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OUTLINE

1 This Friday we start analyzing call center data.

2 The Erlang-A model is the natural reference model for call centers.

3 Review of DTMC’s and CTMC’s

4 Review of Birth-and-Death (BD) Processes

5 Review of the Erlang BD Queueing Models

infinite-server (IS), B, C and A models



This Friday: Homework 3

1 Analyzing US bank call center data, from Mandelbaum

repository.

2 Excel file on Courseworks.

3 Learn to use pivot table in Excel (recitation).



What do you see?

When looking at call centers and call center data,

have a model in mind.

The natural reference model is the Erlang-A model, i.e.,

M/M/s + M



The more general G/GI/s+GI Queueing Model

service facility

waiting room

arrival process departures

abandonment

λ

s serversF(x) = P(Ta ≤  x)
(Ta time to abandon)

G(x) = P(Ts ≤  x)
(Ts service time)



The Erlang A Model: M/M/s+M

M for “Markov,”

Poisson arrival process with rate λ, i.e., i.i.d. exponential interarrival

times, each with mean 1/λ,

i.i.d. exponential service times, each with mean 1/µ (and rate µ),

s homogeneous servers working in parallel,

customer abandonment from queue (the +M), with i.i.d. exponential

patience times (times to abandon) having mean 1/θ (and rate θ)

Overall, there are four parameters: λ, µ, s, θ.



Common deviations from the Erlang A Model

arrival process is Mt, with time-varying arrival rate λ(t),

service-time distribution is not exponential, but often lognormal,

the patience-time distribution is not exponential; characterized by hazard

rate h(x) ≡ f (x)/(1− F(x)), with F(x) ≡
∫ t

0 f (x) dx and f (x) pdf.

Nevertheless, the Erlang-A model is often useful.



Review of Discrete-Time Markov Chains (DTMC’s)

1 The model is the transition matrix P ≡ (Pi,j).

Pi,j ≡ P(Xn+1 = j|Xn = i)

2 m-step transition matrix is mth power: P(m) = Pm.

matrix multiplication: Pm
i,j ≡

∑
k=1 P(m−1)

i,k Pk,j

3 If irreducible and positive recurrent, then π = πP (matrix equation).

steady state: limn→∞ P(Xn = j|X0 = i) = πj

stationary distribution: if P(X0 = j) = πj, then P(Xn = j) = πj for all n.

4 (See Ch. 4 of Ross textbook and lecture notes of 9/16/14 of IEOR 3106.)



Review of Continuous-Time Markov Chains (CTMC’s)

1 The model is the rate matrix Q ≡ (Qi,j).

transition function: P(t) ≡ P(X(s + t) = j|X(s) = i)

P(t) via solution to a matrix ordinary differential equation (ODE):

Ṗ(t) = P(t)Q = QP(t) with P(0) ≡ I (identity matrix)

2 If irreducible and positive recurrent, then αQ = 0.

αQ = 0 is a matrix equation; requires
∑

j=1 αj = 1

steady state: limt→∞ P(X(t) = j|X(0) = i) = αj

stationary distribution: If P(X(0) = j) = αj, then P(X(t) = j) = αj.

3 (See §§2,3 & 5 of long CTMC notes, handout.)



Review of Birth-and-Death (BD) Processes

1 Special CTMC with all transitions up 1 or down 1.

birth rates: Qi,i+1 ≡ λi, death rates: Qi,i−1 ≡ µi

reversible CTMC: αiQi,j = αjQj,i for all i and j

local balance for BD: αiλi = αi+1µi+1 for all i ≥ 0

Do not need to solve matrix equation αQ = 0

αj =
rj∑
k rk

, where

r0 ≡ 1 and rj ≡ λ0×···×λj−1

µ1×···×µj

2 α steady state and stationary probability vector as before

3 (See §4 of CTMC notes, handout.)



