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Toward a Stochastic Performance Model

What do we anticipate?

We anticipate an Erlang A (M/M/s + M) Model.

From last week: a NHPP Arrival Process.

However, daily totals may not be Poisson.

over-dispersion in call centers

under-dispersion with appointment systems (outpatient clinics)

We may be able to reduce impact by forecasting:

We estimate the arrival rate function.

For staffing, we assume a piecewise-constant arrival rate function.

Focus on individual hours or half hours: stationary model.



Toward a Stochastic Performance Model

What do we anticipate?

We anticipate an Erlang A (M/M/s + M) Model.

Today consider service-time and patience-time distributions.

Assuming that these are i.i.d. exponential variables,

we estimate mean service time 1/µ

and we estimate abandonment rate θ. (censored data).

Assuming more general distributions: more complicated



Estimating the Service and Patience Parameters

Estimate mean service time 1/µ of each customer.

Observe n service times S1, S2, . . .; let 1/µ̂ = n−1 ∑n
k=1 Sk.

Estimate abandonment rate θ for each customer from queue.

Problem: censored data. (We do not observe most patience times.)

Use P(Ab|Wait > 0) = θE[Wait|Wait > 0] (explained on next slide).

Observe outcomes for n arrivals that must wait (join the queue).

Observe positive waiting times W1,W2,W3, . . ..

Estimate E[Wait|Wait > 0] by W̄n ≡ n−1 ∑n
k=1 Wk.

Observe number Nab(n) of these that abandon.

Estimate P(Ab|Wait > 0) by N̄ab ≡ Nab(n)/n.

Estimate θ by θ̂ = N̄ab/W̄n,

using θ = P(Ab|Wait > 0)/E[Wait|Wait > 0] from above.



Justifying the Abandonment Rate Formula

Why P(Ab|Wait > 0) = θE[Wait|Wait > 0] in the Erlang-A model?

Use structure of the Erlang A model.

Apply Little’s Law.

Let Q and W be steady-state number in queue and waiting time.

P(Ab) = abandonment rate
arrival rate =

∑∞
k=1 P(Q=k)kθ

λ = E[Q]θ
λ = θE[W].

Extend to conditioning upon positive wait:

1 P(Ab) = P(Ab|W > 0)P(W > 0) and E[W] = E[W|W > 0]P(W > 0),

2 So P(Ab|W > 0)P(W > 0) = P(Ab) = θE[W] = θE[W|W > 0]P(W > 0).

3 Then divide by P(W > 0) on both sides.



Apply Regression to Multiple Samples



What Do We See in the Data?

Histogram of Banking Call Center Service Times



Is Logarithm Normally Distributed?

Histogram of Logarithm of Banking Call Center Service Times



Lognormal Distribution

X has a lognormal distribution if loge X has a normal distribution:

P(loge X ≤ y) = P(N(µ, σ2) ≤ y) or X is distributed as eN(µ,σ2).

cdf: P(X ≤ x) = P(loge X ≤ loge x) = P(N(µ, σ2) ≤ loge x).

Other characteristics:

pdf: fX(x) = d
dx P(X ≤ x) = d

dx P(N(µ, σ2) ≤ loge x)

=
fN(µ,σ2)(loge x)

x = 1√
2πσ2x

e−(loge x−µ)2/2σ2
.

moments: E[Xk] = E[ekN(µ,σ2)], but mgf: E[etN(µ,σ2)] = eµt+σ2t2/2 (p. 64

of Ross 2010) so that first two moments are E[X] = eµ+σ
2/2 and

E[X2] = e2µ+2σ2
, so that c2

X = E[X2]
E[X]2 − 1 = eσ

2 − 1.

median = eµ, mode = eµ−σ
2
, so mean > median > mode, somewhat

heavy tail.



