Statistical Analysis of Service and Patience Data

From Service System Data to Performance Models

IEOR 4615, Service Engineering, Professor Whitt

Lecture 19, April 14, 2015

Toward a Stochastic Performance Model

- What do we **anticipate**?
 - We anticipate an **Erlang A** (M/M/s + M) **Model**.
- From last week: a **NHPP Arrival Process**.
- However, daily totals may not be Poisson.
 - over-dispersion in call centers
 - under-dispersion with appointment systems (outpatient clinics)
 - We may be able to reduce impact by **forecasting**:
 - We estimate the arrival rate function.
- For staffing, we assume a piecewise-constant arrival rate function.
- Focus on individual hours or half hours: stationary model.

Toward a Stochastic Performance Model

- What do we **anticipate**?
 - We anticipate an **Erlang A** (M/M/s + M) Model.
- Today consider service-time and patience-time distributions.
 - Assuming that these are i.i.d. exponential variables,
 - we estimate mean service time $1/\mu$
 - and we estimate abandonment rate θ . (censored data).
- Assuming more general distributions: more complicated

Estimating the Service and Patience Parameters

- Estimate mean service time $1/\mu$ of each customer.
 - Observe *n* service times S_1, S_2, \ldots ; let $1/\hat{\mu} = n^{-1} \sum_{k=1}^n S_k$.
- Estimate **abandonment rate** θ for each customer from queue.
 - Problem: censored data. (We do not observe most patience times.)
 - Use $P(Ab|Wait > 0) = \theta E[Wait|Wait > 0]$ (explained on next slide).
 - Observe outcomes for *n* arrivals that must wait (join the queue).
 - Observe positive waiting times W₁, W₂, W₃,...
 Estimate E[Wait|Wait > 0] by W
 n ≡ n⁻¹ ∑{k=1}ⁿ W_k.
 - Observe number $N_{ab}(n)$ of these that abandon. Estimate P(Ab|Wait > 0) by $\bar{N}_{ab} \equiv N_{ab}(n)/n$.
 - Estimate θ by $\hat{\theta} = \bar{N}_{ab}/\bar{W}_n$,

using $\theta = P(Ab|Wait > 0)/E[Wait|Wait > 0]$ from above.

Justifying the Abandonment Rate Formula

- Why $P(Ab|Wait > 0) = \theta E[Wait|Wait > 0]$ in the Erlang-A model?
- Use structure of the Erlang A model.
- Apply Little's Law.
 - Let Q and W be steady-state number in queue and waiting time.
 - $P(Ab) = \frac{\text{abandonment rate}}{\text{arrival rate}} = \frac{\sum_{k=1}^{\infty} P(Q=k)k\theta}{\lambda} = \frac{E[Q]\theta}{\lambda} = \theta E[W].$
 - Extend to conditioning upon positive wait:
 - **(**) P(Ab) = P(Ab|W > 0)P(W > 0) and E[W] = E[W|W > 0]P(W > 0),

2 So $P(Ab|W > 0)P(W > 0) = P(Ab) = \theta E[W] = \theta E[W|W > 0]P(W > 0).$

3 Then divide by P(W > 0) on both sides.

Apply Regression to Multiple Samples

60% y = 0.0167x + 4E-05 50% P{Abandon|Wait>0} R² = 1 40% 30% 20% 10% 0% 10 15 20 25 30 35 0 5 E[Wait|Wait>0]

P{Abandon|Wait>0} vs. E[Wait|Wait>0]

$$P\{Abandon | Wait > 0\} = 4.35 \cdot 10^{-5} + 0.01666 E[Wait | Wait > 0] \\ \approx 0.01666 E[Wait | Wait > 0]$$

$$\Rightarrow$$
 Average Patience = $\frac{1}{0.01666}$ = 60.00817 sec

What Do We See in the Data?

Histogram of Banking Call Center Service Times

Nov-Dec. PS service times

Service time

Is Logarithm Normally Distributed?

Histogram of Logarithm of Banking Call Center Service Times

Nov-Dec. PS service times

Lognormal Distribution

• *X* has a lognormal distribution if $\log_e X$ has a normal distribution:

•
$$P(\log_e X \le y) = P(N(\mu, \sigma^2) \le y)$$
 or X is distributed as $e^{N(\mu, \sigma^2)}$.

• cdf: $P(X \le x) = P(\log_e X \le \log_e x) = P(N(\mu, \sigma^2) \le \log_e x).$

• Other characteristics:

median = e^μ, mode = e^{μ-σ²}, so mean > median > mode, somewhat heavy tail.

Median of Lognormal Distribution

•
$$P(\log_e X \le y) = P(N(\mu, \sigma^2) \le y)$$
.

