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1 Introduction

Little’s law or L = λW is a conservation law that provides important insight into queueing
systems. The relation L = λW can be quickly stated:

The average number of customers waiting in line (or items in a system), L, is equal
to the arrival rate (or throughput), λ, multiplied by the average waiting time (time
spent in system) per customer, W .

If we know any two of these quantities, then we necessarily know all three. The easily under-
stood reason is reviewed in §2.3.

Even though the basic relation is remarkably simple, and can be easily understood, the
full implications for applications can be quite surprising. That is illustrated by the examples
done in class, which mostly follow Avishai Mandelbaum’s notes [9]. An early paper illustrating
possible applications is [10].

For stochastic queueing models where λ is known, the relation L = λW yields a relation
between the two steady-state mean values. Given λ, we know both L and W whenever one has
been calculated. For example, many common queueing models are birth-and-death processes,
as in §6.3 of Ross [11], where λ is part of the model data and L can be readily computed; we
can apply Little’s law to obtain W = L/λ; e.g., see §§8.2-8.3 in Ross [11].

As reviewed in [14, 15], Little’s law can be expressed in terms of steady-state distributions
in stochastic models or as limits of averages as the sample size increases. A version of the
result involving limits of averages is given here in Theorem 2.1 in §2.2 and proved in §3.1. The
classic paper is Little [7], but the version here follows Stidham [13]. See El-Taha and Stidham
[1] and Little [8] for more discussion.

The main idea is surprisingly simple, but a careful proof is surprisingly difficult. There are
also rather deep implications of the key relationships that go beyond the basic relation. For
example, there is the central limit theorem (CLT) version of L = λW [2]; it is basically an
extension of the main idea, once properly understood. This is reviewed in [14]. No doubt there
remains more interesting things to discover. See [17] for a short recent addition to the theory.

However, most applications involve measurements over finite time intervals. It is important
to recognize that Little’s law typically does not apply exactly with such finite measurements.
We discuss how the finite averages are related in §2.1 and §2.3, following §2 of Kim and Whitt
[5]; see Little [8] and Mandelbaum [9] for further discussion. For data collected over finite
intervals, it is natural to take a statistical approach, e.g., and estimate confidence intervals.
We discuss the statistical approach in §4, pointing toward [5, 6] for further discussion.

Organization. Here is how the rest of these notes are organized: We tell the main story in §2.
In §2.1 we carefully define the finite averages. In §2.2 we state a version of the limit theorem
for averages. In §2.3 we carefully examine how the finite averages are related. We provide
technical details in §3. In §3.1 we give a detailed proof of the limit theorem in §2.2. That proof
relies on two basic technical propositions in §3.2. We conclude with a brief discussion of the
statistical approach in §4.



2 The Main Story

2.1 The Performance Functions and Their Averages

We initially consider a finite time interval [0, t]. Consistent with most applications, we assume
that the system was in operation in the past, prior to time 0, and that it will remain in
operation after time t. We will use standard queueing terminology, referring to the items being
counted as customers. We focus on the customers that are in the system at some time during
the interval [0, t]. Let these customers be indexed in order of their arrival time, which could
be prior to time 0 if the system is not initially empty (with some arbitrary method to break
ties, if any).

For customer k, let Ak be the arrival time, Dk the departure time and Wk ≡ Dk − Ak

the waiting time (time in system), where −∞ < Ak < Dk < ∞, [0, t] ∩ [Ak,Dk] 6= ∅ and
≡ denotes “equality by definition.” Let R(0) count the customers that arrived before time
0 that remain in the system at time 0; let A(t) count the total number of new arrivals in
the interval [0, t]; and let L(t) be the number of customers in the system at time t. Thus,
A(t) = max {k ≥ 0 : Ak ≤ t}−R(0), t ≥ 0, and L(0) = R(0)+A(0), where A(0) is the number
of new arrivals at time 0, if any. We will carefully distinguish between R(0) and L(0), but the
common case is to have A(0) = 0 and L(0) = R(0).

