
IEOR 4615: February 22, 2012, Professors Whitt and Yom-Tov

Lecture 6. Modeling Arrivals in a Service System

1 Looking At Call Center Arrivals

We will be learning how to look at arrival process data. This means (i) how to create appro-
priate figures using the call center data and (ii) how to see things in the plots.

1.1 Different Time Scales

It is useful to look at arrival process data in different time scales. Depending on the application,
this might range from decades down to a minute or less. Figure ?? shows plots of call center
data over four time scales.

Years over a decade. For a service system, the longest time scale might be a decade. We
look at yearly totals over the multi-year period to see the long-term trends. Such a plot gives
an estimate of the arrival rate in calls per year. Is the arrival rate changing systematically?

Months over a year. The next time scale is a single year. We now look at monthly
totals over each year. This should be done for both individual years and taking averages over
multiple years. Are their seasonal effects?

Days over a month. The next time scale is a single month. We now look at daily totals
over each month. This should be done for both individual months and taking averages over
multiple months. Are their daily effects? Given that service systems tend to differently on
weekends than on weekdays, it is actually usually better to focus on days within a week.

Special days in a year. It is also appropriate to consider if there are systematic differences
in arrivals over holidays and other special days.

Hours over a day. The next time scale is a single day. We now look at hourly totals
over each day. This should be done for both individual days and taking averages over multiple
days, where we use the previous larger-scale analysis to identify what days should be used in
the averages. Here we expect to see systematic predictable variability (that will be seen
repeatedly on each sample).

Minutes over an hour. The next time scale is a single hour. We now look at totals over
0.5 − 5.0-minute intervals during each hour. This should be done for both individual hours
and taking averages over multiple hours, where we use the previous larger-scale analysis to
identify what hours should be used in the averages. It is usually better to use the same hour
on multiple days than different hours on the same day. Here we expect to be seeing stochastic
fluctuations, for which we use stochastic models.

1.2 Focusing on and Removing Stochastic Variability

It can be useful to show more arrival counts per time period, especially over a day. Figure ??
shows 408 totals in 2.5-minute intervals over an entire day. When we plot fewer totals (e.g.,
10-20), we see clear trends. When we plot more totals, we see the stochastic variability plus the
trend. We then can fit an arrival rate function by using a statistical smoothing algorithm, but
note that the smoothling algorithm does not capture the evident spike around 9 am, evidently
a startup effect. From such a plot showing the additional fluctuations, we can confirm that
a Poisson process model (but a nonhomogeneous one!!) is reasonable. Figures ??-?? shows
creative plots, where we divide the interval counts by the daily total.



2 Stochastic Arrival Process Models

2.1 An Arrival Process is a Point Process.

An arrival process is a special kind of stochastic process, often called a point process. See the
Appendix for additional details and discussion.

2.1.1 Three Equivalent Alternative Representations of a Point Process

In an arrival process model, the arrival times are random times or random points in the positive
half line (assuming that we start at time 0).

Point processes on the positive half line [0,∞) can be represented in three alternative ways:
(i) in terms of An, the location of point n, as a function of n ≥ 1, with A0 ≡ 0, (ii) in terms of
A(t), the number of points in the interval [0, t], as a function of t ≥ 0, and (iii) in terms of Xk,
the interval between point k− 1 and point k, for k ≥ 1. In terms of the intervals Xk, we write

Ak ≡ X1 + · · ·+Xk, k ≥ 1, and A(t) ≡ max {k ≥ 0 : Ak ≤ t}, t ≥ 0. (1)

1. arrival times Ak, k ≥ 1, (Ak is the sum of the first n interarrival times)

2. arrival counting process A(t), t ≥ 0,

3. interarrival times Xk ≡ Ak −Ak−1

2.1.2 The Basic Inverse Relation

In this setting, the two stochastic processes {A(t) : t ≥ 0} and {An : n ≥ 0} are inverse
processes. This is easily seen by looking at a sample path of a counting process (such as a
Poisson process). In such a plot, we show, A(t), the number of points in the interval [0, t] as a
function of t. The sample path is a nondecreasing nonnegative integer-valued function of time
t. We represent time t on the horizontal “x” axis, and the values of A(t) on the vertical “y”
axis. If instead, we look at the plot regarding the y axis as the domain and the x axis as the
range, we see a plot of the locations of the successive points, An as a function of the discrete
variable n. (We allow multiple points, but a common case is unit jumps in N(t).)

