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Outline

e Deterministic Fluid Models

— Directly From Data: Cumulative Arrivals and
Departures

— Directly from M,/M/s.+M BD Model (deterministic
view)
 Many-Server Heavy-Traffic Limits for Queueing
Models
— Fluid Model Obtained in the Limit as Scale Increases
— Ultimately, limits explained by LLN and CLT



From Data to Fluid Models

* To analyze data, we plot cumulative arrival and departure
functions:
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* For large systems (bird’s eye view), the functions look smoother.

400
350
300
250
200
150
100
50
0

customers

8 9 10 11 12 13
time

—— cumulative arrivals — cumulative departures




From Data to Fluid Models

Directly from event-based (call-by-call) measurements.

For example, an isolated service-station:

— A(t) = cumulative # arrivals from time 0 to time t;

— D(t) = cumulative # departures from system during [0, t];
— L(t) = A(T) — D(t) = # customers in system at t.

Arrivals and Departures from a Bank Branch Face-to-Face Service
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Deterministic Fluid Model

* Describe impact of Predictable Variability
— Time-Varying Arrival Rate
— Ignoring Stochastic Variability

* |dealistic Smooth Model
— Ordinary Differential Equation (ODE)



Phases of Congestion

Hall, textbook:

Sec. 6.4

Fluid Approximations: Short Service Time
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Figure 6.6 Cumulative diagram illustrating deterministic fluid model. When a queue

exists, customers depart at a constant rate. Queues increase when the arrival rate exceeds
the service capacity and decrease when the service capacity exceeds the arrival rate.
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Four points of view

Cumulative Arrivals and Departures
Rates (= Peak Load)

Queues (= Congestion)

Outflows (= end of rush-hour)



Phases of Congestion via Rates
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 Time lag in congestion after peak arrival rate
* Changing Departure Rate

w() = u (maximum possible service rate)



Mathematical Fluid Models: General Setup

Queueing System as a Tub (Hall, p.188)
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Figure 6.5 In a fluid model, the

| customers can be viewed as a liquid that
Drain (departures)  accumulates in a tub. Queues increase
when the fluid enters the tub faster than it

leaves.

A(t) — cumulative arrivals function.

D(t) — cumulative departures function.

A(t) = A(t) - arrival rate (dot = derivative d/dt)
5(t) = D(t) — processing (departure) rate.

c(t) — maximal potential processing rate.

g(t) — total amount in the system at time t.



Mathematical Fluid Model

Differential equation:

e A(t) —arrival rate at time t € [O,T].

* ¢(t) — maximal potential processing rate.

e 5(t) — effective processing (departure) rate.
e g(t) —total amount in the system at time t.
Then g(t) is a solution of

4t) = A(t)-0o(t); a(0)=ay,t[0,T]



Mathematical Fluid Model:
Multi-Server Queue

 s(t) statistically-identical servers, each with service
rate u.

* c(t) = us(t): maximal potential processing rate.
e O(t)=u-min(s(t),q(t)) : processing rate.

q(t) = A(t) — x-min(s(t),q(t)); a(0)=aq,,t<[0,T].
e, q(t)=q(0)+ j;/a(u)du _ j; 12-min(s(u), g(u))du.

How to actually solve? Discrete-time approximation:
Start with t,=0, q(t,) =q,- Then, for t, =t _,+At:

q(tn) — q(tn—l) + ﬂ‘(tn—l) - At — M- min(s(tn—1)1 q(tn—l)) - Al




Mathematical Fluid Model:
Multi-Server Queue with Abandonment

0 — Abandonment rate of customers in queue
Processing rate:

o(t) = u-min(s(t), q(t)) +0-[a(t) —s(O]

The fluid model:

G(t) = A(t) — p-min(s(t), q(t)) - 0-[a(t) —s(t)]";
q(0) =0,,t[0,T].

Deterministic View of M,/M/s.+M BD Model
— Parameters: A(t), u, s(t),0



Many-Server Heavy-Traffic Limit

Sequence of M,/M/s.+M Models Indexed by n

Let n = oo,
Parameters:

* A (t)=nA(t) arrivalrate attimet [heavy-traffic]
* s.(t)=ns(t) number of servers attimet [large scale]

* W (t)=pu individual service rate (constant)

* 0,(t)=6 individual abandonment rate (constant)
Stochastic Processes:

¢ A (t) number of arrivals in system nin [0,t]

* D (t) number of departures in system nin [0, ]

¢ Q,(t) number of customers in system n at time t
* W, (t) potential waiting for arrival at time t (with

infinite patience)