Truncation Theorem for Reversible CTMC’s

Theorem

(truncation) If a reversible CTMC with rate matrix Q and stationary

probability vector α is truncated to a subset A, yielding the rate matrix Q(A)

defined above, and remains irreducible, then the truncated CTMC with the

rate matrix Q(A) is also reversible and has stationary probability vector

α
(A)
j =

αj∑
k∈A αk

, for all j ∈ A .



The Infinite-Server Queue and the Erlang Loss (B) Model

1 the M/M/∞ infnite-server (IS) queue

birth rates: λi ≡ λ, death rates: µi ≡ iµ

local balance for BD: αiλ = αi+1(i + 1)µ for all i ≥ 0

But that uniquely characterizes the Poisson distribution!

αj ≡ P(steady-state number in system = j) = e−λ/µ(λ/µ)j

j!

2 The Erlang loss model M/M/s/0 (no waiting space), simple truncation

α
(s)
j =

αj∑s
k=0 αk

= (λ/µ)j/j!∑s
k=0(λ/µ)

k/k!

truncation of Poisson distribution! Blocking formula B(s, λ/µ) = α
(s)
s

3 insensitivity of loss model: Depends on service cdf only via mean.

4 (See §9 of CTMC notes, handout.)



The Single-Server Queue: M/M/1/∞

1 the M/M/1/∞ single-server queue

birth rates: λi ≡ λ, death rate: µi ≡ µ

local balance for BD: αiλ = αi+1µ for all i ≥ 0

But that uniquely characterizes the geometric distribution!

αj = (1− (λ/µ))(λ/µ)j or (1− ρ)ρj for ρ ≡ λ/µ (traffic intensity)

2 The single-server queue with finite waiting room M/M/1/r, simple

truncation

α
(r)
j =

αj∑r+1
k=0 αk

= (λ/µ)j∑r+1
k=0(λ/µ)

k

truncation of geometric distribution!



The Erlang Delay (or C) Model M/M/s/∞

1 birth rates: λi ≡ λ, death rate: µi ≡ (i ∧ s)µ ≡ min {i, s}µ

2 For i ≤ s, identical to IS model.

3 For i ≥ s, identical to single-server model with fixed service rate sµ.

4 Apply truncation property: Known form in each region!!

Steady-state distribution is truncated Poisson below s

(so normal shape below s)

Steady-state distribution is truncated geometric above s

(so exponential shape above s)



The Erlang A (Abandonment) Model M/M/s/∞+ M

1 more complicated

2 birth rates: λi ≡ λ, death rate: µi ≡ iµ for i ≤ s and µs+i ≡ sµ+ iθ

3 Again, for i ≤ s, identical to IS model.

4 For θ = µ, identical to IS model!! (important reference case)

5 Then number in system has a Poisson distribution!

For θ < µ, tail decays slower than Poisson

For θ > µ, tail decays even faster than Poisson



Canonical BD Example: The Barbershop Problem

1 more complicated: has finite waiting room (and thus blocking),

abandonment from queue and balking (refusing to join if need to wait)

2 birth rates: λi ≡ λ for i ≤ s, but λi ≡ pλ for s + 1 ≤ s + r − 1 (balking

if have to wait) and λs+r ≡ 0 (blocking if waiting room is full)

3 death rate: µi ≡ iµ for i ≤ s and µs+i ≡ sµ+ iθ (abandonment)

4 Easily solved numerically.

5 Ex. 4.1 and 4.2 in CTMC notes; lec. 10/21/14 in IEOR 3106 posted.



Classical Erlang Formulas

1 Erlang loss (B) formula:

P(arrival blocked) = P(System is full at arbitrary time)

equality by Poisson Arrivals See Time Averages (PASTA)

2 Erlang Delay (C) Formula:

P(arrival delayed) = P(W > 0) = P(servers all busy at arbitrary time)

equality by Poisson Arrivals See Time Averages (PASTA)

3 Mathematical properties: “The Erlang B and C Formulas: Problems and

Solutions,” class notes, 2002. Posted.