2.2 The Arrival Rate

Let {A(t) : t ≥ 0} be a stochastic counting process. An important partial characterization is
its mean, which is the cumulative arrival rate function

Λ(t) ≡ E[A(t)], t ≥ 0. (2)

We assume that Λ(t) is differentiable and that

Λ(t) =

∫ t

0
λ(s) ds, t ≥ 0. (3)

The function λ(t) is called the arrival-rate function of the point process. It is well defined
in considerable generality, without requiring Poisson assumptions.
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2.3 A Nonhomogeneous Poisson Process (NHPP)

The standard model for the arrival process over a day of a service system is a nonhomogeneous
Poisson process (NHPP); see §5.4.1 of Ross [11], the standard textbook for IEOR 3106/4106.

An arrival (counting) process {A(t) : t ≥ 0} is an NHPP with arrival-rate function (intensity
function) λ(t), t ≥ 0, if

1. no batches: Arrivals occur one at a time,

2. Poisson distribution: P (A(t) = k) = e−m(t)m(t)k

k! , (A(t) has a Poisson distribution for
all t ≥ 0),

3. the mean is the integral of the intensity: m(t) =
∫ t
0 λ(x) dx (The mean is a 1-

dimensional integral over [0, t].)

4. independent increments: A(t2)−A(t1), A(t4)−A(t3), . . . , A(t2k)−A(t2k−1) are mutu-
ally independent random variables for all k if the intervals (t1, t2], (t3, t4], . . . , (t2k−1, t2k]
are disjoint subintervals of [0,∞), i.e., if t1 < t2 ≤ t3 < t4 ≤ · · · ≤ t2k−1 < t2k

An NHPP becomes an ordinary Poisson process if λ(t) = λ, t ≥ 0. The first condition
above is actually implied by the others, but it is easier to check directly.

2.4 The (Stationary) Poisson Process

From plots of the arrival-rate function over a day, one should be convinced that the arrival rate
is not constant. Nevertheless, the ordinary stationary Poisson process and associated classical
queueing models that assume such a stationary arrival process are often applicable.

2.4.1 The Relevant Time Scale of an Arrival Process in a Queueing System

We have emphasized that it is useful to look at arrival processes in many different time scales.
Each time scale has its own story. However, when we look at an arrival process as a component
of a queueing system, then a particular time scale becomes relevant. To a large extent, the
service-time distribution in a queueing system determines the relevant time scale
for the arrival process. In particular, the relevant time scale for an arrival process in a
queueing system tends to be from 1−10 mean service times. Having identified that time scale,
we want to look at the arrival process closely in that time scale.

If the mean service time is about 3 minutes, then it may be appropriate to look at the
arrival process over intervals of 30 minutes or 1/2 hour. Over such shorter intervals, the
arrival process might reasonably be regarded as approximately stationary. This insight is the
basis for the standard pointwise-stationary approximation (PSA) approaches to staffing
in call centers, using steady-state performance measures associated with stationary queueing
models over short staffing intervals of length (1/4)-2 hours; e.g. see [5]. Over these shorter
time intervals, the steady-state performance of the stationary model is used to approximate
the performance of the queueing system (distribution of queue lengths and waiting times).

This perspective makes it important to consider the standard stationary Poisson process
as well as the NHPP. However, given the strong time-varying arrival rate, we cannot expect
stationary Poisson processes to fit perfectly. Careful statistical fitting with ample data will
usually lead to rejecting the Poisson hypothesis, even though the Poisson arrival process model
might be very useful.
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2.5 Poisson Process, Chapter 5 of Ross [11]

The following are alternative ways to define a (stationary) Poisson process:

1. A Poisson process is a renewal process where the time between renewals has an expo-
nential cdf, i.e., F (x) = 1− e−λx, x ≥ 0, for some parameter λ > 0.

IMPLICATION: As a renewal process, the interarrival times of a Poisson process are
independent and identically distributed (i.i.d.), but unlike a renewal process, the inter-
arrival times of a Poisson process are exponentially distributed as well. Non-Poisson
renewal processes have different interarrival-time distributions.

2. A Poisson process is a counting process with unit jumps that has stationary and inde-
pendent increments.

IMPLICATION: Surprisingly, it turns out that, as a consequence of the stated properties,
the distribution of each increment is necessarily Poisson, even though it is not assumed
directly.

3. A Poisson process is a pure-birth stochastic process, i.e., a birth-and-death (BD) stochas-
tic process (a special kind of continuous time Markov chain (CTMC), see Chapter 6 of
Ross [11]) with all death rates equal to 0 and constant positive birth rates λk = λ > 0.

IMPLICATION: As a CTMC and BD process, the Poisson process can be analyzed by
that theory, but since the sample paths are nondecreasing, the process does not have a
proper steady-state distribution. Hence, there is no CTMC steady-state theory to apply.

4. A Poisson process is an NHPP with the additional property that λ(t) = λ, t ≥ 0.

IMPLICATION: This is just emphasizing that a Poisson process is a special case of
a NHPP. All properties of a NHPP necessarily hold for a Poisson process. A Poisson
process is an NHPP with the extra property of stationarity, which manifests itself simply
in the form of a constant arrival-rate function.