The respective averages over the time interval [0, t] are

λ̄(t) ≡ t−1A(t), L̄(t) ≡ t−1

∫ t

0
L(s) ds, W̄ (t) ≡ (1/A(t))

R(0)+A(t)
∑

k=R(0)+1

Wk, (1)

where 0/0 ≡ 0 for W̄ (t). The first two are time averages, while the last, W̄ (t), is a customer
average, but over all arrivals during the interval [0, t].

We will focus on these averages over [0, t] in (1), but we could equally well consider the
averages associated with the first n arrivals. To do so, let Tn be the arrival epoch of the nth

new arrival, i.e., Tn ≡ An+R(0), n ≥ 0,

λ̄n ≡ n/Tn, L̄n ≡ (1/Tn)

∫ Tn

0
L(s) ds, W̄n ≡ n−1

R(0)+n
∑

k=R(0)+1

Wk. (2)

As in (1), the first two averages in (2) are time averages, but over the time interval [0, Tn],
while the last, W̄n, is a customer average over the first n (new) arrivals. If there is only a single
arrival at time Tn, then the averages in (2) can be expressed directly in terms of the averages
in (1): λ̄n = λ̄(Tn), L̄n = L̄(Tn) and W̄n = W̄ (Tn), so that conclusions for (1) yield analogs
for (2).

2.2 The Relation Among Limits of the Averages

There are various statements of L = λW depending on what is assumed. Here is a fairly general
statement, which assumes existence of only two limits. For practical purposes, all the limits
may be assumed to exist; then the main conclusion is the relation among the limits: L = λW .
Even assuming that all limits exist, establishing the relation is still somewhat challenging.

Theorem 2.1 (L = λW , Little’s law) If λ̄(t) → λ as t → ∞ and W̄n → W as n → ∞ for

λ̄(t) in (1) and W̄n in (2), where 0 < λ < ∞ and W < ∞, then

(L̄(t), λ̄(t), W̄ (t)) → (L, λ,W ) as t → ∞ (3)
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and

(L̄n, λ̄n, W̄n) → (L, λ,W ) as n → ∞, (4)

where

L = λW. (5)

We next examine the relation among the finite averages, from which the main content of
Theorem 2.1 becomes evident. However, we also give a detailed proof of Theorem 2.1 in §3.1.
The proof draws on two basic technical propositions stated and proved in §3.2.

2.3 How the Finite Averages in (1) Are Related

Figures 1 and 2 below show how the three averages in (1) are related. These averages are
related via L̄(t) = λ̄(t)W̄ (t) if the system starts and ends empty, i.e., if R(0) = L(t) = 0, as we
show in Theorem 2.2 below. However, more generally, these averages are not simply related.
To illustrate, in Figures 1 and 2 a bar of height 1 is included for each of the customers in the
system at some time during [0, t] with the bar extending from the customer’s arrival time to its
departure time. (In this example the customers do not depart in the same order they arrived.)
Thus the width of the bar is the customer’s waiting time. For 0 ≤ s ≤ t, the number of bars
above any time s is L(s).

To better communicate what is going on visually, we have ordered the customers in a
special way. In Figures 1 and 2, the customers that arrive before time 0 but are still there
at time 0 are placed first, starting at the bottom and proceeding upwards. These customers
are ordered according to the arrival time, so the customers that arrived before time 0 appear
at the bottom. One of these customers also departs after time t. The customers that arrived
before time 0 and are still in the system at time 0 contribute to the regions A, B and C in
Figure 2.

After the customers that arrived before time 0, we place the customers that arrive after time
0 and depart before time t, in order of arrival; they constitute region D in Figure 2. Finally,
we place the customers that arrive after time 0 but depart after time t. These customers are
ordered according to their arrival time as well; they constitute regions E and F in Figure
2. Three extra horizontal lines are included, along with the vertical lines at times 0 and t,
to separate the regions. The arrival numbers are indicated along the vertical y axis. The
condition R(0) = L(t) = 0 arises in Figure 2 as the special case in which all regions except
region D are empty.

