 1] as n → ∞, (15)

where Û ≡ {Û (x) : 0 ≤ x ≤ 1} is a mean-0 Gaussian
process with covariance function 	(x, y) in (13).

The final results can be obtained by transforming back
from [0, 1] to [0, ∞) using the marginal cdf F . Let

F̂n(x) = √
n(Fn(x) − F(x)), x ≥ 0, (16)

be the FCLT-scaled empirical process on [0, ∞). Since
F̂n(x) = Ûn(F (x)), x ≥ 0, we have the following corollary.

COROLLARY 7.1 (FCLT for the general empirical
process): Under the weak dependence condition of Theorem
7.1,

F̂n ⇒ F̂ in D[0, ∞) as n → ∞, (17)

where F̂ (x) ≡ Û (F (x)), x ≥ 0, so that F̂ ≡ {F̂ (x) : x ≥
0} is a mean-0 Gaussian process with covariance function
E[F̂ (x)F̂ (y)] = 	(F(x), F(y)), x ≥ 0 and y ≥ 0, for 	 in
(13).

As in Theorem 7.1, the dependence in the limit in Corollary
7.1 is captured by the second term in (13), but now trans-
formed by the cdf F . As a consequence of Corollary 7.1, we
have the FWLLN:

COROLLARY 7.2 (FWLLN for the general empirical
process): Under the weak dependence condition of Theorem
7.1,

Fn ⇒ F in D[0, ∞) as n → ∞. (18)

These results are generalizations of the classical Glivenko–
Cantelli theorem and Kolmogorov CLT for i.i.d random
variables briefly reviewed in §2.3 of [38].

By the continuous mapping theorem (applied in the case
with bounded domain [0, 1]), we obtain the associated LLN
and CLT for the KS statistic:

COROLLARY 7.3 (CLT and LLN for the KS statistic):
Under the weak dependence condition of Theorem 7.1,

Dn ⇒ 0 as n → ∞ (19)

and

D̂n ≡ √
nDn ⇒ D̂

d= sup
x≥0

{|F̂ (x)|} as n → ∞. (20)

where F̂ is the Gaussian limit process in Corollary 7.1.

Without dependence, the limiting random variable has a
known distribution, originally found by Kolmogorov, namely,

D̂
d= sup

0≤x≤1
{|B0(x)|}, (21)

where B0 is the Brownian bridge stochastic process and

P(D̂ ≤ x) =
√

2π

x

∞∑
k=1

e
−

(
π2(2k−1)2

8x2

)
, x > 0. (22)

However, the dependence yields an extra term. More gener-
ally, we have the limit D̂ being the supremum of the absolute
value of a mean-0 Gaussian process with covariance function
	 in (13). An explicit analytical expression is evidently dif-
ficult to obtain, but there is a well defined limit that can be
identified using simulation.

There are important implications for applications. The
first-order [order O(1)] asymptotic behavior of the ecdf
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Figure 4. Exp - Histogram of
√

tDt with t = 2 × 105 from 100 replications: standard KS, conditional-uniform, log, and Lewis tests (from
left to right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Fn(x) in (1) as n → ∞ is covered by the LLN in (19).
First, the LLN in (19) holds for all processes, with the same
limit as if the sequence {Xk} is i.i.d. From this perspective, to
distinguish an alternative hypothesis from the null hypothe-
sis, we want the marginal cdf’s to be significantly different.
The dependence does not affect the LLN, so that it should be
relatively more difficult to distinguish an alternative arrival
process with a dependent exponential distribution from a PP.

The second-order [order O(1/
√

n)] asymptotic behavior
of the ecdf Fn(x) is covered by the CLT in (20). If the
alternative hypothesis has the same marginal cdf as the null
hypothesis, or nearly the same, then we will be relying on
the second-order behavior to reject the alternative. In that
case, we should expect the power to be much less. Moreover,
the dependence is captured by the CLT via the covariance
function 	(x, y), but the supremum makes the case with
dependence quite complicated. Thus to see such second-order
effects, it is natural to look at the scaled random variable D̂n

in (20) as well as Dn and the empirical process Fn.
To illustrate the asymptotics described above, we now plot√
tD̂t as in (20) for the rate-1 process over the interval [0, t]

for much larger t . The limit in (20) extends immediately
from the discrete argument n to the continuous argument t .]
To make the large-sample story clear, these figures are his-
tograms based on 100 replications for t = 2 × 105, which is
1000 times longer than our base case with t = 200. In each
case, plots for the four tests are shown, in the order of the
standard, CU, Lewis, and Log tests from left to right.