A key property of a Poisson process (not appearing in the first three definitions above) is:
A Poisson counting process A(t) has a Poisson distribution with mean λt for each t ≥ 0,
i.e.,

P (A(t) = k) =
e−λt(λt)k

k!
for all k ≥ 0. (4)

Given (4) and the renewal-process representation listed first above, two probability distribu-
tions play a key role in Poisson processes:

2.5.1 Properties of a Poisson Distribution

1. A Poisson distribution has a single parameter, its mean, typically denoted by λ.

2. The variance of a Poisson distribution is equal to its mean.

3. As the mean of a Poisson distribution increases, the Poisson distribution is better and
better approximated by a normal distribution with the same mean and variance. (There
is a central limit theorem (CLT) for the Poisson distribution.)
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2.5.2 Properties of the Exponential Distribution

1. An exponential distribution has a single parameter, its mean, typically denoted by λ−1.

2. The variance of an exponential distribution is equal to the square of its mean.

3. The exponential distribution has squared coefficient of variation (SCV, variance divided
by the square of the mean) of c2 = 1.

4. The exponential distribution is the unique probability distribution on the nonnegative
real line that has the lack of memory property:

P (X > s+ t|X > s) = P (X > t) for all s ≥ 0 and t ≥ 0.

2.5.3 Properties of an NHPP (To be contrasted with a Poisson Process)

1. The interarrival times are not independent (but may be nearly so in short time intervals).

2. The interarrival times are not exponentially distributed (but may be nearly so in short
time intervals).

3. The counts over intervals are still Poisson.

4. The counts over disjoint intervals are still independent.

3 Operations on Point Processes

3.1 Superpositions of Point Processes

A superposition of n point processes can be represented as the sum of the corresponding
counting processes, i.e.,

A(t) ≡ A1(t) + · · ·+An(t), t ≥ 0, (5)

where the component stochastic processes {Ai(t) : t ≥ 0} are counting processes.

3.1.1 Good News: Superpositions of Independent Poisson Processes

Theorem 3.1 (superpositions of independent Poisson processes) The superposition of n in-
dependent stationary (nonhomogeneous) Poisson processes is itself a stationary (nonhomoge-
neous) Poisson process process with an intensity equal to the sum of the component intensities.

3.1.2 [Advanced topic] Bad News: Superpositions of Non-Poisson Processes

Even if the intervals between points are mutually independent in each component process in a
superposition process, the intervals between points are dependent in the superposition process,
unless all processes are Poisson process.

From renewal process theory, we know that a stationary renewal process is a delayed renewal
process (the first interval has a different distribution from the others) in which the distribution
until the first point has the equilibrium excess distribution. Give that the other intervals are
i.i.d. with cdf F with mean m <∞, the equilibrium excess cdf is

Fe(t) ≡
1

m

∫ t

0
(1− F (s)) ds, t ≥ 0. (6)
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A stationary renewal process is a special case of a stationary point process. The superposition
of independent stationary point processes is always itself a stationary point process.

In general, the rate of a superposition process is the sum of the component rates. The
following theorem summarizes both positive and negative properties of superposition processes.

Theorem 3.2 (superpositions of independent renewal processes) The superposition of n inde-
pendent stationary (ordinary) renewal processes is itself either a stationary or ordinary renewal
process if and only if all the component processes and the superposition process are homogeneous
Poisson processes.

On the positive side, Theorem 3.2 states that the superposition of independent Poisson
processes is itself a Poisson process (repeating the prior Theorem 3.1). On the other hand, if any
of the component processes are non-Poisson renewal processes, either stationary or ordinary,
then Theorem 3.2 states that the superposition process is neither a stationary renewal process
nor an ordinary renewal process (and thus also not a Poisson process). That means that the
successive intervals between points in the superposition process necessarily have dependence.
Thus, dependence often plays a role in superposition processes.

3.1.3 More Good News: The Law of Rare Events

However, in applications we often have an arrival process be the superposition of a very large
number of independent processes, each with relatively low rate, See §4.

3.2 Independent Splitting or Thinning of a Point Process

A single point process can be split into n other point processes by assigning each of the
successive points to one of the designated n point process. Hence, each new split process
contains a subset of all the points in the original point process. Every point is assigned to one
and only one split process. The original point process is the disjoint union of the points in the
split processes.

The points are said to be split independently with splitting functions pi(t), with p1(t) +
pn(t) = 1 for all t, if any point at time t is assigned to split process i with probability pi(t),
independent of the assignment of any other points.

