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Toward a Daily Arrival Process Model

What do we anticipate?

We anticipate a Nonhomogeneous Poisson Process (NHPP).

For staffing, we may want piecewise-constant arrival rate function.

Problem with multiple days: day-to-day variation (over-dispersion).

To confirm, we perform statistical tests (could be whole course).

Today: On Kolmogorov-Smirnov Tests of NHPP.

Based on 2005 paper by Brown et al. and two 2014 papers by Song-Hee

Kim and WW plus recent 2014 paper

Given NHPP, we only need to estimate the arrival rate function.

Using historical data: forecasting (Friday). (could be whole course).



Important Concepts Covered Today, I

1 statistical hypothesis testing

null hypothesis (H0)

significance level

p-value

alternative hypothesis (H1)

power of a statistical test (P(reject H0|H1))

2 Comparing Cumulative Distribution Functions (CDF’s)

Q-Q plot

empirical cdf

Kolmogorov-Smirnov (KS) statistical test



Important Concepts Covered Today, II

1 statistical test of a Poisson process

the standard KS test (use iid exponential interarrival times)

conditional-uniform property of the Poisson process

CU KS test

2 statistical tests of an NHPP

CU KS test

the logarithm test from Brown (2005)

the Lewis (1965) test exploiting Durbin (1961) used in KW (2014a)

over-dispersion (relative to Poisson process), KW (2014b)



Identifying the Predictable and Unpredictable Variability



Look at Multiple Days: IID NHPP’s?



Coping with Day-to-Day Variation (Over-Dispersion)

1 We address over-dispersion directly through daily totals.

We ask if daily totals are consistent with Poisson.

Is the variance equal to the mean?

We estimate the distribution of the daily totals.

2 We avoid the issue in the test of an NHPP.

We do so by using the conditional-uniform property of a PP.

(to be explained in following slides)

An NHPP can pass the test even if there is over-dispersion.

We thus test the NHPP property conditional on the daily total.



Statistical Tests of a NHPP

1 Reduce to statistical tests of a Poisson Process (PP).

Assume piecewise-constant arrival rate function.

Then independent PP’s over subintervals.

2 Interarrival times iid exponential on each interval, but we would

need to estimate mean of each, so we do not use that approach.

3 Exploit Conditional Uniform (CU) Property of PP. (first key idea)

n arrival times Ak in [0,T]: Ak/T are n ordered iid uniforms on [0,1].

No nuisance parameter: independent of arrival rate.

We can combine data from different intervals and days.

Use Kolmogorov-Smirnov test. (To be discussed in following slides.)



Conditional-Uniform (CU) Property of a PP

Theorem. Given n arrival times Ak of a PP in [0,T], Ak/T are

distributed as order statistics of n iid uniform variables on [0, 1].

Proof. For 0 < t1 < t2 < · · · < tn < T ,

fA1,...,An|A(T)(t1, . . . , tn|n)

≈ P(N(ti + δ)− N(ti) = 1, 1 ≤ i ≤ n, no other points|N(T) = n)

≈ e−λt1(λδe−λδ)e−λ(t2−t1)(λδe−λδ) · · · e−λ(T−tn)

δne−λT(λT)n/n!

→ n!
Tn as δ ↓ 0.

(Limiting form of n-dimensional pdf. See §5.3.5 of Ross (2010).)



Compare Empirical CDF (ECDF) to Theoretical CDF

Given n random variables X1,X2, . . . ,Xn, (the data)

each with CDF (Cumulative Distribution Function) F(x) = P(Xk ≤ x),

the empirical CDF (ECDF) is

F̂n(x) =
1
n

n∑
k=1

1{Xk≤x}

(F̂n(x) is the proportion of the n variables less than or equal to x.)

The ECDF is an estimator of the CDF F.

unbiased: For each x, E[F̂n(x)] = F(x).

If {Xk} are iid, then consistent: absolute difference

Dn ≡ supx |F̂n(x)− F(x)| → 0 as n→∞. (Glivenko-Cantelli Thm.)



Example of an Empirical cdf (ECDF)



Compare Two CDF’s

x

p = 0.30

CDF    F(x)

Quantiles F‐1(p) and G‐1(p)

1.0

b

uniform CDF
G(x) = x/b



Q-Q Plots: Comparing Two CDF’s Via Quantiles

Given two CDF’s F and G,

1 Consider associated quantile functions (inverses) F−1(p) and G−1(p) for

0 ≤ p ≤ 1.

2 Construct function h : [0, 1]→ R2 mapping p into (F−1(p),G−1(p)).

3 Plot the image of this function: {(F−1(p),G−1(p)) : 0 ≤ p ≤ 1}.

curve in R× R or a function mapping R into R.

Common convention for empirical CDF’s:

1 Let F̂−1
n (/(n + 1)) = X(k), kth smallest (order statistic)

2 Q-Q plot is {(F̂−1
n (k/(n + 1))),F−1(k/(n + 1)) : 1 ≤ k ≤ n} or

{(X(k),F−1(k/(n + 1)) : 1 ≤ k ≤ n}.



Example of Good and Bad Q-Q plots

Example. QQ‐Plots comparing exponential data (good fit) and 
uniform data (bad fit) to the exponential distribution. 

– But still hard to decided

1



The Kolmogorov-Smirnov (KS) Statistical Test

Null Hypothesis, H0: We have a sample of size n from a sequence

{Xk : k ≥ 1} of i.i.d. random variables with continuous CDF F.

Alternative Hypothesis, H1: We have a sample of size n from a another

(specified) sequence of random variables.

the CDF of Xk might be not F.