The averages can be expressed in terms of the two cumulative processes,

CL(t) ≡

∫ t

0
L(s) ds and CW (t) ≡

R(0)+A(t)
∑

k=R(0)+1

Wk, t ≥ 0. (6)

The difference between these two cumulative processes can be expressed in terms of the process

T
(r)
W (t), recording the total residual waiting time of all customers in the system at time t, i.e.,

T
(r)
W (t) ≡

L(t)
∑

k=1

W r,t
k , (7)

where W r,t
k is the remaining waiting time at time t for customer k in the system at time t (with

index k assigned at time t among those remaining). The averages in (1) are the time average

L̄(t) ≡ t−1CL(t) and the customer average W̄ (t) ≡ CW (t)/A(t). For a region A in Figure 2,
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Figure 1: The total work in the system dur-
ing the interval [0, t] with edge effects: in-
cluding arrivals before time 0 and departures
after time t.
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Figure 2: Six regions: waiting times (i) of
customers that both arrive and depart inside
[0, t] (D), (ii) of arrivals before time 0 (A ∪
B ∪ C) and (iii) of departures after time t
(C ∪ E ∪ F ).

let |A| be the area of A. In general, the cumulative processes can be expressed in terms of the

regions in Figure 2 as CL(t) = |B ∪D ∪E| and CW (t) = |D ∪E ∪ F |, while T
(r)
W (0) = |B ∪C|

and T
(r)
W (t) = |C ∪ F |, so that

CL(t)− CW (t) = |B| − |F | = |B ∪ C| − |F ∪ C| = T
(r)
W (0) − T

(r)
W (t). (8)

This relation for CL(t) is easy to see if we let ν be the total number of arrivals and departures
in the interval [0, t], τk be the kth ordered time point among all the arrival times and departure
times in [0, t], with ties indexed arbitrarily and consistently, τ0 ≡ 0 and τν+1 = t. Then

CL(t) ≡

∫ t

0
L(s) ds =

ν+1
∑

j=1

∫ τj

τj−1

L(s) ds =

ν+1
∑

j=1

L(τj−1)(τj − τj−1) = |B ∪D ∪ E|,

where the last relation holds because L(τj−1) is the number of single-customer unit-height bars
above the interval [τj−1, τj ]. Since CL(t) = CW (t) = |D| if R(0) = L(t) = 0, we necessarily
have the following well known result, appearing as Theorem I of [4].

Theorem 2.2 (traditional finite-time Little’s law) If R(0) = L(t) = 0, then L̄(t) = λ̄(t)W̄ (t).

Proof. Under the condition, L̄(t) ≡ CL(t)
t

= CW (t)
t

=
(

A(t)
t

)(

CW (t)
A(t)

)

≡ λ̄(t)W̄ (t).

On the other hand, for the common case in which there are customers in the system during
[0, t] that arrived before time 0 and/or depart after time t, as in Figures 1 and 2, there is no
simple relation between these cumulative processes and the associated averages, because of
the interval edge effects. Nevertheless, the analysis above exposes the relationship that does
hold. This material is taken from §2 of [5]. Variants of these relations are needed to establish
sample-path limits in Little law theory; e.g., see Theorem 1 of [2]. A variant appears on p.
17.4 of [9], who credits it to his student Abir Koren and emphasizes its importance for looking
at data.
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In the following theorem we relate the direct finite averages in (1) to the following indirect
estimators, which we might use to estimate one from the others:

L̄W,λ(t) ≡ λ̄(t)W̄ (t), λ̄L,W (t) ≡
L̄(t)

W̄ (t)
and W̄L,λ(t) ≡

L̄(t)

λ̄(t)
. (9)

The following result is a consequence of the reasoning above.