Theorem 3.3 (independent splitting of a Poisson process) The independent splitting of a sta-
tionary Poisson process with intensity λ into n split processes with splitting functions pi(t) = pi,
t ≥ 0, produces n independent Poisson processes with intensities λi ≡ λpi.

Theorem 3.4 (independent splitting of a nonhomogeneous Poisson process) The independent
splitting of a nonhomogeneous Poisson process with intensity function λ(t) into n split processes
with splitting functions pi(t) = pi, t ≥ 0, produces n independent nonhomogeneous Poisson
processes with intensity functions λi(t) ≡ λ(t)pi(t).

4 Why Poisson? The Law of Rare Events

We now provide theoretical explanation for why Poisson processes, stationary and nonstation-
ary, have proven to work well as models of arrival processes for many service systems.

In applications, an arrival process is often a superposition of a very large number of inde-
pendent point processes, each with relatively low rate. The component processes are the arrival
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processes of individuals acting for the most part independently. Even though the superposi-
tion of a fixed number of component non-Poisson arrival processes is not Poisson, it approaches
Poisson as the number of component processes increases. This explains why a Poisson process
(possibly a nonstationary one) often provides a good fit to arrival processes.

Theorem 4.1 (superpositions of many sparse point processes) The superposition of n indepen-
dent i.i.d. stationary (nonhomogenous) point processes with intensities λ/n (λ(t)/n) converges
in distribution to a stationary (nonhomogenous) Poisson process with intensity λ (λ(t)) as
n→∞.

In Theorem 4.1, the component processes need not actually be i.i.d., but each must be
asymptotically negligible and the total rate must go to a fixed limit. This theorem can be
understood by recalling the Poisson approximation for the binomial distribution, see
§2.2.4 of Ross [11]. Here is a specific model: Let each of n customers choose to come to our
service system during some specified time interval [0, t] with probability p/n, making this choice
independently of one another Let their arrival times during the time interval if they do elect
to come, be uniformly distributed throughout the interval [0, t]. Then as n → ∞, the arrival
counting process {A(s) : s ≥ 0} over the interval [0, t] converges to a Poisson process with
arrival rate λ ≡ p. The expected number of arrivals in the interval [a, b], where 0 ≤ a < b ≤ t,
is p(b− a).

4.1 Practical Examples: Judging if Poisson Models should be Good or Not

The cases when a Poisson process or a NHPP is a good fit usually are due to Theorem 4.1.
However, there are many examples where we can anticipate that a Poisson process or a NHPP
might not provide a good fit. However, even in these cases, the Poisson model might prove to
be very useful.

4.1.1 Examples where the Poisson and NHPP Models are Suspect

The following examples illustrate situations in which we can see that the axioms of the Poisson
models are not satisfied. That does not entirely rule out the Poisson models, however.

1. scheduled arrivals

Explanation: In many service systems, such as a doctor’s office, the arrivals appear at
scheduled times. Even though the arrival times fluctuate randomly around the scheduled
times, usually a Poisson process or NHPP model does not fit well.

2. enforced separation

Explanation: When considering landing times at airports, there are enforced intervals
of separation between successive landings on each runway, such as 90 seconds. That is
on top of scheduled arrivals. As a result the landing arrival process is typically not well
modeled as a Poisson process or as a NHPP.

3. overflow processes

Explanation: In finite capacity systems, when there is insufficient capacity for arrivals
to be admitted immediately or soon enough, the arrivals may be allowed to overflow to
other alternative service facilities. This was a classic phenomenon in telecommunication
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networks. Since overflows tend to occur in bunches when the system is heavily loaded
and then not at all in lightly loaded periods, overflow processes tend to be more bursty
or highly variable than Poisson processes.

4. batch arrival processes

Explanation: In many systems arrivals tend to occur in batches. Arrivals to restaurants,
amusement parks and zoos typically come in batches. If the batches tend to stay together,
then maybe the entire batch can be regarded as a single customer. However, in many
cases, as for limited-capacity rides in an amusement park, a batch will use more resources
than a single customer. Then it may be necessary to consider batch arrival processes.

4.1.2 Examples where the Poisson and NHPP Models Should Be Good

Theorem 4.1 indicates that Poisson models should be good for all of the following situations.

1. telephone calls at a call center

Explanation: Usually these arrivals involve single customers operating independently of
others.

2. arrival times at a supermarket or a bank

Explanation: Usually these arrivals involve single customers operating independently of
others.

3. walk-in arrivals in an emergency depertment

Explanation: These often involve single patients without scheduling.

5 Relating NHPP’s to Associated Poisson Processes

5.1 How to Simulate Poisson Processes and NHPP’s

1. We can simulate a Poisson process with rate λ by generating the sequence of i.i.d. inter-
arrival times with an exponential distribution having mean λ−1. Then we can construct
the associated arrival times and arrival counting process exploiting §2.1.1 above.