• median = e^{μ} , Proof:

$$P(X \le m) = 1/2 \text{ for } m = \text{ median},$$

$$P(\log_e X \le \log_e m) = 1/2$$

$$P(N(\mu, \sigma^2) \le \log_e m) = 1/2$$
so that $\log_e m = \mu$ and thus $m = e^{\mu}$.

Mode of the Lognormal Distribution

• cdf:
$$P(X \le x) = P(\log_e X \le \log_e x) = P(N(\mu, \sigma^2) \le \log_e x).$$

• pdf:
$$f_X(x) = \frac{d}{dx} P(X \le x) = \frac{d}{dx} P(N(\mu, \sigma^2) \le \log_e x)$$

= $\frac{f_{N(\mu, \sigma^2)}(\log_e x)}{x} = \frac{1}{\sqrt{2\pi\sigma^2}x} e^{-(\log_e x - \mu)^2/2\sigma^2}.$

• mode =
$$e^{\mu - \sigma^2}$$
, Proof:
 $\frac{d}{dx}f_X(x) = 0$ for $f_X(x) = \frac{Ae^{-u(x)}}{x}$ and $u(x) = \frac{(\log_e(x) - \mu)^2}{2\sigma^2}$

$$0 = \frac{-Ae^{-u(x)}}{x^2} + \frac{-A\dot{u}(x)e^{-u(x)}}{x}$$

= $1 + \dot{u}(x) = 1 + \frac{\log_e(x) - \mu}{\sigma^2}$
or $\log_e(x) - \mu = -\sigma^2$

Length-of-Stay (LOS) at the Internal Wards of a Hospital: Mixture (of Skewed-Normals), in *Hours*

Length-of-Stay (LOS) at the Internal Wards of a Hospital: LogNormality, in *Days*

Strange Service Times: Israeli Telecom

IL Telecom: Dynamics of the distribution of agent service time for Private calls

Diagnosis: Look at Individual Agents

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0	0.1		D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AVI	0	0	0	1117	2208							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AVNI	1493	1736	642	539	1786	2219				2000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BASCH	999	1164	1708	1155	982	906						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BENSION	1283	1135	0	1053	1108	1016	1682					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DARMON	309	515	633	519	577	436	309					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DORIT	696	1047	0	811	546	862	750	2228	1319			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ELI	387	508	777	447	560	436	395					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GELBER	333	143	510	427	859	281	386	332	67			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GILI	668	614	1155	803	1108	974	418	0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	KAZAV	1995	1693	1240	1451	1731	2251	1737	1168	729	1570	1047	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MEIR	0	0	0	0	0	0	127	344	318	280	406	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MORIAH	1360	1223	1591	1351	1866	1980	2416	2152	1526	1940	1793	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PINHAS	79	40	359	244	31	311	422	241	143	105	51	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ROTH	0	0	397	1292	1928	1967	1831	1749	1625	1914	1458	1038
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1985	1674	2780	1938	2563	2657	2537	2875	1803	1935	2532	2140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STEREN	0	1043	2294	1516	2163	2231	1423	2455	1672	709	2375	2568
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TOVA	1923	1679	1562	1059	1464	1389	1890	1811	1361	1971	941	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VICKY	895	0	0	0	1006	1378	1415	1674	1472	1582	1641	1990
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1312	1901	1745	1305	1464	1076	780	90	1137	1315	0	0
ZOHARI 891 1144 1398 1148 1479 1450 980 1494 1423 1359 1504 1094 Z2ARIE 0 0 0 0 0 0 0 56 225 315 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1432 3349 1325 312 228 312 334 222 310 222FXAL 0 0 0 0 0 94 426 314 215 01 314 215 01 314 216 138 220FRAT 0 0 0 0 0 0 0 314 216 138 220FRAT 0 0 0 0 0 0 0 327 747 387 545 320FERZ 0 0		1771	1791	1402	1203	1355	1367	1009	69	705	1743	2420	2353
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZOHARI	891	1144	1398	1148	1479	1450	980	1494	1423	1359	1504	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z2ARIE	0	0	0	0	0	0	0	56	225	315	432	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0	0	0	0	45	352	288	222	310
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0	0	0	0	95	331	428	579	618
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	0	0	0	0	94	260	314	215	0
ZZNIRIT 0 0 0 0 0 0 116 327 474 387 545 Z2OFERZ 0 0 0 0 0 0 71 311 260 242 334		~	0	0	0	0	0	0	84	250	136	126	138
Z2OFERZ 0 0 0 0 0 0 0 0 71 311 260 242 334				0	0	0	0	0	116	327	474	387	545
			0	0	0	0	0	0	71	311	260	242	334
	Z2SPIEGEL		0	0	0	0	0	0	71	311	260	153	322