Theorem 2.3 (extended finite-time Little’s law) The averages in (1) and (9) are related by

∆L(t) ≡ L̄W,λ(t)− L̄(t) =
|F | − |B|

t
=

T
(r)
W (t)− T

(r)
W (0)

t
,

∆W (t) ≡ W̄L,λ(t)− W̄ (t) =
|B| − |F |

A(t)
= −

∆L(t)

λ̄(t)
=

T
(r)
W (0)− T

(r)
W (t)

A(t)
,

∆λ(t) ≡ λ̄L,W (t)− λ̄(t) =

(

|B| − |F |

|D|+ |E|+ |F |

)

λ̄(t) = −
∆L(t)

W̄ (t)
, (10)

where |B| is the area of the region B in Figure 2 and T
(r)
W (t) is defined in (7).

3 Technical Details

This section is devoted to a proof of Theorem 2.1. We give the proof in §3.1 and then prove
two basic technical propositions used in that proof in §3.2.

3.1 Proof of Theorem 2.1

From the previous section, the main conclusion of Theorem 2.1, the relation L = λW in (5),
should be evident, for the most part. As the sample size grows by letting t → ∞ in (1) or
n → ∞ in (2), then the edge effects identified in Theorem 2.3 should remain stable while
the cumulative processes grow. However, a good general mathematical result is not entirely
straightforward. We present a variant of the proof by Stidham [13]. Our proof relies heavily
on two basic technical lemmas stated and proved in §3.2.

There is a technical complication, which requires care. The result does not require that the
customers depart in the same order that they arrive. That is common in multi-server queues.
Since the customers need not depart in the same order they arrive, Dk is the departure time
of the kth arrival, but not necessarily the kth departure overall. To work with the departure
times, let

D↑
k ≡ max

1≤j≤k
Dj. (11)

Let D↑(t) be the associated counting processes, defined by

D↑(t) ≡ max {k ≥ 1 : D↑
k ≤ t} −R(0), t ≥ 0, (12)

with D↑(t) ≡ 0 if D↑
1 > t. Note that D↑(t) is defined in terms of D↑

k just like A(t) is defined
in terms of Ak in §2.1. In contrast, let D(t) be the number of departures by time t. Note that
D(t) = R(0) +A(t)− L(t), but D(t) is not defined in terms of Dk as in (12).

Reasoning as in the previous section, we start with the key relation

D↑(t)
∑

j=1

Wk −

R(0)
∑

j=1

Wk ≤

∫ t

0
Q(s) ds ≤

R(0)+A(t)
∑

j=R(0)+1

Wk +

R(0)
∑

j=1

Wk, t ≥ 0. (13)
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We now elaborate on (13). First, by (11) and (12), the first D↑(t) arrivals will all have
departed by time t. Hence that initial sum of waiting times is dominated by the integral of the
queue length, except it may have extra elapsed waiting times of arrivals that came before time
0. The term subtracted on the left is at least that large. Hence we have the first inequality.
Second, the term on the right contains the sum of all the waiting times, corresponding to all
six regions in Figure 2. Hence we have the second inequality.

We next observe that the initial effect due to the R(0) initial customers in the system at
time 0 cannot affect the limit for the averages; after dividing by t, this constant quantity will
become asymptotically negligible as t → ∞. Hence, without loss of generality, we omit these
terms in the outer terms and assume that R(0) = 0.