2. We can generate a NHPP with arrival-rate function λ(t) by performing time-dependent
independent thinning of a stationary Poisson process with rate λ̄, where

λ̄ ≥ λ(t) for all t.

As the time-dependent thinning probability, we use

p(t) ≡ λ(t)

λ̄
.
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5.2 How to Construct a NHPP from a Poisson Process

Let {N(t) : t ≥ 0} be a rate-1 Poisson process and let λ(t) be an arrival-rate function of a
desired NHPP {A(t) : t ≥ 0}. We can easily construct the stochastic process {A(t) : t ≥ 0}
given the two components {N(t) : t ≥ 0} and λ(t). To do so, let Λ(t) be the associated
cumulative arrival rate function, defined by

Λ(t) ≡
∫ t

0
λ(s) ds, t ≥ 0. (7)

The we define A(t) for all t ≥ 0 by setting

A(t) ≡ N(Λ(t)), t ≥ 0. (8)

The following result is elementary:

Theorem 5.1 The stochastic process {A(t) : t ≥ 0} constructed in (8) above is a NHPP with
arrival-rate function λ(t).

Proof Independent increments extends. Look at the intensity:

E[A(t)] = E[N(Λ(t))] = Λ(t) =

∫ t

0
λ(s) ds, t ≥ 0.

5.3 How to Transform a NHPP Into a Poisson Process

It might be convenient to transform a given NHPP into an associated Poisson process. To do
so, we simply invert the construction carried out in the previous subsection. In particular, we
define an inverse function Λ−1(t) of the cumulative arrival rate function Λ(t) in (7) above.

Consider a NHPP {A(t) : t ≥ 0} with arrival-rate function λ(t). Let Λ(t) be the associated
cumulative arrival rate function, defined by

Λ−1(t) ≡ inf {s > 0 : Λ(s) = t}, t ≥ 0. (9)

We can now convert the NHPP {A(t) : t ≥ 0} into a rate-1 Poisson process by letting

N(t) ≡ A(Λ−1(t)), t ≥ 0. (10)

The following result is elementary:

Theorem 5.2 The stochastic process {N(t) : t ≥ 0} constructed in (10) above is a rate-1
Poisson process.

Proof Independent increments extends. Look at the intensity:

E[N(t)] = E[A(Λ−1(t))] = Λ(Λ−1(t)) = t, t ≥ 0.

6 Poisson Arrivals See Time Averages (PASTA)

6.1 The Inspection Paradox

See §7.7 in Ross [11].
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6.2 PASTA

With a Poisson arrival process, in great generality, the state of the system seen by an arrival
is the same as seen at an arbitrary time.

A full understanding depends on the notions of stationary processes in continuous and
discrete time, discussed briefly in Appendix §B.1.

7 Fitting a NHPP to Arrival Data

There are two issues:

(i) How can we fit an NHPP to data?

(ii) How can we test to see if an NHPP model is appropriate?

7.1 Estimating the Arrival-Rate Function

The parameters of the NHPP model are the arrival rates, To estimate the arrival rates, we
partition the overall time interval into disjoint subintervals of fixed length, called bins. We
then count the number of arrivals in each bin and plot it. The total number of arrivals in a
bin is a direct estimate of the arrival rate per bin length for each time in the bin.

We often include data for multiple similar days. The arrival rate over that subinterval
is then estimated by the sample average of the bin counts over the similar days. By this
procedure, we produce an estimate of the arrival rate function λ(t). Specifically, if we use bin
sizes ∆, then we estimate λ(t) by the piecewise-constant function

λ̄(t) ≡ Ā(a, a+ ∆)

∆
, a ≤ t ≤ a+ ∆, (11)

where Ā(a, a+ ∆) is the average number of arrivals found in the interval [a, a+ ∆].
However, caution is needed in looking at similar days, because days may appear to be more

similar than they are. It is good to form confidence intervals for our estimates of arrival rates.
There may be more day-to-day variability than we realize. That is illustrated by Figure ??.
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7.2 A Test for a Poisson Process

7.2.1 The Test

(a) Break up the day into shorter subintervals, over each of which the arrival rate will be
considered constant.

(b) Consider one interval of length L; refer to it as [0, L]. But a virtue of this test is that
the data over all the intervals can be combined (concatenated) after the transformation.

(c) Let n be the observed number of arrivals in the one (any one) interval.

(d) Let Aj be the jth ordered arrival time within the interval [0, L]; i.e.,

0 < A1 < A2 < · · · < An < L.

