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Stochastic Point Processes: 3 Equivalent Representations

Arrival Times, the location of point k; Ak.

Interarrival Times, the intervals between successive points:

Xk = Ak − Ak−1, k ≥ 1.

Counting Process, the number of points in the interval [0, t]

A(t) = max {k ≥ 0 : Ak ≤ t}, t ≥ 0.

Basic Inverse Relation:

The two stochastic processes {Ak : k ≥ 0} and {A(t) : t ≥ 0} are inverse

processes. (You see them both from a plot of either one.)
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The Arrival Rate Function

Let {A(t) : t ≥ 0} be a counting process. An important partial

characterization is the cumulative arrival rate function

Λ(t) ≡ E[A(t)], t ≥ 0.

We assume that Λ(t) is differentiable. Then

Λ(t) =

∫ t

0
λ(s) ds, t ≥ 0.

λ(t) is the arrival rate function.
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Looking at Call Center Arrivals: Different Time Scales



Notes on the Yearly and Monthly Plots

The yearly plot shows monthly totals over one year.

The monthly plot shows daily totals over one month.

The big dips in the monthly plot are the weekends.

All the variation has to be predictable deterministic variation.

For the months in the year, the counts range from 32,000 to 44,000.

Assuming totals are Poisson, they are approximately normal with variance

equal to the mean.

when mean is about 40,000, the standard deviation is
√

40, 000 = 200.

The actual fluctuations are much greater than would be the case for

Poisson counts with a fixed mean.



Looking at Call Center Arrivals: Different Time Scales



Notes on the Daily and Hourly Plots

The daily plot shows hourly totals over one day.

The hourly plot shows totals for minutes over the hour.

The variation in the daily plot has to be mostly deterministic variation.

For the hours in the day, the counts range from 40 to 160.

when mean is about 100, the standard deviation is
√

100 = 10.

The actual fluctuations are much greater than would be the case for

Poisson counts with a fixed mean.

For the plots within an hour, we see genuine stochastic variability.

If the hourly total is 150, then the mean number in each minute is

150/60 = 2.5. The plot looks roughly like i.i.d Poisson random

variables with mean 2.5.



Arrival Rate Over the Day in 1959 and 1995
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Identifying the Predictable and Unpredictable Variability



Look at Multiple Days: IID NHPP’s?



Estimate Day-To-Day Variation: 25 Mondays Overall

Look at: 13:00-13:30.

Quick Rough Analysis:

range: [2500, 3200], mean ≈ 2850.

5 STD DEV ≈ 700, STD DEV ≈ 140.

variance ≈ 19, 600 >> 2850 Too large!.

Actual Data Analysis:

actual sample mean = 2,842.

actual sample variance = 24,539 >> 2, 842. Thus, Too large!.

Look at: 17:00-17:30.

actual sample mean = 1,705.

actual sample variance = 10,356 >> 1,705. Again, Too large!.



Separating Hourly Rate from the Daily Total: Normalize

Mondays 



Repeat on Fridays

Fridays 



Compare Mondays and Fridays
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Poisson Review

Random Variable X with the Poisson Distribution [Ross §2.2.4]:

P(X = k) =
e−mmk

k!
, k = 0, 1, 2, . . .

Mean and Variance: E[X] = m and Var(X) = m

Moment Generating Function (mgf) [Ross §2.6]. Since

ex =
∑∞

k=0(xk/k!),

ψX(t) = E[etX] =

∞∑
k=0

e−mmketk

k!
= e−m

∞∑
k=0

(met)k

k!
= em(et−1)

Differentiate to get moments:

dψX(t)
dt

= metem(et−1), ψ̇X(0) = m, ψ̈X(0) = m2 + m



Poisson Distribution As Limit of Binomial Distribution

Random Variable X with the Binomial Distribution [Ross §2.2.2]:

P(X = k) = b(k; n, p) =
n!

(n− k)!k!
pk(1− p)n−k, k = 0, 1, 2, . . .

Let n→∞, p→ 0 and np→ m, i.e., set p = m/n [Ross §2.2.4]:

P(X = k) =
n!

(n− k)!k!
(m/n)k(1− (m/n))n−k

=

(
n(n− 1) · · · (n− k + 1)

nk

)(
mk

k!

)(
(1− (m/n))n

(1− (m/n))k

)
→ (1)

(
mk

k!

)(
e−m

1

)
=

e−mmk

k!
as n→∞.



