Design of Statistical Experiments

Exploiting Heavy-Traffic Limits for Queueing Processes

IEOR 4615, Service Engineering, Professor Whitt

Lecture 15, March 12, 2015

OUTLINE

- Estimation for Queueing Processes: Dependence!
- Exploit CLT to Estimate Confidence Intervals
- The Heavy-Traffic Limit for the $GI/GI/s/\infty$ Model
- How Scaling Affects the Asymptotic Variance
- Putting It All Together:
 - Approximations for the Steady-State Mean and the Asymptotic Variance.
 - Approximations for the Required Interval Length
 - Run length in a simulation.
 - Measurement Interval (Sample Size) with System Data

Estimating the Expected Number in the System

- Given stationary stochastic process: $\{Q(t) : t \ge 0\}$
- Our goal: Estimate the unknown mean E[Q(0)], using
 - sample mean: $\bar{Q}(t) \equiv \frac{1}{t} \int_0^t Q(s) \, ds$
- But the observations are typically highly dependent!
- Use **batch means** as in Lecture 4.
- How much data do we need?

Exploit CLT to Construct Confidence Intervals for Estimates

- Given stationary stochastic process: $\{Q(t) : t \ge 0\}$
- Our goal: Estimate the unknown mean E[Q(0)], using
 - sample mean: $\bar{Q}(t) \equiv \frac{1}{t} \int_0^t Q(s) \, ds$
- Use CLT: $t^{1/2} \left(\overline{Q}(t) E[Q(0)] \right) \Rightarrow N(0, \sigma^2)$, where
 - $\sigma^2 \equiv \lim_{t \to \infty} t Var(\bar{Q}(t)) = 2 \int_0^\infty C(s) \, ds$ (asymptotic variance)

•
$$C(t) \equiv Cov(Q(0), Q(t)) \equiv E[Q(0)Q(t)] - E[Q(0)]E[Q(t)]$$

- Use normal approximation: $\bar{Q}(t) \approx N(E[Q(0)], \sigma^2/t)$.
 - Use HT limit to estimate both the mean E[Q(0)] and the asymptotic variance σ^2 .
 - (With data, use the method of batch means, as in Lecture 4.)
 - See §2 of "Planning Queueing Simulations," 1989.

95% Confidence Intervals (CI's)

- Use normal approximation: $\bar{Q}(t) \approx N(E[Q(0)], \sigma^2/t)$.
- Given asymptotic variance σ^2 and interval length t,
- Confidence Interval: $[\bar{Q}(t) z_{\beta/2}\sqrt{\sigma^2/t}, \bar{Q}(t) + z_{\beta/2}\sqrt{\sigma^2/t}]$
 - where $P(-z_{\beta/2} < N(0,1) < z_{\beta/2}) = 1 \beta = 0.95$ ($\beta = 0.05$)
- absolute width of CI: $w_a(\beta) \equiv \frac{2z_{\beta/2}\sigma}{\sqrt{t}};$

relative width of CI: w_r(β) ≡ w_a(β)/E[Q(0)] = 2z_{β/2}σ/√tE[Q(0)].
required values of t: t_a(ε, β) ≡ 4σ²z²_{β/2}/ε² and t_r(ε, β) ≡ 4σ²z²_{β/2}/ε²E[Q(0)]².

• Use HT limit to estimate both E[Q(0)] and the asymptotic variance σ^2 .

Review: Conventional HT Limit in $GI/GI/s/\infty$ Model

- i.i.d. interarrival times T_k : $E[T] \equiv \frac{1}{\lambda}, c_a^2 \equiv \frac{Var(T)}{E[T]^2}$
- i.i.d. service times S_k : $E[S] \equiv \frac{1}{\mu}$, $c_s^2 \equiv \frac{Var(S)}{E[S]^2}$
- Let traffic intensity $\rho \equiv \lambda/s\mu \uparrow 1$ (by multiplying T_k be constants).
- Let $W(\rho)$ be the steady-state waiting time before starting service.
- The distribution of $W(\rho)$ is complicated except for special cases.
- **HT limit:** $(1 \rho)W(\rho) \Rightarrow W^*$ (with exponential distribution)
- $E[W(\rho)] \approx \frac{\rho E[S](c_a^2 + c_s^2)}{2(1-\rho)}$ and $P(W(\rho) > x) \approx e^{-2(1-\rho)x/(c_a^2 + c_s^2)}, x \ge 0.$
- (The mean is exact for $M/M/1/\infty$ and $M/GI/1/\infty$ special cases.)
- Refined approx.: $E[W(\rho)] \approx \left(\frac{c_a^2 + c_s^2}{2}\right) E[W(\rho; M/M/s/\infty)]$ (QNA)