(e) Define new random variables

Yj ≡ (n+ 1− j)
(
− loge

(
L−Aj
L−Aj−1

))
, 1 ≤ j ≤ n. (12)

(f) Under the null hypothesis that the arrival process is a Poisson process (with constant
arrival rate) over the interval [0, L] (with any fixed arrival rate), the random variables Yj are
independent and identically distributed (i.i.d.) random variables with a standard (mean-1)
exponential distribution. [We explain in Section III below.]

(g) As a consequence, the data from all the intervals over the day can be combined. By
combining the data from all intervals, starting at the beginning of the day, we obtain a single
sequence of i.i.d. standard exponential random variables. Denote it by {Yk : 1 ≤ k ≥ n},
where now n is the total number of arrivals.

(h) Since the arrival rate over any fixed interval we consider can be any fixed value, it could
also be a random variable. We could include in our overall sequence data from different days
with different arrival rates. In doing so, we should treat intervals on different days separately,
making one long sequence.

7.2.2 Explanation

(a) First, we use the well-known conditioning property of a Poisson process; see §5.3.5
of Ross. If we condition upon the number of arrivals in a Poisson process over any subinterval,
then those arrival times are distributed as independent and identically distributed random
variables, each uniformly distributed over the interval. Thus the successive points we see are
distributed as the uniform order statistics of i.i.d. uniform random variables; i.e., the first is
the minimum, the second is the second smallest, and the last is the maximum.

(b) Second, we use a property of uniform order statistics, giving the conditional distri-
bution of the remaining variables, given the minimum. Given n i.i.d. random variables
uniformly distributed over an interval [0, L], conditional on the minimum, say Mn, the remain-
ing n − 1 random variables are i.i.d. random variables uniformly distributed on the interval
[Mn, L]. We can repeat that construction to generate independent random variables.

(c) Given the recursive procedure in part (b) above, it suffices to convert the distribution
of the minimum of i.i.d. uniform random variables into a standard exponential. For simplicity,
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suppose that L = 1. Let us first observe that

P (Mn > 1− t) = P (U > 1− t) = tn, 0 ≤ t ≤ 1. (13)

Lemma 7.1 If Mn is the minimum of n i.i.d. uniform random variables on the interval [0, 1],
then

P (−n loge (1−Mn) > t) = e−t, t ≥ 0.

Proof Using (13) in the last step,

P (−n loge (1−Mn) > t) = P (loge (1−Mn) < −t/n)

= P ((1−Mn) < e−t/n)

= P (Mn > 1− e−t/n)

= (e−t/n)n = e−t.
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Appendix

This appendix contains additional material supplementing the main lecture notes.

A More on Arrival Process Models

A.1 What Makes a Good Model?

1. purpose? The model choice depends on the purpose. What do we want to do with the
model?

ANSWER: We are thinking of the arrival process as a component of a queueing model.
In turn, we are thinking of that queueing model being used to predict staffing needs in
the future, i.e., to decide how many resources we need (e.g., agents in a call center or
beds in a hospital).

2. analyzable? To be useful, we must be able to work with the model. We must be able
to perform useful analysis.

ANSWER: We will highlight stationary and nonstationary (nonhomogeneous) Poisson
arrival process models. See Chapter 5 of Ross [11] and Chapters 3 and 6 of Hall [6]. We
will be showing how they can be analyzed. There are other arrival process models and
associated ways to analyze them, but we will not get into that much.

3. realistic? The model should be suitably realistic. It should be consistent with the
system and fit the data.

ANSWER: We will see how to use the Poisson arrival process models with the call
center data in the homework. One important issue is whether the arrival rate should
be considered stationary or nonstationary. This actually a complicated issue. The same
arrival process might be usefully modelled by a stationary Poisson process and by a
nonhomogeneous Poisson process in different time scales. We will explain why the Poisson
models make sense and we will consider tests to apply to data.

A.2 The Arrival Process as a Component of a Queueing Model

1. Often our goal is to use the arrival process as a component of a queueing model.

IMPLICATION: The three questions above then apply to the potential queueing model.
We now need to be able to analyze the queueing model with the arrival process model.
We will highlight queueing models with stationary and nonstationary (nonhomogeneous)
Poisson arrival processes. We will be showing how they can be analyzed.

2. Many service systems can be modeled, at least in part (i.e., one resource queue within
the larger service system), by a multi-server queueing model. The classical multi-server
queueing models are the Markovian Erlang models: M/M/s/0 (Erlang B or loss
model), M/M/s/∞ (Erlang C or delay model), or M/M/s/∞+ M (Erlang A or delay
model with customer abandonment). [These models are all birth and death processes;
see §6.3 of the IEOR 3106/4106 textbook Ross [11].]