First, Fig. 4 shows the results for the PP null hypothe-
sis. Now all four plots are consistent with the classical limit
theorem in (21) and (22). Second, Fig. 5 shows the corre-
sponding plots for the renewal process with H2 interarrival
times having c2 = 2. Consistent with our previous obser-
vations, Fig. 5 shows the pathetically weak performance of
the CU test and the superiority of the Lewis test. Finally,
Fig. 6 shows the corresponding plots for the EARMA(5.25)

sequence of dependent exponential interarrival times with the
largest (5.25) cumulative correlations. Fig. 6 shows that all
four KS tests do detect the dependence, but the CU has high-
est power for this example. These conclusions are confirmed
by the sample means displayed in Table 12. The relatively
good performance of the CU test for dependent exponential
interarrival times is evident, but it is yet to be explained.

The analysis in this section is complicated by considering
the entire ecdf Fn(x) as a function of x and thus the FCLT’s in
Theorem 7.1 and Corollary 7.1. After taking the supremum,
that leads to the 1D KS statistic in (2) and its associated CLT
in Corollary 7.3. We can see the essential idea in this section
if we consider the ecdf Fn(x) for one fixed argument x. This
limited view is easy to understand and analyze, because the
ecdf Fn(x) is simply the sum of Bernoulli random variables.
However, these Bernoulli random variables will be dependent
if the Xn are. Nevertheless, analysis is relatively easy.

We illustrate this more elementary perspective for the case
of EARMA(5.25) for the argument x = 0.2 in Fig. 7. It
shows a plot of

√
t |Ft(x) − F(x)| for x = 0.2 as a function

Figure 5. H2 (c2 = 2) - Histogram of
√

tDt with t = 2 × 105 from 100 replications: standard KS, conditional-uniform, log, and Lewis tests
(from left to right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6. EARMA (5.25) - Histogram of
√

tDt with t = 2 × 105 from 100 replications: standard KS, conditional-uniform, log, and Lewis
tests (from left to right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 12. Average
√

tDt with associated 95% confidence intervals from 100 replications and t = 2 × 105.

Case Standard CU Log Lewis

Exp 0.86 ± 0.02 0.85 ± 0.02 0.88 ± 0.02 0.87 ± 0.02
E2 62.50 ± 0.02 0.63 ± 0.01 62.48 ± 0.02 82.32 ± 0.02
H2 35.35 ± 0.03 1.28 ± 0.02 35.36 ± 0.04 58.46 ± 0.04
EARMA (0.25) 0.94 ± 0.02 1.06 ± 0.02 0.98 ± 0.02 0.91 ± 0.02
EARMA (0.5) 0.91 ± 0.02 1.20 ± 0.02 0.96 ± 0.02 0.87 ± 0.02
EARMA (1) 1.02 ± 0.02 1.45 ± 0.03 1.05 ± 0.02 0.94 ± 0.02
EARMA (3) 1.48 ± 0.03 2.20 ± 0.04 1.41 ± 0.04 1.25 ± 0.03
EARMA (5.25) 1.70 ± 0.05 2.84 ± 0.05 1.58 ± 0.05 1.31 ± 0.04

of t up to t = 2 × 105 as above, with t expressed in log
scale. For each KS test, the 95% confidence interval lines
are also shown. From this more elementary plot, we also see
the greater power of the CU test in this case, but only for
x = 0.2.

