IEOR 4615: Service Engineering Lecture 8, February 17, 2015

- Queueing Network Models (Tuesday)
 - 1. Classical Markov OQN Model (Sec. 7 of CTMC notes)
 - 1. Yet another CTMC, but multi-dimensional
 - 2. Product-Form Distribution
 - 3. Traffic Rate Equations

2. non-Markov OQN: Approximations (QNA, 1983, 1989)

- 1. Quantifying Variability and its Impact approximately
- 2. The Parametric-Decomposition Approximation
- 3. From Customer Routes to Markovian Routing
- Processing Networks (last Thursday&Friday)
 - Precedence Constraints , PERT/CPM

What do you see?

Need to have expectations Experience and Models Help Greatly

Before A Large Call Center

The Erlang A Model (*M*/*M*/*n*+*M*) *M* for "Markov" – special assumptions

This week: Hospitals

Intensive Care Unit (ICU)

Patient Flow in an Emergency Department

View as An Open Network of Queues

J.

Jackson (Open) Markov Queueing Network

(Section 7 in CTMC notes, handout and Courseworks)

 $X_j(t)$ = number of customers at station *j* at time *t* $(X_1(t), ..., X_m(t))$ = **CTMC Assumptions:**

- Customers come from outside and eventually leave
- Unlimited waiting room
- Number of stations is *m*
- External Poisson arrivals at each queue, rate $\lambda_{e,i}$
- Exponential service times at each station, rate $\ddot{\mu}_i$
- **s**_j servers at station j
- Markovian routing, $(P_{i,j}) = P$

Product-Form Steady-State Distribution

Steady state: convergence in distribution

$$(X_1(t), \dots, X_m(t)) \rightarrow (X_1(\infty), \dots, X_m(\infty))$$
 as $t \rightarrow \infty$

Can find by $\alpha Q = 0$, but do not need to.

$$P(X_1 (\infty) = j_1, ..., X_m (\infty) = j_m) =$$

$$P(X_1 (\infty) = j_1) \times ... \times P(X_m (\infty) = j_m)$$
Product-form = independence
where station j is M/M/s_j queue

Traffic Rate Equations

$$\begin{split} \lambda_j &= \lambda_{e,j} + \sum_{i=1}^m \lambda_i P_{i,j} \quad \text{for} \quad 1 \leq j \leq m \\ \Lambda &= \Lambda_e + \Lambda P \quad \text{(matrix version)} \\ \Lambda &= \Lambda_e (I - P)^{-1} \quad \text{(solution)} \end{split}$$

traffic intensity at station *j*: $\rho_j = \lambda_j / s_j \mu_j$ station *j* is *M/M/s_j* queue With parameters: λ_j , μ_j and s_j

The Queueing Network Analyzer (QNA) (WW 1983, 1989 papers)

- Approximate Analysis of non-Markov OQN Model
- Characterize (quantify) variability at each queue
 - Arrival parameters: λ , C_a^2
 - Service parameters: μ , c_s^2
 - c² = Variance/Mean²
- Characterize (quantify) impact on performance
- Parametric-Decomposition Method
 - Network calculus for variability parameters
- Approximate Performance of GI/GI/s queues

Variability Parameters

For service times and interarrival times, think of IID random variables

squared coefficient of variation

 $c^{2} = c_{x}^{2} = Var(X)/E[X]^{2}$

Exponential: c² = 1 Deterministic: c² = 0

Three Operations

From Routes to Markov Routing

- Start with routes for each class of customers
- Aggregate to convert to Markovian routing
 - P_{ij} = proportiion of departures from queue I that go next to queue j
 - $-(1/\mu_j)$ = average service time at queue j
 - c²_{sj} = appropriate scv
 - Second moment average of second moments
 - Variance = second moment mean²
 - Scv = variance/ mean²

Example 1, p. 2791 of 1983 paper

2 queues and r = 3 routes

 $(n_k, \hat{\lambda}_k, c_k^2; n_{k1}, \tau_{k1}, c_{sk1}^2; \cdots; n_{kn_k}, \tau_{kn_k}, c_{skn_k}^2).$ Here suppose that the *r* vectors are:

(2, 2, 1; 1, 1, 1; 1, 3, 3)
(3, 3, 2; 1, 2, 0; 2, 1, 1; 1, 2, 1)
(2, 2, 4; 2, 1, 1; 1, 2, 1).

A Manufacturing Example (from p. 1151 of Segal and WW 1989)

Table 1. Comparisons Between QNA and Simulation

	Number of				WIP (Lots) Mean		Yield	Interval (Time Units)			
								Mean		Standard Deviation	
Model	Workstations	Products	Operations	Hops	QNA	SIM	QNA/SIM	QNA	SIM	QNA	SIM
1	67	1	135	9	261.6	255.5	1.0045	34.2	32.4	4.81	4.97
2	30	1	108	15	41.8	40.5	1.000	12.7	12.4	2.8	-

But could have fork-join: Last Class Arrest-to-Arraignment Process Larson et al. (1993)

