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OUTLINE

Estimation for Queueing Processes: Dependence!

Exploit CLT to Estimate Confidence Intervals

The Heavy-Traffic Limit for the GI/GI/s/∞Model

How Scaling Affects the Asymptotic Variance

Putting It All Together:

Approximations for the Steady-State Mean and the Asymptotic Variance.

Approximations for the Required Interval Length

Run length in a simulation.

Measurement Interval (Sample Size) with System Data



Estimating the Expected Number in the System

Given stationary stochastic process: {Q(t) : t ≥ 0}

Our goal: Estimate the unknown mean E[Q(0)], using

sample mean: Q̄(t) ≡ 1
t

∫ t
0 Q(s) ds

But the observations are typically highly dependent!

Use batch means as in Lecture 4.

How much data do we need?



Exploit CLT to Construct Confidence Intervals for Estimates

Given stationary stochastic process: {Q(t) : t ≥ 0}

Our goal: Estimate the unknown mean E[Q(0)], using

sample mean: Q̄(t) ≡ 1
t

∫ t
0 Q(s) ds

Use CLT: t1/2
(
Q̄(t)− E[Q(0)]

)
⇒ N(0, σ2), where

σ2 ≡ limt→∞ tVar(Q̄(t)) = 2
∫∞

0 C(s) ds (asymptotic variance)

C(t) ≡ Cov(Q(0),Q(t)) ≡ E[Q(0)Q(t)]− E[Q(0)]E[Q(t)]

Use normal approximation: Q̄(t) ≈ N(E[Q(0)], σ2/t).

Use HT limit to estimate both the mean E[Q(0)] and the asymptotic

variance σ2.

(With data, use the method of batch means, as in Lecture 4.)

See §2 of “Planning Queueing Simulations,” 1989.



95% Confidence Intervals (CI’s)

Use normal approximation: Q̄(t) ≈ N(E[Q(0)], σ2/t).

Given asymptotic variance σ2 and interval length t,

Confidence Interval: [Q̄(t)− zβ/2
√
σ2/t, Q̄(t) + zβ/2

√
σ2/t]

where P(−zβ/2 < N(0, 1) < zβ/2) = 1− β = 0.95 (β = 0.05)

absolute width of CI: wa(β) ≡ 2zβ/2σ√
t

;

relative width of CI: wr(β) ≡ wa(β)
E[Q(0)] =

2zβ/2σ√
tE[Q(0)]

.

required values of t: ta(ε, β) ≡ 4σ2z2
β/2

ε2 and tr(ε, β) ≡ 4σ2z2
β/2

ε2E[Q(0)]2 .

Use HT limit to estimate both E[Q(0)] and the asymptotic variance σ2.



Review: Conventional HT Limit in GI/GI/s/∞Model

i.i.d. interarrival times Tk: E[T] ≡ 1
λ , c2

a ≡
Var(T)
E[T]2

i.i.d. service times Sk: E[S] ≡ 1
µ , c2

s ≡
Var(S)
E[S]2

Let traffic intensity ρ ≡ λ/sµ ↑ 1 (by multiplying Tk be constants).

Let W(ρ) be the steady-state waiting time before starting service.

The distribution of W(ρ) is complicated except for special cases.

HT limit: (1− ρ)W(ρ)⇒ W∗ (with exponential distribution)

E[W(ρ)] ≈ ρE[S](c2
a+c2

s )
2(1−ρ) and P(W(ρ) > x) ≈ e−2(1−ρ)x/(c2

a+c2
s ), x ≥ 0.

(The mean is exact for M/M/1/∞ and M/GI/1/∞ special cases.)

Refined approx.: E[W(ρ)] ≈
(

c2
a+c2

s
2

)
E[W(ρ; M/M/s/∞)] (QNA)



Stochastic-Process Limit for GI/GI/s/∞

i.i.d. interarrival times Tk: E[T] ≡ 1
λ , c2

a ≡
Var(T)
E[T]2

i.i.d. service times Sk: E[S] ≡ 1
µ , c2

s ≡
Var(S)
E[S]2

Let traffic intensity ρ ≡ λ/sµ ↑ 1 (by multiplying Tk be constants).

Let Qρ(t) be the number in queue at time t.

HT limit: (1− ρ)Qρ(t(1− ρ)−2)⇒ R(t; a, b) as ρ ↑ 1

Both time scaling and space scaling!

The limit process is reflected Brownian motion (RBM).

The drift is a = −s; the variance constant is b = s(c2
a + c2

s ).

Qρ(t) ≈
(

b
|a|(1−ρ)

)
R
(
a2(1− ρ)2t;−1, 1

)
, t ≥ 0.

(See §4.3 and equation (34) in “Planning Queueing Simulations,” 1989.)



How does scaling affect the asymptotic variance?

Recall that σ2 = 2
∫∞

0 C(s) ds.

If Qy,z(t) ≡ yQ(zt), t ≥ 0, then

E[Qy,z(t) = yE[Q(t)], Cy,z(t) = y2C(zt)

and σ2
y,z ≡ y2σ2/z.

For σ2
y,z(t), we do the change of variables u = zs in the integral:∫∞

0 C(zs) ds =
∫∞

0 C(u) du/z = (1/z)
∫∞

0 C(u) du

(See §4.2 of “Planning Queueing Simulations.”)



Approximations for E[Q(0)] and σ2 in GI/GI/s/∞

steady-state mean: E[Qρ(0)] ≈ ρ2(c2
a+c2

s )
2(1−ρ)

asymptotic variance: σ2
ρ ≈

ρ2(c2
a+c2

s )
3

2s(1−ρ)4

ratio: σ2
ρ

E[Qρ(0)]2
≈ 2(c2

a+c2
s )

sρ2(1−ρ)2

(See equation (42) in “Planning Queueing Simulations,” 1989.)

How do these depend on the traffic intensity ρ and on the overall

variability (c2
a + c2

s )?



Required Interval Length

As a consequence, the required run length based on a specified ε

absolute error is

ta(ε, β) ≡ 4σ2z2
β/2

ε2 =
4ρ2(c2

a+c2
s )

3z2
β/2

ε22s(1−ρ)4 ,

while the required run length based on a specified ε relative error is

tr(ε, β) ≡ 4σ2z2
β/2

ε2E[Q(0)]2 =
4(c2

a+c2
s )z2
β/2

ε22sρ2(1−ρ)2 .

How do these required values of t depend on the traffic intensity ρ and on

the overall variability (c2
a + c2

s )?
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