8. WHY THE CONDITIONAL UNIFORM TEST
HAS LOW POWER

The purpose of this section is to provide theoretical sup-
port for our explanation in section 1.3 why the CU KS test
has so little power. We have indicated that it is because
the CU KS test focuses on the arrival time instead of the
interarrival times. As a consequence, we can show that the

ecdf in (1) converges to the uniform cdf associated with the
null hypothesis as the sample size n → ∞. Thus the long-
run average value of the ecdf in (1) for the CU KS test
will coincide with the uniform cdf, just as we saw in Fig.
1 and 2. However, the CU KS test can detect dependence
among the interarrival times in the alternative hypothesis.
The FCLT in section 7 shows that it will produce a difference
of order O(1/

√
n), which is the order of the KS statistic in

(2) under the null hypothesis. The tables and plots in section
7 demonstrate that the CU KS test can detect the dependence.

To establish the supporting result, it suffices to assume that
the sequence of interarrival times {Xn : n ≥ 1} obeys a strong
LLN (SLLN), as occurs (by definition) when the sequence of
interarrival times is an ergodic stationary sequence. For an
i.i.d. sequence that occurs if an interarrival time has a finite

Figure 7. EARMA (5.25) - Average
√

t |Ft (x) − F(x)| with F(x) = 0.2 over 100 replications: standard KS, conditional-uniform, log, and
Lewis tests (from left to right). The x-axis is scaled such that t = 2 × 10q . [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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mean. That covers all our examples of possible alternative
hypotheses and many more. Then

n−1Sn → E[X] w.p.1 as n → ∞, (23)

where Sn ≡ X1 + · · · Xn, n ≥ 1, with S0 ≡ 0. As a conse-
quence, the interarrival times necessarily also obey the seem-
ingly much stronger functional strong law of large numbers
(FSLLN), that is,

sup
0≤t≤1

{|n−1S�nt� − tE[X]|} → 0 w.p.1 as n → ∞,

(24)

for example, see section 3.2 of the Internet Supplement to
[38]. However, the CU test applied to an interval [0, t] applies
to the associated counting process. Nevertheless, the FSLLN
in (24) implies a corresponding FSLLN for the associated
counting process,

N(t) ≡ max {k ≥ 0 : Sk ≤ t}, t ≥ 0. (25)

As a consequence, of the FSLLN for the partial sums in (24),
we automatically have the associated FSLLN for the counting
process:

sup
0≤t≤1

{|n−1N(nt) − t/E[X]|} → 0 w.p.1 as n → ∞;

(26)

for example, see section 13.6 and 13.8 of [38]. That implies
that the CU test asymptotically yields the linear plots we see
in the CU cases of Figs. 1 and 2. Indeed, all CU test plots
looked just like these (see the appendix).

9. CONCLUSIONS AND FUTURE RESEARCH

9.1. Conclusions

We have focused on statistical tests of a homogeneous PP,
which we apply to statistical tests of a NHPP based on a
approximation for the rate function and the CU transfor-
mation, as proposed by Brown et al. [8]. This approach is
appealing because the CU transformation allows us to com-
bine the data into a single sequence of i.i.d. random variables
uniformly distributed on [0, 1]. It thus eliminates all nuisance
parameters, that is, there are no parameters to estimate. We
can then directly apply a standard statistical test, such as the
CU KS test, but we have shown that an extra data transfor-
mation, as proposed in [8,10,22], should be helpful, because
the i.i.d. random variables produced by the CU transforma-
tion correspond to the arrival times instead of the interarrival
times. As a consequence, for the CU KS test the ecdf in (1)
converges to the cdf of the uniform cdf as the sample size n

increases, as we showed in section 8. That explains why we
see no separation at all for the CU KS test in Figs. 1 and 2.

The Durbin [10] transformation used by Lewis [22] after
the CU transformation starts by ordering the interarrival times
in ascending order. As a consequence, it focuses more on
differences in the interarrival-time distribution from the expo-
nential interarrival-time distribution of the PP null hypoth-
esis. We have conducted extensive simulation experiments
to study the power of the alternative KS tests of a PP. Our
analysis supports the approach proposed by Brown et al. [8],
but finds that the Lewis [22] KS test consistently has even
greater power against alternative hypotheses with different
interarrival-time cdf’s. The Lewis test also has greater power
than the standard KS tests of a PP via its interarrival times,
even if the mean is assumed to be known in advance.