NOTATION: The M in the notation stands for “Markov.” In the M/M/s/r model, the
first M refers to the arrival process, meaning that the arrival process is a Poisson process
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with rate λ; the second M refers to the service times, meaning that the service times
are assumed to be independent of the arrival process and themselves independent and
identically distributed (i.i.d.) with an exponential distribution having mean µ−1 (and
thus service rate µ); the s means that there are s servers; and the r means that there
are r extra waiting places in the queue. When the system has s + r customers, s in
service and r waiting, then there is no more space; then new arrivals are assumed to be
blocked (leave without affecting future arrivals). Customers are assigned to servers as
soon as the servers become available in order of the customer arrival times. The +M in
the M/M/s∞ + M model refers to customer abandonment. The patience times (times
to abandon) are assumed to be independent of the system history and are assumed to
be exponentially distributed with mean θ−1.

IMPLICATION: These models are discussed in introductory queueing textbooks such as
[1, 2, 8, 14]. A quick introduction can be obtained from §§6.3, 8.3 and 8.9 of Ross [11].
This important background is mostly missing from our textbook Hall [6].

3. For time-varying arrival rates, only one model can be analyzed well exactly: theMt/GI/∞
infinite-server model (IS model). [See the paper distributed in class, [3], and Examples
5.18 and 5.25 of Ross [11].]

NOTATION: The Mt means that the arrival process is a nonhomogeneous Poisson pro-
cess (NHPP) with arrival-rate function λ(t). The GI means that the service times
are independent of the arrival process and themselves are i.i.d. random variables dis-
tributed as a random variable S with a general cumulative distribution function (cdf)
G(x) ≡ P (S ≤ x) having mean E[S] = µ−1. (We use ≡ to denote equality by definition.)
the ∞ means that there are infinitely many servers.

IMPLICATION: With time-varying arrival rates, it is useful to exploit the IS model.
The IS model serves as an offered-load (OL) model, showing how many resources would
be used (and thus needed) if there were no limit on their availability. The number used
is of course, random so we want to focus on its distribution, but the expected number
used, denoted by m(t), called the offered load is a vital partial characterization. That
is a major theme of the course.

4. All the queueing models above have Poisson arrival processes, either stationary or non-
stationary.

IMPLICATION: We will focus on Poisson arrival processes, both stationary and nonsta-
tionary.

B More on Stochastic Point Processes

B.1 Stationary Point Process

There are two forms of stationary point processes, depending on whether we define stationarity
in continuous time or discrete time. For more on this, see Sigman [12].

B.1.1 Counting Processes with Stationary Increments

A point process is said to be stationary in continuous time if the counting process {A(t) :
t ≥ 0} has stationary increments. For the most part, a point process is stationary in contin-
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uous time if the arrival rate function is a constant function. For example, a nonhomogeneous
Poisson process (NHPP) is a Poisson process that is also a stationary point process.

MORE CAREFUL DEFINITIONS: An increment in continuous time is the count over an
interval, such as A(s+ t)−A(s), which counts the number of points in the interval [0, s+ t]−
[0, s] = (s, s + t], open on the left and closed on the right. We use the convention of open on
the left and closed on the right to ensure that each time point is in only one interval. We look
at the counting process over increment when we divide time into subintervals, called bins, and
count the number of arrivals in each bin. In that measurement process, we want to put each
arrival in one and only one bin. A single increment of a counting process (which is a random
variable) is stationary if its probability distribution is independent of time shifts; i.e., if the
distribution of A(s+ t)−A(s) is independent of s ≥ 0.

More generally, we say that a point process is stationary if the joint distribution of any
k increments is independent of a time shift; i.e., the joint distribution of (A(s + t2) − A(s +
t1), A(s + t4) − A(s + t3), . . . , A(s + t2k) − A(s + t2k−1) in Rk is independent of s ≥ 0 for
0 < t1 < t2 ≤ t3 < t4 ≤ . . . ≤ t2k−1 < t2k. [That is a technical refinement. The main point
concerns one increment.]

A point process that is stationary in continuous time necessarily has a constant arrival rate
function.

B.1.2 Point Processes with Stationary Increments in Discrete Time

A point process is said to be stationary in discrete time if the discrete-time sequence of
arrival times {Ak : k ≥ 0} is a stationary sequence, i.e., if the joint distribution of the
random vector (Aj+n1 , Aj+n2 , . . . , Aj+nk

) in Rk is independent of j ≥ 0, where j is an integer
and n1 < n2 < · · · < nk.

B.2 Counting Processes with Independent Increments

A point process is said to have independent increments (understood to be in continuous time)
if any k disjoint increments, each of the form A(s+ t)−A(s), are mutually independent.

