The Performance Impact of Delay Announcements

Taking Account of Customer Response

IEOR 4615, Service Engineering, Professor Whitt

Supplement to Lecture 21, April 21, 2015

A service system manager may want to tell each customer an estimate of the delay that customer will experience in order to:

- Improve customer satisfaction.
 - Uncertain Waits are longer than known finite waits.
- Improve performance for the customers who are served.
 - By inducing some customers to balk or abandon earlier and then retry later when the system is more lightly loaded.

But what will be the performance impact of the delay announcements?

A Model of Customer Response

- Make **delay announcement** (single-number *w*) to each new arrival, with number depending upon system state at that time.
- But we need to consider the customer response
 - Assume: **balk** (leave immediately) with probability B(w)
 - If join, **abandon** before time t with probability F(t|w)
- Need to consider **equilibrium**:
 - Customer response depends on announcement.
 - 2 Announcement depends upon system state or history (performance).
 - System performance depends upon customer response.

Example: The All-Exponential Response Model

• delay announcement w to each new arrival,

with number w depending upon system state at that time.

- customer response
 - **balk** (leave immediately) with probability $B(w) = 1 e^{-\beta w}$ for constant $\beta > 0$.
 - If join, **abandon** before time *t* with probability

$$F(t|w) = 1 - e^{-\gamma t}, \quad 0 \le t \le w,$$

= $1 - e^{-\gamma w} e^{-\delta t}, \quad 0 < w \le t < \infty.$

where γ and δ are positive constants.

Problem for Today

• What to announce?

- Delay of Last to Enter Service (LES)
- Fixed Deterministic (FD) Announcement, corresponding to equilibrium expected delay

• How to study performance impact?

- deterministic fluid model
- simulation
- iterative numerical algorithm (for FD) for M/M/s + GIusing "engineering solution" (approximation) from WW (2005)

Review: The G/GI/s+GI Fluid Model

Approximation for the G/GI/s + GI Stochastic Queueing Model

Many-Server Heavy-Traffic (MSHT) Limit

Increasing Scale Increasing Scale

- a sequence of G/GI/s + GI models indexed by *n*,
- arrival rate grows: $\lambda_n/n \to \lambda$ as $n \to \infty$, number of servers grows: $s_n/n \to s$ as $n \to \infty$,
- service-time cdf *G* and patience cdf *F* held **fixed** independent of *n* with mean service time 1: $\mu^{-1} \equiv \int_0^\infty x \, dG(x) \equiv 1$.

The G/GI/s+GI Fluid Model

Model data: (λ, s, G, F) and initial conditions.

The Overloaded Fluid Model in Steady State

fluid density arriving time t in the past λ in queue in service λ F^c(t) S sG^c(u) 0 w time t W + U

Use Fluid Model to Study Performance Impact

Direct Response to Delay Announcement

Equilibrium Delay

Equilibrium Delay in Overloaded Fluid Model

Recall that : $\lambda > s$ and $\mu = 1$.

- Without announcements: $\lambda F^c(w) = s$
 - M/GI/s+M Model: $\lambda e^{-\theta w} = s$ and $w = \frac{\log(\rho)}{\theta}$, $\rho = \lambda/s$
- With announcements: $\lambda B^{c}(w)F^{c}(w|w) = s$
 - all-exponential customer response model:

$$\lambda e^{-eta_{w_{eq}}}e^{-\gamma w_{eq}}=s \quad ext{and} \quad w_{eq}=rac{\log{(
ho)}}{eta+\gamma}$$

 It is reasonable to expect that β + γ > θ, so that announcements reduce the delay of served customers.

Impact of Delay Announcement in Fluid Model

Cycling Around the Equilibrium Delay

Conclusions of Study, Armony et al. 2009

- Under general conditions, there exists a unique equilibrium delay in the fluid model.
- Direct iteration $w_{n+1} = d(w_n)$ as shown above can lead to oscillations.
- Damped iterations produce convergence: $w_{n+1} = pd(w_n) + (1-p)w_n$
- LES delay and fluid equilibrium delay both work well in simulations But LES (1) lower variance and (2) more robust, does not depend on the model.

Experiments: Numerical Comparisons

- Consider overloaded M/M/s+M queueing model.
- Consider all-exponential customer response model.
- Queueing Model Parameters: $\lambda = 140, \mu = 1.0, s = 100, \theta = 1.0$
- Customer Response Parameters: $\beta = 1.0, \gamma = 0.5, \delta = 0.5$ and 4.0
- Performance with and without announcements
- Algorithms compared to simulation

perform.	no	announce	with	announce	$w_{eq} = 0.224$	
measure	exact	fluid	$\delta = 0.5$	$\delta = 4.0$	fluid	
P(Balk)	0.000	0.000	0.201	0.201	0.201	
P(abandon)	0.286	0.286	0.086	0.087	0.085	
$P(B \cup A)$	0.286	0.286	0.287	0.288	0.286	
E[Q]	40.0	40.0	24.3	17.3	23.7	
E[W S]	0.332	0.336	0.225	0.157	0.224	
SD[W S]	0.100	0.000	0.134	0.088	0.000	

Simulation Results With Announcements

Algorithm (INA) and simulation for M/M/100 + M with LES and fixed.

perform.	$\delta = 0.5$			$\delta = 4.0$		
measure	INA	sim(fixed)	LES	INA	sim(fixed)	LES
P(Balk)	0.201	0.201	0.199	0.149	0.144	0.153
P(abandon)	0.086	0.087	0.086	0.137	0.143	0.132
$P(B \cup A)$	0.287	0.288	0.285	0.286	0.287	0.285
E[Q]	24.3	24.3	24.2	18.8	18.5	19.4
E[W S]	0.225	0.225	0.226	0.162	0.155	0.169
SD[W S]	0.134	0.133	0.091	0.066	0.066	0.072
$E[W - W_a S]$		0.108	0.055		0.052	0.039

- We have studied the performance impact of delay announcements.
- We introduced a model of customer response.
- The long-run performance is an equilibrium.
- In Fluid, INA and simulation reveal performance of LES.
- Solution LES and fixed announcements have nearly the same mean.
- **(** LES is more accurate, i.e., $E[|W W_a||S]$ is lower.

References

- M. Armony, N. Shimkin and WW. The Impact of Delay Announcements in Many-Server Queues with Abandonment. Operations Research 57 (2009) 66–81.
- WW. Improving Service By Informing Customers About Anticipated Delays. Management Science 45 (1999) 192–207.
- WW. Engineering Solution of a Basic Call-Center Model. Management Science 51 (2005) 221–235.
- WW. Fluid Models for Multiserver Queues with Abandonments. Operations Research 54 (2006) 37–54. (See lecture 10.)

More References on Fluid Models

- Y. Liu and WW. The G_t/GI/s_t + GI Many-Server Fluid Queue.
 Queueing Systems 71 (2012) 405–444.
- Y. Liu and WW. A Network of Time-Varying Many-Server Fluid Queues with Customer Abandonment. Oper. Res. 59 (2011) 835–846.
- Y. Liu and WW. Algorithms for Time-Varying Networks of Many-Server Fluid Queues. Informs J. on Computing 26 (2014) 59–73.
- Y. Liu and WW. A Many-Server Fluid Limit for the G_t/GI/s_t + GI
 Queueing Model Experiencing Periods of Overloading. Operations Research Letters 40 (2012) 307–312.