Fluid Approximation from
Many-Server Heavy-Traffic Limit




Fluid Approximation from
Many-Server Heavy-Traffic Limit
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Fluid Approximation from
Many-Server Heavy-Traffic Limit
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Many-Server Heavy-Traffic Limits
Sequence of M,/M/s+M Models Indexed by n

Parameters:
* A, (t)=nA(t) arrival rate attime t [heavy-traffic]
* s,(t)=ns(t) number of serversattimet [large scale]

o u(t)=p individual service rate (constant)

« 0,(t)=6 individual abandonment rate (constant)
Stochastic Processes:

A1) number of arrivals in system n in [0,t]

* D,(t) number of departures in system n in [0,t]

« Q1) number of customers in system n at time t
 W.,(t) potential waiting for arrival (with infinite patience)

Limits (Fluid Limit = Law of Large Numbers): As n =>oo,

« A (t)/n > At)= ['A(s) ds (integral of fluid arrival rate)
 D.(t)/n—> D(t) = ['8(s) ds (integral of fluid departure rate)
* Q,(t)/n - q(t) fluid content at time t

« W.,(t) - w(t) potential waiting time for atom of fluid



Refined Many-Server Heavy-Traffic Limit
Sequence of Queueing Models Indexed by n
M. /M/s +M
Fluid Limits (Fluid Limit = Law of Large Numbers): As n oo,
o A (t)/n > A(t) = [*A(s) ds (integral of fluid arrival rate)
* D (t)/n - D(t) = ['8(s) ds (integral of fluid departure rate)
* Q,(t)/n = g(t) fluid content at time t
* W, (t)> w(t) waiting time
Stochastic Limits (Gaussian Limit = Central limit Theorem):
As n oo,
+ Vn[(A,(t)/n) - A(E)] > Xt
* Vn[(D,(t)/n) - D(t)] &> X(t) Gaussian limit processes
+ Vn[(Q,(t)/n) - q(t)] > Xt
+ Vn[W,(t)- w(t)] > X[t




Three Many-Server Heavy-Traffic Limiting Regimes
Sequence of Stationary M/M/s+M Models
Parameters:

* A,=nA-cVn arrival rate attime t [No time-varying parameters]
* s,=ns numberofserversattimet [large scale]

* U, =U individual service rate (constant)

- 6,=0 individual abandonment rate (constant)
Limiting Regimes

e A>su overloaded or Efficiency-Driven (ED)

e A<s U underloaded or Quality-Driven (QD)

* A=spu critically loaded — need to look more closely

Expanding the Critically Loaded Regime: A=su

 More general arrival rate scaling:

* Quality-and-Efficiency-Driven (QED) regime = Halfin-Whitt (1981) regime
— N,=nsu[1-(B/Vn)] (A=spandc=-spup)
— (1-p,)Vn =B where p,=A /s u =\ /nsu



Delay Probability Approximation
in the M/M/s/e> Model in the QED Regime

* Quality-and-Efficiency-Driven (QED) regime =
Halfin-Whitt (1981) regime
— A, =ns u[1-(B/Vn)]
— (1-p,)Vn =B wherep,=A /s u =\ /nsu

—P(W,>0) > awithO<a <1. (W, steady state wait
before starting service in model n)

P(W, >0) = a(B) = HW(B) = 1/[BD(B)/d(B)]

Where @(x) =P(N(0,1) < x) standard normal cdf and &(B) is
the associated density function



Implications for Staffing
in the M/M/s/o> Model

P(W_ > 0) = Target = a = a (p)
= HW(B) = 1/[BD(B)/$(B)]

Where @O(x)=P(N(0,1) < x) standard normal cdf
and ®(B) is the associated density function

Use Square-Root Staffing Formula: Set

S =S(A/1) = (Mu) + B (M)

For B =HW(a) (inverse function)

A/ = offered load (infinite-server model)



Implications for Staffing
in the M/M/s+M Model

P(W_>0)=Target=a=a(B, y)

= G(B, v) = 1/[1 + yh(B/v)h(-B)]
Garnett function from Garnett et al. (2002)

Where y = (8/w)"%, h(x) = (x)/[1- ®(x)], D(x) = P(N(0,1) < x)
standard normal cdf and &(x) is the associated density
function.

Use Square-Root Staffing Formula: Set

S =S(A/1) = (M) + B (M)

For B = G*(Target, y)



Figure The Halfin-Whitt and Garnett Functions Mapping the QoS
Parameter 8 into the Steady-State Delay Probability «. Five

Different Values are Considered for the Parameter 0, = 6/u.:
=17+ 1,4, and 16.
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