Our experiments show that different conclusions hold for
the KS tests of a PP for two classes of alternative hypotheses:
(i) those with nonexponential interarrival times and (ii) those
with dependent exponential interarrival times. For the first
class, the Lewis test consistently has most power.

For the second class, none of the procedures has much
power, but the CU KS test evidently has the most power.
We show that the CU KS test can detect the dependence
with enough data. Since the deviation from a PP is due
entirely to the dependence in these examples, it evidently
is better to keep the original order of the interarrival times.
(We have noted the exception for the RRI cases.) Since the
data transformations tend to reorder the interarrival times,
the data transformations may actually dissipate the impact
of the dependence. The final example testing the departure
process from a many-server queue with NHPP arrival process
illustrates the potential advantages of the CU KS test. Com-
paring Tables 7 and 3 show that the use of subintervals may
significantly weaken the ability of the CU KS test to detect
the dependence, as the dependence extending beyond the
subinterval boundaries is lost.

We have shown that simulation can be very useful for deter-
mining how much power these KS tests have in any given
context. Especially, revealing are the plots such as in Figs. 1
and 2 comparing the sample average of the ecdf over many
independent replications with the cdf of the null hypothesis.
For dependent alternative hypotheses, it may be helpful to
display the estimated CLT-scaled ecdf and KS statistic, as in
Figs. 4–7.

9.2. Remaining Issues

We also have investigated other important issues arising
in tests of a NHPP with service system data. First, we stud-
ied the consequence of approximating a general NHPP by
a PC NHPP, as required for the CU, Log, and Lewis tests.
Second, we studied the consequence of data rounding, which
was found to be a serious issue by [8]. Third, we studied the
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issue of over-dispersion when we attempt to obtain more data
by combining data from multiple days. We report our results
for these three issues in [20], where we also apply these KS
tests to call center and hospital data.

We also realized that the two data transformations studied
here can also be applied to other KS tests. Hence, we studied
alternative KS tests to the standard KS test of i.i.d. random
variables with a cdf F . We found that the power of the stan-
dard test can often be improved by first transforming the null
hypothesis to i.i.d. exponential random variables (by apply-
ing Proposition 1 in section 2.2) and then applying the Lewis
KS test of the resulting PP. We found that this procedure
is consistently superior to the direct Durbin transformation
(applied after converting the null hypothesis to a uniform cdf
on [0, 1] (again by applying Proposition 1 in §2.2); we report
the details in [21].

There remain many unanswered questions: can we find
even better admissible data transformations? For individual
alternative hypotheses or classes of them, can we find the best
admissible data transformation, as formulated in section 2?
Can we verify Conjecture 5.1 about stochastic order of the
expected ecdf’s in section 5.2? Can we supplement the FCLT
in section 7 by quantifying the asymptotic distribution of the
KS test statistic in the general case with dependence?

It remains to decide how to interpret statistical tests in
applications. With enough data, any null hypothesis will be
rejected by reasonable statistical tests if there is the slightest
difference in the hypotheses. Thus, failing the best KS statis-
tical test does not imply that the NHPP arrival process model
cannot be useful. Indeed, the model might nevertheless be
most useful, depending on how it can be used. This is espe-
cially relevant for performance analysis, because queueing
models with PP and NHPP arrival processes are much easier
to analyze than with all known alternatives. We have begun to
study how to analyze performance in queueing models when
the KS test indicates that an NHPP is actually inappropriate.
We plan to discuss this last issue in subsequent papers.

Whenever we have two or more candidate models, all of
which can be applied, and only one passes the statistical tests,
then there is quite a good case for using the successful model.
However, if we only know how to proceed with one model,
then the implications of test failure are unclear. It remains to
consider what to do if a NHPP fails the KS test, which we
intend to address in a forthcoming paper. We do see that the
NHPP is less justified as the estimated P -value decreases;
that should provide caution. A more powerful test reduces
the likelihood of being overconfident. Applications suggest
considering alternative performance-based statistical tests of
a NHPP, in the spirit of [7, 37].
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