B.3 Renewal Processes, see Chapter 7 of Ross [11]

An arrival (point) process is a renewal process if the sequence of interarrival times {Xk : k ≥ 1}
are independent and identically distributed (i.i.d.) with some interarrival-time cumulative
distribution function (cdf) F (x) ≡ P (Xk ≤ x), x ≥ 0. (The renewal process has stationary
increments and independent increments in discrete time.) Note that the interarrival times are
independent in a renewal process, but the renewal counting process typically (in general) does
not have independent increments. A renewal counting process turns out to have independent
increments in continuous time if and only if it is a Poisson process.

B.3.1 [Advanced Topic] An NHPP as a Poisson Random Measure on Rk

A NHPP can also be defined as the special case of a Poisson random measure on Euclidean
space Rk when k = 1, i.e., when the space is the positive half line [0,∞).

A random counting measure A(B) in Rk counts the random number of points in each subset
B in Rk, with the usual properties of a measure as a function of sets B. A random counting
measure is a Poisson random measure on Rk (or a Poisson process on the Euclidean space Rk)
determined by an intensity function λ if
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1. P (A(B) = k) = e−m(B)m(B)k

k! , i.e., if A(B) has a Poisson distribution with mean m(B)
for all B,

2. A(B1), A(B2), . . . A(Bk) are mutually independent random variables for all k if the sets
B1, B2, . . . , Bk are disjoint subsets of Rk

3. m(B) =
∫
B λ(x) dx (the mean number of points in set B is a k-dimensional integral)

For an example, see Exercise 5.94 of [11], where the intensity is constant.
A Poisson random measure on the positive half line, [0,∞) is a nonhomogeneous Poisson

process. Now the possible subsets are subsets B of [0,∞. It suffices to focus on intervals 0, t].
We can define a counting process A(t) as a function of t ≥ 0 in terms of a random measure
if we identify A(t) with A([0, t]). With this new notation, the properties in this subsection
reduce to those in the previous direct definition.

C Application (later in course): Staffing with a NHPP Arrival
Process

We now show how the NHPP can be used to allocate resources, i.e., determine a candidate
staffing function s(t).

C.1 Performance of the Mt/GI/∞ model, §1 of [3]

C.1.1 The Model Can Be Analyzed!

For an IS model with i.i.d. service times having a general service-time cdf G(x) ≡ P (S ≤ x)
that are independent of an NHPP arrival process, the number in system at any time t has a
Poisson distribution with the single parameter, its mean m(t), which has a convenient explicit
expression; see §1 of [3]. (Surprisingly, this nonstationary model can be analyzed!!)

C.1.2 The Offered Load

The IS model is useful because it shows the number of servers that would be used if there were
unlimited resources. Of course that number is actually random, and so is not fixed, but we
know its full distribution and its mean. Thus, this explicit performance of the IS model helps us
understand the performance of associated models with finitely many servers. The mean shows
the expected number of servers that would be used if there were unlimited resources. Thus,
the mean m(t) is often called the offered load. It is often denoted by R(t) by Mandelbaum.

C.2 Staffing in the Mt/GI/st/∞ and Mt/GI/st/∞+GI models, §2 of [7]

We can use the IS model as a basis for staffing. Since the number in system in the IS model
has a Poisson distribution with mean m(t), we can approximate by a normal distribution with
mean m(t) and variance m(t). (The variance of a Poisson distribution equals its mean.) As a
rough engineering approximation we can use the square root formula, we can staff at

s(t) ≡ m(t) + dβ
√
m(t)e, (14)

where dxe is the least integer greater than x and β is a Quality-of-Service (QoS) parameter.
A simple conservative choice is β = 2. That amounts to staffing at two standard deviations
above the mean.

There are various refinements, such as the so-called modified offered-load (MOL) approxi-
mations, but in view of the typically rough model fit, they tend to be second-order.
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D [Advanced topic] Forecasting

There are whole courses devoted to this topic, under time series analysis. Generally, the goal
is to predict the arrival rate function at some future time, e.g., over the day on some day
in the near future, tomorrow or next week, say, so that we can then make plans for staffing.
For a NHPP, the goal is to predict the arrival-rate function to use with the NHPP. Given the
arrival-rate function, we have a completely defined NHPP model.

In predicting the arrival-rate function, we want to account for seasonal effects (month of
the year), daily effects (day of the week), special days (e.g., holidays and major sale events),
and time-of-day effect. For a NHPP, the goal is to predict the arrival-rate function to use with
the NHPP.

With call center data, we can choose to look at it over different resolutions (time scales) in
order to see these different effects.

D.1 Time Series Methods

1. Moving average

2. Weighted moving average

3. Exponential smoothing

4. Autoregressive moving average (ARMA)

5. Autoregressive integrated moving average (ARIMA), e.g. Box-Jenkins

6. Extrapolation

7. Linear prediction

8. Trend estimation

9. Growth curve
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