Median of Lognormal Distribution

P(loge X ≤ y) = P(N(µ, σ2) ≤ y) .

median = eµ, Proof:

P(X ≤ m) = 1/2 for m = median,

P(loge X ≤ loge m) = 1/2

P(N(µ, σ2) ≤ loge m) = 1/2

so that loge m = µ and thus m = eµ.



Mode of the Lognormal Distribution

cdf: P(X ≤ x) = P(loge X ≤ loge x) = P(N(µ, σ2) ≤ loge x).

pdf: fX(x) = d
dx P(X ≤ x) = d

dx P(N(µ, σ2) ≤ loge x)

=
fN(µ,σ2)(loge x)

x = 1√
2πσ2x

e−(loge x−µ)2/2σ2
.

mode = eµ−σ
2
, Proof:

d
dx

fX(x) = 0 for fX(x) =
Ae−u(x)

x
and u(x) =

(loge(x)− µ)2

2σ2

0 =
−Ae−u(x)

x2 +
−Au̇(x)e−u(x)

x

= 1 + u̇(x) = 1 +
loge(x)− µ

σ2

or loge(x)− µ = −σ2



Strange Service Times



Measure in Days



Strange Service Times: Israeli Telecom



Diagnosis: Look at Individual Agents



Diagnosis: Look at Individual Agents



Kolmogorov-Smirnov (KS) Tests for Service Times

H0: {Sk} iid sequence with P(Sk ≤ x) = F(x) with F continuous.

Use ECDF F̂n(x) ≡ n−1 ∑n
k=1 1{Sk≤x} and D̂n ≡ supx |F̂n(x)− F(x)|.

Observe n service times Sk. Under H0, Yk = F(Sk) are iid uniforms on

[0, 1]. (P(F(Sk) ≤ x) = P(Sk ≤ F−1(x)) = F(F−1(x)).)

Under H0, Zk = − log (1− YK) iid exponentials. (same proof)

Alternative KS Tests with H0: {Yk} iid uniform on [0, 1], F(x) = x.

standard KS: Reject if P(Dn > D̂n|H0) > α = 0.05.

Durbin: Sort to get ordered uniforms, do as before (last class).

Exp+CU: With exponentials Zk and Sk = Z1 + · · · Zk, apply Conditional

Uniform (CU) to get Sk/Sn ordered uniforms on [0, 1].

Exp+CU+Durbin (Kim&W 2015): Do Durbin after Exp+CU, as in

Lewis.



Example: Different KS Tests Applied to an Alternative
Simulation Experiment: Apply the KS test of iid mean-1 exponential

service times to the alternative: iid mean-1 H2 (hyperexponential, mixture of

two exponentials) service times with c2
X = Var(X)/(E[X])2 = 2.0.

Table: Performance of alternative KS tests of i.i.d. mean-1 exponential variables

for the sample size n = 200 with significance level α = 0.05: the case of i.i.d. H2

interarrival times having EX = 1 and c2
X = 2, based on 104 replications.

KS test Exp+CU+Durbin Standard Exp+CU Durbin

KS test Kim&W Standard

Power 0.93 0.64 0.28 0.14

Average p value 0.02 0.09 0.24 0.40



Previous Example: KS Tests of a Poisson Process
Simulation Experiment: Apply the KS test to the alternative: a

non-Poisson renewal process with interarrival times having an H2

(hyperexponential) CDF (mixture of two exponentials) with a squared

coefficient of variation c2
X = Var(X)/(E[X])2 = 2.0.

Table: Performance of alternative KS tests of a rate-1 Poisson process for the time

interval [0, 200] with significance level α = 0.05: the case of a renewal process with

H2 interarrival times having c2
X = 2, based on 104 replications..

KS test Lewis Standard Log CU

Power 0.94 0.63 0.51 0.28

Average p value 0.01 0.10 0.13 0.23
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Exponential Distribution



Check that the Parallel Server Model Makes Sense

One Queue with Multiple Servers Working in Parallel 