Normal Approximation

If the variable X is Poisson with mean m, where m is large, then X has

approximately a normal distribution, i.e., X ≈ N(m,m).

Why: Use CLT with the property:

If X1 and X2 are independent Poisson variables with means m1 and m2,

then X1 + X2 is Poisson with Mean m1 + m2 [Ross, Example 2.37].

Use mgf’s:

ΨX1+X2(t) = E[et(X1+X2)] = E[etX1etX2)] = E[etX1 ]E[etX2)]

= ΨX1(t)ψX2(t) = em1(et−1)em2(et−1) = e(m1+m2)(et−1).



A Poisson Counting Process

Let A(t) count the number of points in the interval [0, t] [Ross §5.3].

(Think of counting arrivals.)

The stochastic process {A(t) : t ≥ 0} is a Poisson process with rate λ if

the process has stationary and independent increments, and

each increment has a Poisson distribution; e.g., the increment

A(s + t)− A(s) d
= A(t)− A(0)

d
= A(t) has a Poisson distribution with

mean λt:

P(A(t) = k) =
e−λt(λt)k

k!
, k = 0, 1, 2, . . .



A Nonhomogeneous Poisson Process (NHPP)

Let A(t) count the number of points in the interval [0, t] [Ross §5.3].

The stochastic process {A(t) : t ≥ 0} is an NHPP with time-varying rate

λ(t) if

the process has independent increments, and

each increment has a Poisson distribution; in particular,

P(A(s + t)− A(s) = k) =
e−m(s,s+t)(m(s, st))

k

k!
, k = 0, 1, 2, . . .

where the mean of the increment A(s + t)− A(s) is

E[A(s + t)− A(s)] = m(s, s + t) =

∫ s+t

s
λ(u) du.



For a short interval

Let {A(t) : t ≥ 0} be an NHPP with time-varying arrival rate λ(t),

For a small ε > 0,

P(A(t + ε)− A(t) = 0) ≈ e−λ(t)ε ≈ 1− λ(t)ε

P(A(t + ε)− A(t) = 1) ≈ λ(t)εe−λ(t)ε ≈ λ(t)ε

P(A(t + ε)− A(t) ≥ 2) ≈ O(ε2) (very small)

Hence, For a small ε > 0, A(t + ε)− A(t) is approximately Bernoulli.

(Poisson approximation for binomial in reverse)
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A Nonhomogeneous Poisson Process (NHPP)

no batches: Arrival occur one at a time

Poisson distribution: P(A(t) = k) = e−m(t)m(t)k

k!

mean is the integral of the arrival rate: m(t) =
∫ t

0 λ(s) ds, t ≥ 0.

independent increments: For all k ≥ 2 and 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · t2k,

A(t2)− A(t1), A(t4)− A(t3), . . . ,A(t2k)− A(t2k−1) are k independent

random variables.

Poisson process is the special case in which: λ(t) = λ (constant). Then

the process has stationary increments.



Definitions of a Poisson Process (PP)

a renewal process (interarrival times i.i.d.) with an exponential

distribution (having mean 1/λ).

a Lévy process (process with stationary and independent increments)

with unit jumps.

a pure-birth process (a birth-and-death CTMC with 0 death rate) having

constant birth rate λ.

an NHPP: with m(t) = Λ(t) = λt, t ≥ 0.

Each definition implies, but does not assume, the Poisson distribution:

P(A(t) = k) = e−λt(λt)k

k! , t ≥ 0.



Properties of a NHPP, in contrast to a PP

The interarrival times are in general not independent.

The interarrival times are in general not stationary.

The interarrival times are in general not exponentially distributed.

The counts over intervals are still Poisson.

The increments are still independent. (For all k ≥ 2 and

0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · t2k, A(t2)− A(t1), A(t4)− A(t3), . . .,

A(t2k)− A(t2k−1) are k independent random variables, as stated two

slides back.)



A Superposition of Point Processes: Good News

A superposition of n point processes can be represented as the sum of the

corresponding counting processes, i.e., A(t) ≡ A1(t) + · · ·An(t), t ≥ 0, where

{Ai(t) : t ≥ 0} is a counting process for each i.

Theorem
(Good News) The superposition of n independent NHPP’s (PP’s) is itself an

NHPP (PP) with an arrival rate function equal to the sum of the component

arrival rate functions.



A Superposition of Point Processes: Bad News

Theorem
(Bad News) The superposition of n independent stationary (ordinary) renewal

processes is itself either a stationary or ordinary renewal process if and only

if all the component processes and the superposition process are PP’s.



