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Problem 1: Estimate Expected Waiting Time W ≡ E [W∞]

From direct measurements:

Observe waiting times Wi ,j for customer j , 1 ≤ j ≤ n, during

same given time interval on day i , 1 ≤ i ≤ m.

Average waiting at this time on day i is W̄
(i)
n ≡ 1

n ∑n
j=1 Wi ,j .

Average waiting over all days is

W̄n,m ≡ 1
mn ∑m

i=1 ∑n
j=1 Wi ,j = 1

m ∑m
j=1 W̄

(i)
n

How to estimate confidence interval (CI) for W ≡ E [W∞]?

For example, [W̄ − h̄,W̄ + h̄], where h̄ is the CI halfwidth.

With all data? On any one day?



Problem 2: Apply L = λW to Estimate W ≡ E [W∞]

Observe L(s) over 0 ≤ s ≤ t, but not waiting times.

Given {L(s)}, we can directly observe the arrivals and

departures.

We can can easily estimate λ and L.

But we typically cannot determine Wk , because the items

need not depart in the same order they arrived.

Nevertheless, we can estimate W by W = L/λ using our

estimates.

How to estimate confidence interval (CI)? How to eliminate

bias?



L = λW
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L = λW : Theory

L = λ W
(i) mean values of stationary distributions

EL(∞) = λEW∞

(ii) relation among limits of averages (limiting sample path averages)

(avg number in system) = (arrival rate) (avg time spent)
(

lim
t→∞

t−1
∫ t

0
L(s)ds

)

=
(

lim
t→∞

t−1A(t)
)

(

lim
n→∞

n−1
n

∑
k=1

Wk

)



L = λW : Measurements

L = λ W
(avg number in system) ≈ (arrival rate) (avg time spent)

L̄(t) ≈ λ̄ (t) W̄ (t)

∫ t
0 L(s)ds

t
≈ A(t)

t

∑R(0)+A(t)
k=R(0)+1 Wk

A(t)

NOTE: finite averages over [0,t]; = if start and end empty
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Main Idea

Apply Statistics with Finite Averages from Data

Estimate and remove bias

Estimate confidence intervals

i. Stationary Framework - Method of batch means

ii. Nonstationary Framework - Sample averages over multiple days



Data

A US bank call center data from (Mandelbaum 2012)*

about 60,000 calls (of all types) handled by agents on

weekdays

one type of customers (Summit)

17-hour period from 6 am to 11 pm, referred to as [6,23]

Friday, May 25, 2001: 5749 call arrivals of which 253

abandoned before starting service

18 weekdays similar to May 25, 2001

* We thank Professor Avi Mandelbaum and the SEELab at the Technion.
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Using L = λW : One Day in a Banking Call Center

λ (t) is not stationary over the entire day

λ (t) is approximately stationary over the middle part, [10,16]

Stationarity confirmed by turning points test, difference-sign

test and rank test for randomness [Brockwell and Davis, 1991].



Using L = λW : One Day in a Banking Call Center (2)

L(t) is not stationary over the entire day

L(t) is approximately stationary over the middle part, [10,16]



Using L = λW : One Day in a Banking Call Center (3)

Wk is approximately stationary over the entire day



Canonical Problem

The essence of a typical application:

observe L(s) over 0 ≤ s ≤ t, but not waiting times

given {L(s)}, can directly observe the arrivals and departures

can easily estimate λ and L

typically cannot determine Wk , because the items need not

depart in the same order they arrived

nevertheless, can estimate W by W = L/λ using our estimates



Canonical Problem: Direct and Indirect Estimators

Direct Estimators

λ̄ (t) ≡ A(t)

t
, L̄(t) ≡

∫ t
0 L(s)ds

t
and W̄ (t) ≡

∑R(0)+A(t)
k=R(0)+1 Wk

A(t)
.

Indirect Estimators

λ̄L,W (t) ≡ L̄(t)

W̄ (t)
, L̄λ ,W (t) ≡ λ̄ (t)W̄ (t) and W̄λ ,L(t) ≡

L̄(t)

λ̄ (t)
.

We want to use W̄λ ,L(t) as a substitute for W̄ (t).