Table 52: Number of calls handled by an agent

Diagnosis: Look at Individual Agents

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MORIAH	233	230	356	290	614	695	865	597	490	455	4	1
AVI	0	0	0	47	111	144	295	221	121	76	35	26
AVNI	11	13	4	5	6	25	16	18	4	8	8	11
DARMON	2	11	8	9	10	7	1	0	1	1	0	0
ELI	9	7	10	12	22	18	15	4	8	3	6	5
KAZAV	57	40	48	44	48	63	40	27	15	18	4	6
MEIR	0	0	0	0	0	0	1	8	3	1	2	1
PINHAS	3	0	58	25	4	14	11	6	8	1	0	0
ROTH	0	0	10	10	36	21	43	25	32	31	3	6
SHARON	58	49	86	52	67	78	66	63	38	23	43	49
TOVA	52	163	269	132	231	193	100	109	207	190	6	0
ZOHARI	4	8	12	22	17	20	9	14	5	7	10	7

Table 53: Number of calls with short service time

Kolmogorov-Smirnov (KS) Tests for Service Times

• H0: $\{S_k\}$ iid sequence with $P(S_k \le x) = F(x)$ with *F* continuous.

• Use ECDF
$$\hat{F}_n(x) \equiv n^{-1} \sum_{k=1}^n \mathbb{1}_{\{S_k \le x\}}$$
 and $\hat{D}_n \equiv \sup_x |\hat{F}_n(x) - F(x)|$.

• Observe *n* service times S_k . Under H0, $Y_k = F(S_k)$ are iid **uniforms** on

$$[0,1]. (P(F(S_k) \le x) = P(S_k \le F^{-1}(x)) = F(F^{-1}(x)).)$$

- Under H0, $Z_k = -\log(1 Y_K)$ iid exponentials. (same proof)
- Alternative KS Tests with H0: $\{Y_k\}$ iid uniform on [0, 1], F(x) = x.
 - standard KS: Reject if $P(D_n > \hat{D}_n | H0) > \alpha = 0.05$.
 - Durbin: Sort to get ordered uniforms, do as before (last class).
 - **Exp+CU:** With exponentials Z_k and $S_k = Z_1 + \cdots + Z_k$, apply Conditional Uniform (CU) to get S_k/S_n ordered uniforms on [0, 1].
 - Exp+CU+Durbin (Kim&W 2015): Do Durbin after Exp+CU, as in Lewis.

Example: Different KS Tests Applied to an Alternative

Simulation Experiment: Apply the KS test of iid mean-1 exponential service times to the **alternative:** iid mean-1 H_2 (hyperexponential, mixture of two exponentials) service times with $c_X^2 = Var(X)/(E[X])^2 = 2.0$.

Table: **Performance of alternative KS tests** of i.i.d. mean-1 exponential variables for the sample size n = 200 with significance level $\alpha = 0.05$: the case of i.i.d. H_2 interarrival times having EX = 1 and $c_X^2 = 2$, based on 10^4 replications.

KS test	Exp+CU+Durbin	Standard	Exp+CU	Durbin	
KS test	Kim&W	Standard			
Power	0.93	0.64	0.28	0.14	
Average <i>p</i> value	0.02	0.09	0.24	0.40	

Previous Example: KS Tests of a Poisson Process

Simulation Experiment: Apply the KS test to the **alternative:** a non-Poisson renewal process with interarrival times having an H_2 (hyperexponential) CDF (mixture of two exponentials) with a squared coefficient of variation $c_X^2 = Var(X)/(E[X])^2 = 2.0$.

Table: **Performance of alternative KS tests** of a rate-1 Poisson process for the time interval [0, 200] with significance level $\alpha = 0.05$: the case of a renewal process with H_2 interarrival times having $c_X^2 = 2$, based on 10^4 replications..

KS test	Lewis	Standard	Log	CU
Power	0.94	0.63	0.51	0.28
Average <i>p</i> value	0.01	0.10	0.13	0.23

References

- L. Brown et al. Statistical Analysis of a Telephone Call Center: A Queueing Science Perspective. *Journal of the American Statistical Association* (JASA) 100 (2005) 36-50.
- J. Durbin. Some Methods for Constructing Exact Tests. *Biometrika* 48 (1961) 41-55.
- S-H. Kim and WW. The Power of Alternative Kolmogorov-Smirnov Tests Based on Transformations of the Data. *ACM Transactions on Modeling and Computer Simulation* (TOMACS), 2015, forthcoming.
- P. A. W. Lewis. Some Results on Tests for Poisson Processes. *Biometrika* 52 (1965) 67-77.

Exponential Distribution: Density: $f(x) = \lambda e^{-\lambda x}, x \ge 0$, Mean: $E[X] = \lambda^{-1}$, Variance: $Var(X) = \lambda^{-2}$, Coefficient of Variance: $C_v = \frac{SDV(X)}{E[X]} = 1$, Median: $\lambda^{-1}ln2$.

Check that the Parallel Server Model Makes Sense

One Queue with Multiple Servers Working in Parallel