There might be dependence among the random variables.

KS test based on absolute difference Dn ≡ supx |F̂n(x)− F(x)|.

Observe Dn = D̂n for the data. Reject if D̂n > xα, where

P(Dn > xα|H0) = α = 0.05 ((significance level)

Compute p-value: P(Dn > D̂n|H0) (level for rejection)



The KS Test Needs to be Modified for NHPP

The KS Test can be applied to test the NHPP.

1 Assume that the NHPP has a piecewise-constant arrival rate function.

2 Exploit the Conditional Uniform (CU) Property to obtain sequence of

i.i.d. random variables uniform on [0, 1] (under H0).

3 Use code for computing P(Dn > xα|H0) (e.g. ksstat in matlab)

Problem: KS test of NHPP using CU property has very low power.

Power: P(Reject H0|H1) (1 -type II error).

Low power means that alternatives pass too easily!

Solve by applying KS test after data transformation. (Apply KS test

after producing new sequence of i.i.d. variables under H0.)



Why does the CU KS Test have low power?

The CU transformation focuses on the arrival times instead of the

interarrival times.

It is the arrival times that are uniformly distributed on [0,T].

Asymptotically, the CU KS test can be shown to have no power. (See §7

and §8 of KW14.)

Solve by applying KS test after data transformation. (Apply KS test

after producing new sequence of i.i.d. variables under H0.)



The Log KS Test from §3 of Brown et al. (2005)

Given n ordered arrival times 0 < A1 < · · · < An < t in [0, t], let

XLog
j ≡ −(n + 1− j) loge

(
t − Aj

t − Aj−1

)
, 1 ≤ j ≤ n.

Under H0: If these random variables are obtained from a PP over [0, t]

using the CU property, then {XLog
j : 1 ≤ j ≤ n} are n i.i.d. mean-1

exponential random variables. (Proof in §2.2 of KW14a Appendix.)

The − loge (1− XLog
j ) are n i.i.d. uniforms on [0, 1].

The KS test can also be applied in this new setting.

And the power is greater than direct KS + CU for most alternatives.



The Lewis (1965) KS Test Based on Durbin (1961), Part I

Given n ordered arrival times Aj, 0 < A1 < · · · < An, from a Poisson

process over [0, t], apply the Conditional Uniform (CU) property to

deduce that U(j) ≡ Aj/t are n ordered uniforms in [0, 1].

Construct the successive intervals between these ordered uniforms,

getting C1 = U(1),Cj = U(j) − U(j) and Cn+1 = 1− U(n).

Let C(j) be the associated ordered intervals from {Cj}, so that

0 < C(1) < C(2) < · · · < C(n+1) < 1.

Finally, let Zj = (n + 2− j)(C(j) − C(j−1)) be the scaled intervals

between), and let Sk = Z1 + · · ·+ Zk be the associated partial sums.



The Lewis (1965) KS Test Based on Durbin (1961), Part II

Remarkably, Durbin (1961) showed that under H0, (Z1, . . . ,Zn) is

distributed the same as (C1, . . . ,Cn).

Hence, (S1, . . . , Sn) is distributed the same as (U(1), . . . ,U(n)).

Hence, F̂n(x) = n−1∑n
k=1 1{Sk≤x} is ECDF of uniform CDF, i.e., the

ECDF of i.i.d. random variables uniformly distributed on [0, 1].

Hence we can apply KS test under H0: i.i.d. uniforms on [0, 1].

Why? The Lewis KS test has even more power! Under alternative

hypotheses, the constructed ECDF tends to be more distant from the

uniform CDF F(x) = x.



Sanity Check

Sk ≡
k∑

j=1

Zj =

k∑
j=1

(n + 2− j)(C(j) − C(j−1))

= (n + 1)C(1) + n(C(2) − C(1)) + (n− 1)(C(3) − C(2))

+ · · ·+ (n + 2− k)(C(k) − C(k−1)) = C(1) + C(2) + · · ·+ C(k)

= U(1) + (U(2) − U(1)) + (U(3) − U(2)) + · · ·+ (U(k) − U(k−1))

= U(k) = C1 + · · ·+ Ck ≤ 1, 1 ≤ k ≤ n + 1.

Hence, Zk ≥ 0 and
∑n+1

j=1 Zj = 1. But that does not explain the key property

that (Z1, . . . ,Zn) is distributed the same as (C1, . . . ,Cn) under the null

hypothesis.



Example: Different KS Tests Applied to an Alternative
Simulation Experiment: Apply the KS test to the alternative: a

non-Poisson renewal process with interarrival times having an H2

(hyperexponential) CDF (mixture of two exponentials) with a squared

coefficient of variation c2
X = Var(X)/(E[X])2 = 2.0.

Table: Performance of alternative KS tests of a rate-1 Poisson process for the time

interval [0, 200] with significance level α = 0.05: the case of a renewal process with

H2 interarrival times having c2
X = 2, based on 104 replications..

KS test Lewis Standard Log CU

Power 0.94 0.63 0.51 0.28

Average p value 0.01 0.10 0.13 0.23



Insightful Plots: Average of ECDF over 104 Replications



What About Call Center Data

The banking call center data passes all the KS tests for a NHPP, as

described above,

provided we adjust for rounding to nearest second.

We adjust by un-rounding, i.e., by adding small independent uniform

random variables, to undo the rounding.

Rounding causes rejection by Lewis KS test (but not CU KS test).

Unrounding avoids problem.

Unrounding does not change non-Poisson into Poisson.



Insightful Plots: Rounding a Poisson Process



Insightful Plots: Rounding an H2 Renewal Process
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