Estimating W given L and λ

Over the entire day [6,23]:

L̄[6,23] = 20.2±6.1, λ̄[6,23] = 5.39±1.84 → W̄[6,23];L,λ = 3.75

→ Averages do not have much meaning.

→ Halfwidths reveal nonstationarity.



Estimating W given L and λ

Over the entire day [6,23]:

L̄[6,23] = 20.2±6.1, λ̄[6,23] = 5.39±1.84 → W̄[6,23];L,λ = 3.75

→ Averages do not have much meaning.

→ Halfwidths reveal nonstationarity.

Over an approximately stationary interval [10,16]:

L̄[10,16] = 31.9±1.9, λ̄[10,16] = 9.44±0.49 → W̄[10,16];L,λ = 3.38

→ L̄[10,16] and λ̄[10,16] are very different from L̄[6,23] and λ̄[6,23].

→ System is not empty at 10 am and 4 pm.

→ Two errors cancel for W (W̄[10,16] = 3.38).
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Issues

1 L 6= λW over a finite time interval. How to make L ≈ λW ?

2 Stationarity is important.

3 For a stationary interval, how well do we know L, λ and W by

L̄(t), λ̄ (t) and W̄ (t)?

4 What can we do in a nonstationary setting?



Total Work in the System

future t 0 
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past present 

                                                                                                                            

a bar of height 1 for each customer k (width = Wk)

for 0 ≤ s ≤ t, the number of bars above any time s is L(s)

order: arrived before 0; arrive after 0 and depart before t and

arrive after 0 but depart after t



Alternative Definitions to Force Equality: The Inside View

Ai(t) ≡ R(0)+A(t), t ≥ 0 - made bigger

W i
n ≡ (Dn ∧ t)− (An∨0), n ≥ 1 - made shorter

L̄(t) = λ̄i (t)W̄i(t) (Little 2011, Buzen 1976, Denning and Buzen 1978)

distorts meaning
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Two Cumulative Processes

future t 0 
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A(t) 

CL(t) = |B ∪D ∪E | ≡
∫ t
0 L(s)ds = L̄(t)t

CW (t) = |D ∪E ∪F | ≡ ∑R(0)+A(t)
k=R(0)+1 Wk = W̄ (t)A(t)

CL(t)−CW (t) = |B ∪D ∪E |− |D ∪E ∪F |= |B |− |F |



Finite-time version of Little’s Law (Jewell 1967)

Theorem

If R(0) = L(t) = 0, then L̄(t) = λ̄ (t)W̄ (t).

Proof: In general,

L̄(t) ≡
∫ t
0 L(s)ds

t
=

CL(t)

t

λ̄ (t)W̄ (t) ≡
(

A(t)

t

)





∑R(0)+A(t)
k=R(0)+1 Wk

A(t)



=

(

A(t)

t

)(

CW (t)

A(t)

)

Under the condition, CL(t) = CW (t), so that

L̄(t) ≡ CL(t)

t
=

CW (t)

t
= λ̄ (t)W̄ (t).



Extended finite-time version of Little’s Law

Theorem

The empirical averages are related by

∆L(t) ≡ L̄λ ,W (t)− L̄(t) =
|F |− |B |

t
,

∆W (t) ≡ W̄L,λ (t)− W̄ (t) =
|B |− |F |

A(t)
= −∆L(t)

λ̄ (t)
,

∆λ (t) ≡ λ̄L,W (t)− λ̄(t) =

( |B |− |F |
|D|+ |E |+ |F |

)

λ̄ (t) = −∆L(t)

W̄ (t)
,

where |B | is the area of the region B.
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Estimating and Reducing the BIAS

An unbiased estimator based on the observed data over [0,t]

(Ot) is W̄L,λ ,u(t) ≡ W̄L,λ (t)−E [∆W (t)|Ot ].

Since ∆W (t) ≡ W̄L,λ (t)− W̄ (t) = |B|−|F |
A(t) , where

|B|: the total remaining work at time 0

|F |: the total remaining work at time t

a natural Approximation is

E [∆W (t)|Ot ] ≈
(R(0)−L(t))W̄L,λ (t)

A(t)

→ W̄L,λ ,r (t) ≡ W̄L,λ (t)

(

1− R(0)−L(t)

A(t)

)

.