Theoretical Justification for Poisson: More Good News

Theorem
(The Law of Rare Events) The superposition of n independent i.i.d.

nonstationary (stationary) point processes with intensities λ(t)/n (λ/n)

converges in distribution to an NHPP (PP) with arrival rate function λ(t) (λ)

as n→∞.

(the Palm-Khintchine theorem)



Proof of the Law of Rare Events
The essential argument: classical Poisson approximation of the binomial

distribution, as on slide 8. If the probability of heads in one toss of a biased

coin is p, then the number of heads in n independent coin tosses, Sn, has the

binomial distribution, i.e.,

P(Sn = k) = b(k; n, p) =
n!

k!(n− k)!
pk(1− p)(n−k).

Theorem
(Poisson as the limit of the binomial distribution) If n→∞ and p→ 0 so

that np→ m > 0, then

P(Sn = k) = b(k; n, p)→ e−mmk

k!
as n→∞.



Examples Where PP and NHPP Are Suspect

Likely to be smoother, less variable or less bursty:

scheduled arrivals, as at doctor’s office.

enforced separation, as in landings at airports.

interarrival times are sums of independent steps.

Likely to be more variable or more bursty

overflow processes, in finite capacity systems, because they tend to occur

in clumps, when the main system is overloaded.

batch arrivals, as in arrivals to amusement parks, arrivals at hostital ED

because of accident, where customers may use resources as individuals.

interarrival times are mixtures of independent steps.



Examples Where PP and NHPP Should Be Good

arrivals at call center,

arrivals at supermarket or bank,

walk-in arrivals at hospital ED.

All of these examples involve single customers acting independently of

others. Walk-in patients at hospital ED are likely to be not scheduled.



How to Simulate a PP or an NHPP

Simulate a PP by generating i.i.d. exponential interarrival times Xn with

the desired mean 1/λ. That can be done with i.i.d. uniforms Un on [0, 1]:

let Xn = − loge (1− Un)/λ:

P(− loge (1− Un)/λ ≤ x) = P(1− Un ≥ e−λx)

= P(Un ≤ 1− e−λx) = 1− e−λx.

Simulate a NHPP with rate function λ(t) by simulating a PP with rate λ̄

(see above) such that λ(t) ≤ λ̄, Let a point at time t in the PP be a point

in the NHPP with probability p(t) ≡ λ(t)/λ̄. (Use independent thinning

property of NHPP.)



How to Construct an NHPP from a PP

Let {N(t) : t ≥ 0} be a rate-1 PP and let Λ(t) ≡
∫ t

0 λ(s) ds be the cumulative

arrival rate function of the NHPP. Then let

A(t) = N(Λ(t)), t ≥ 0.

Theorem
The stochastic process {A(t) : t ≥ 0} defined above is a NHPP with the

specified cumulative arrival rate function Λ(t).



How to Construct a PP from a NHPP

Let {A(t) : t ≥ 0} be an NHPP with cumulative arrival rate function

Λ(t) ≡
∫ t

0 λ(s) ds. Then let Λ−1(t) be the inverse function of Λ(t), defined by

Λ−1(t) = inf {s > 0 : Λ(s) = t}, t ≥ 0, or

Λ−1(t) = y where t = Λ(y) =

∫ y

0
λ(s) ds.

Theorem

The stochastic process {N(t) : t ≥ 0} where N(t) ≡ A(Λ−1(t)) for the NHPP

{A(t) : t ≥ 0} with cumulative arrival rate function Λ(t) is a rate-1 PP.
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Stationary Point Processes

There are two forms of stationary point processes, defined in continuous

time or discrete time; see Sigman (1995).

A point process is said to be stationary in continuous time if the

counting process {A(t) : t ≥ 0} has stationary increments. (That

primarily means the arrival rate function is a constant function.) For

example, an NHPP is a Poisson process that is also a stationary point

process.

However, for a general stationary point process (Not a PP), the

increments typically are not independent and do not have a Poisson

distribution.



What Makes a Good Model?

What is the purpose?

Use as a component of a queueing model.

Use to help determine staffing levels, e.g., call center agents or hospital

beds, nurses and doctors.

Is the model realistic?

We need to analyze arrival data.

Look at plots and do statistical analysis.

Can we use it to perform useful analysis?

Our answer: POISSON PROCESSES.

Statistical tests (for homogeneous and nonhomogeneous).

Estimate arrival rate function: fitting and forecasting.