Stochastic-Process Limit for $GI/GI/s/\infty$

- i.i.d. interarrival times T_k : $E[T] \equiv \frac{1}{\lambda}$, $c_a^2 \equiv \frac{Var(T)}{E[T]^2}$
- i.i.d. service times S_k : $E[S] \equiv \frac{1}{\mu}, c_s^2 \equiv \frac{Var(S)}{E[S]^2}$
- Let traffic intensity $\rho \equiv \lambda/s\mu \uparrow 1$ (by multiplying T_k be constants).
- Let $Q_{\rho}(t)$ be the number in queue at time t.
- **HT limit:** $(1 \rho)Q_{\rho}(t(1 \rho)^{-2}) \Rightarrow R(t; a, b)$ as $\rho \uparrow 1$
 - Both time scaling and space scaling!
 - The limit process is reflected Brownian motion (RBM).
 - The drift is a = -s; the variance constant is $b = s(c_a^2 + c_s^2)$.

•
$$Q_{\rho}(t) \approx \left(\frac{b}{|a|(1-\rho)}\right) R\left(a^2(1-\rho)^2t; -1, 1\right), \quad t \ge 0.$$

• (See §4.3 and equation (34) in "Planning Queueing Simulations," 1989.)

How does scaling affect the asymptotic variance?

- Recall that $\sigma^2 = 2 \int_0^\infty C(s) \, ds$.
- If $Q_{y,z}(t) \equiv yQ(zt)$, $t \ge 0$, then
- $E[Q_{y,z}(t) = yE[Q(t)], C_{y,z}(t) = y^2C(zt)$
- and $\sigma_{y,z}^2 \equiv y^2 \sigma^2 / z$.
 - For $\sigma_{y,z}^2(t)$, we do the change of variables u = zs in the integral:
 - $\int_0^\infty C(zs) \, ds = \int_0^\infty C(u) \, du/z = (1/z) \int_0^\infty C(u) \, du$

(See §4.2 of "Planning Queueing Simulations.")

Approximations for E[Q(0)] and σ^2 in $GI/GI/s/\infty$

- steady-state mean: $E[Q_{\rho}(0)] \approx \frac{\rho^2(c_a^2 + c_s^2)}{2(1-\rho)}$
- asymptotic variance: $\sigma_{\rho}^2 \approx \frac{\rho^2 (c_a^2 + c_s^2)^3}{2s(1-\rho)^4}$
- ratio: $\frac{\sigma_{\rho}^2}{E[Q_{\rho}(0)]^2} \approx \frac{2(c_a^2 + c_s^2)}{s\rho^2(1-\rho)^2}$
- (See equation (42) in "Planning Queueing Simulations," 1989.)
- How do these depend on the traffic intensity ρ and on the overall variability $(c_a^2 + c_s^2)$?

As a consequence, the required run length based on a specified ε
 absolute error is

•
$$t_a(\epsilon,\beta) \equiv \frac{4\sigma^2 z_{\beta/2}^2}{\epsilon^2} = \frac{4\rho^2 (c_a^2 + c_s^2)^3 z_{\beta/2}^2}{\epsilon^2 2s(1-\rho)^4},$$

• while the required run length based on a specified ϵ relative error is

•
$$t_r(\epsilon,\beta) \equiv \frac{4\sigma^2 z_{\beta/2}^2}{\epsilon^2 E[Q(0)]^2} = \frac{4(c_a^2 + c_s^2) z_{\beta/2}^2}{\epsilon^2 2s\rho^2(1-\rho)^2}$$

• How do these required values of t depend on the traffic intensity ρ and on the overall variability $(c_a^2 + c_s^2)$?

References

- W². Planning Queueing Simulations. Management Science 35(11) (1989) 1341–1366.
- W². Analysis for the Design of Simulation Experiments. Chapter 13 in *Simulation*, Volume 13 in the Elsevier series of *Handbooks in Operations Research and Management Science*, 2006, edited by Shane Henderson and Barry Nelson, 381–413.
- R. Srikant, W². Simulation Run Lengths to Estimate Blocking Probabilities. ACM Transactions on Modeling and Computer Simulation (TOMACS) 6(1) (1996) 7–52.