Estimating and Reducing the BIAS: Call Center EX

18 weekdays in May:
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Estimating and Reducing the BIAS - Call Center EX

Avg Absolute Errors (AAE)
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Avg Squared Errors (ASE)
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→ More bias/bias reduction at the ends of the day when the

system is nonstationary.



Constructing CI’s: Stationary Framework



Constructing CI’s: Stationary Framework

We take the view that the Little’s Law theory applies in a

stationary interval and regard the finite averages as estimates

of the theoretical values L ≡ E [L(∞)], λ and W ≡ E [W∞].

(We uses the relations among the steady-state mean values.)



Constructing CI’s: a Central Limit Theorem (CLT)



Constructing CI’s: a Central Limit Theorem (CLT)

(XL,Xλ ,XW ) is essentially a two-dimensional mean-zero

multivariate Gaussian random vector.

Theorem (A CLT Version of L = λW (Glynn and Whitt 1986))

Direct estimators and indirect estimators converge in distribution jointly and

the indirect estimators assume the same values in the limit as the direct

estimators. That is,

(L̂(t), λ̂ (t),Ŵ (t), L̂λ ,W (t), λ̂L,W (t),ŴL,λ (t)) ⇒ (XL,Xλ ,XW ,XL,Xλ ,XW ) in R
6

as t → ∞ under very general regularity conditions, where

(L̂(t), λ̂ (t),Ŵ (t)) ≡
√

t
(

L̄(t)−L, λ̄ (t)−λ ,W̄ (t)−W
)

,

(L̂λ ,W (t), λ̂L,W (t),ŴL,λ (t)) ≡
√

t
(

L̄λ ,W (t)−L, λ̄L,W (t)−λ ,W̄L,λ (t)−W
)

.
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Constructing CI’s: The Method of Batch Means

1 Use sample path segment {(A(s),L(s)) : 0 ≤ s ≤ t} over [0,t]

2 Divide [0,t] into m intervals [
(k−1)t

m , kt
m ], 1 ≤ k ≤ m

3 Compute batch averages, Āk (t,m), L̄k(t,m) and W̄L,λ ,k(t,m) ≡ L̄k(t,m)

λ̄k(t,m)

4 W̄
(m)
L,λ (t) ≡ 1

m ∑m
k=1 W̄L,λ ,k(t,m), S2

(m)(t) ≡
1

m−1 ∑m
k=1(W̄L,λ ,k(t,m)−W̄

(m)
L,λ (t))2

5 Construct a two-sided 95% CI based on the Student-t dist.

W̄
(m)

L,λ (t)± t0.025,m−1

√

S2
(m)

(t)

m



Constructing CI’s: What We Saw Before

Over the entire day [6,23]:

L̄[6,23] = 20.2±6.1, λ̄[6,23] = 5.39±1.84 → W̄[6,23];L,λ = 3.75

→ Averages do not have much meaning.

→ Halfwidths reveal nonstationarity.

Over an approximately stationary interval [10,16]:

L̄[10,16] = 31.9±1.9, λ̄[10,16] = 9.44±0.49 → W̄[10,16];L,λ = 3.38

→ L̄[10,16] and λ̄[10,16] are very different from L̄[6,23] and λ̄[6,23].

→ System is not empty at 10 am and 4 pm.

→ Two errors cancel for W (W̄[10,16] = 3.38).



Constructing CI’s: Function of Batch Size in Call Center

Direct versus Indirect Estimates for Each Hour of the Day

Interval m L̄(m)(t) λ̄ (m)(t) W̄ (m)(t) W̄
(m)
L,λ (t)

[10,16] 5 31.9±1.9 9.44±0.49 3.38±0.22 3.38±0.19

10 31.9±1.3 9.44±0.36 3.39±0.15 3.38±0.16

20 31.9±1.0 9.44±0.30 3.39±0.15 3.38±0.11

[14,15] 5 32.6±1.9 9.82±0.82 3.33±0.21 3.33±0.10

10 32.6±1.6 9.82±0.79 3.33±0.21 3.34±0.16

20 32.6±1.3 9.82±0.81 3.32±0.23 3.43±0.31
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Constructing CI’s: Function of Batch Size in Call Center

Direct versus Indirect Estimates for Each Hour of the Day

Interval m L̄(m)(t) λ̄ (m)(t) W̄ (m)(t) W̄
(m)
L,λ (t)

[10,16] 5 31.9±1.9 9.44±0.49 3.38±0.22 3.38±0.19

10 31.9±1.3 9.44±0.36 3.39±0.15 3.38±0.16

20 31.9±1.0 9.44±0.30 3.39±0.15 3.38±0.11

[14,15] 5 32.6±1.9 9.82±0.82 3.33±0.21 3.33±0.10

10 32.6±1.6 9.82±0.79 3.33±0.21 3.34±0.16

20 32.6±1.3 9.82±0.81 3.32±0.23 3.43±0.31

The approach evidently works.

How to choose m?



Constructing CI’s: Supporting Simulation Experiments

Apply simulation to evaluate the estimation procedure performance

for an idealized queueing model of the system.



Constructing CI’s: Supporting Simulation Experiments

Apply simulation to evaluate the estimation procedure performance

for an idealized queueing model of the system.

Estimate CI coverage based on 1000 replications.

CIs close to 95%. Be conservative and choose m = 5.

case m L̄(m)(t) λ̄ (m)(t) W̄ (m)(t) cov. W̄
(m)
L,λ (t) cov.

β = ∞ 5 31.5±2.0 9.33±0.42 3.38±0.15 95.1% 3.38±0.15 95.4%

(Mt/M/∞) 10 31.5±1.6 9.33±0.35 3.38±0.13 95.0% 3.38±0.13 95.7%

20 31.5±1.4 9.33±0.33 3.38±0.12 94.4% 3.38±0.12 95.3%

β = 1.0 5 32.1±2.6 9.33±0.42 3.44±0.21 95.0% 3.44±0.21 95.3%

(Mt/M/st ) 10 32.1±2.1 9.33±0.35 3.44±0.17 93.2% 3.44±0.17 93.5%

20 32.1±1.8 9.33±0.33 3.44±0.15 91.4% 3.44±0.15 92.5%

data [10,16] 5 31.9±1.9 9.44±0.49 3.38±0.22 3.38±0.19

(call center) 10 31.9±1.3 9.44±0.36 3.39±0.15 3.38±0.16

20 31.9±1.0 9.44±0.30 3.39±0.15 3.38±0.11
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Constructing CI’s: Nonstationary Framework

Whether stationary or not, we can estimate CI’s for E [W̄ (t)] using

sample averages over multiple days, regarding those days as

approximately i.i.d.

Intervals direct estimator unrefined estimator refined estimator

W̄ (t) W̄L,λ (t) W̄L,λ ,r (t)

[6,10] 3.47±0.22 3.35±0.23 3.47±0.23

[10,16] 3.60±0.11 3.61±0.11 3.60±0.11

[16,23] 4.24±0.26 4.35±0.26 4.22±0.25

W̄L,λ ,r (t) behaves very similar to W̄ (t) in all cases.

W̄L,λ (t) performs well in the stationary region [10,16], but

shows the impact of bias in nonstationary regions, [6,10] and

[16,23].
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Summary

1 We have discussed taking a statistical approach with data to make

inferences using the Little’s Law relation.

2 We have shown how the bias in W̄L,λ (t) can be estimated and reduced.

3 We have shown how to estimate confidence intervals based on a single

sample path in a stationary setting, using the method of batch means.

4 In a nonstationary setting, we have shown we can use sample averages

over multiple days to estimate confidence intervals, after correcting for

the bias.

5 We hope that future applications of Little’s law and related conservation

laws will be accompanied by more statistical analysis.

6 Next paper: Using time-varying Little’s Law: Kim, S., W. Whitt. 2013.

Estimating Waiting Times with the Time-Varying Little’s Law. Probability in

the Engineering and Informational Sciences 27 471–506.
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