We then observe that the assumed convergence λ̄(t) → λ as t → ∞ for λ̄(t) in (1) is
equivalent to the convergence, λ̄n → 1/λ as n → ∞ for λ̄n in (2) (see Proposition 2 in §3.2),
so that both hold. We then observe that the assumed convergence W̄n → W as n → ∞ for
W̄n in (2) implies that n−1Wn → 0 as n → ∞. Since Wk = Dk − Ak, k ≥ 1, we necessarily
also have the convergence

δ̄n ≡ n−1Dn → 1/λ as n → ∞. (14)

However, by Proposition 1 in §3.2, the convergence in (14) implies the convergence

δ̄↑n ≡ n−1D↑
n → 1/λ as n → ∞. (15)

That in turn, by Proposition 2 again, implies the convergence

δ̄↑(t) ≡ t−1D↑(t) → λ as n → ∞. (16)

Hence, when we rewrite (13) without the terms involving R(0) as

(

D↑(t)

t

)





∑D↑(t)
j=1 Wk

D↑(t)



 ≤

∫ t

0 Q(s) ds

t
≤

(

A(t)

t

)

(
∑A(t)

j=1 Wk

A(t)

)

, t ≥ 0, (17)

we see that the left and right sides both converge to λW as t → ∞. Hence, by a “sandwiching”
argument (see part (i) of Proposition 2 for more details about the argument), we necessarily
have the convergence

L̄(t) ≡

∫ t

0 Q(s) ds

t
→ λW as t → ∞. (18)

Along the way, we have shown that

(λ̄n, δ̄n, δ̄
↑
n) → (1/λ, 1/λ, 1/λ) as n → ∞ (19)

and
(λ̄(t), δ̄(t), δ̄↑(t)) → (λ, λ, λ) as t → ∞. (20)

We also easily get W̄ (t) → W as t → ∞ and L̄n → L as n → ∞ from the other established
results. Hence, the proof is complete.

3.2 Two Supporting Basic Technical Propositions

The proof above depends critically upon two basic technical propositions involving the preser-
vation of convergence of sequences of real numbers under mappings. Everything in this section
depends on the mathematical notion of convergence; see Chapter 3 of Rudin [12] for further
discussion.
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Definition 3.1 (convergence of a sequence of real numbers) For any sequence of real numbers

{xn : n ≥ 1}, we say that xn converges to a limit x as n → ∞, and write limn→∞ xn = x or

xn → x as n → ∞, if for all ǫ > 0 there exists a positive integer n0 ≡ n0(ǫ) depending on ǫ
such that

|xn − x| < ǫ for all n ≥ n0.

For any sequence of real numbers {xn : n ≥ 1}, let {x↑n : n ≥ 1} be the associated sequence
of successive maxima, defined by

x↑n ≡ max {xk : 1 ≤ k ≤ n}, n ≥ 1. (21)

The first proposition says that convergence is “preserved” under the maximum function in
(21).

Proposition 1 (preservation of convergence under a maximum) If

lim
n→∞

xn
n

= x ≥ 0, (22)

then

lim
n→∞

x↑n
n

= x ≥ 0. (23)

Proof. This is a variant of Proposition 3.3.1 in [16]. It suffices to prove, under the condition,

that for any ǫ > 0 there exists n1 ≡ n1(ǫ) such that |(x↑n/n)− x| < ǫ for all n ≥ n1. For ǫ > 0
given, the condition implies that there exists n0 ≡ n0(ǫ) such that

(x− ǫ)n ≤ xn ≤ (x+ ǫ)n for all n ≥ n0. (24)

Hence,
(x− ǫ)n ≤ x↑n ≤ x↑n0

∨ (x+ ǫ)n for all n ≥ n0, (25)

where a ∨ b ≡ max {a, b}. Now choose n1 ≥ n0 such that x↑n0
≤ n1ǫ, which implies that

x↑n0
≤ nǫ for all n ≥ n1. Since x ≥ 0, we can combine this last step with the relations (24) and

(25) to get
(x− ǫ)n ≤ x↑n ≤ ǫn ∨ (x+ ǫ)n = (x+ ǫ)n for all n ≥ n1, (26)

as required.
For any sequence of nondecreasing nonnegative real numbers {xn : n ≥ 1}, let {c(t) : t ≥ 0}}

be the associated counting function, defined by

c(t) ≡ max {k ≥ 0 : xk ≤ t}, t ≥ 0, (27)

where x0 ≡ 0. Recall the basic inverse relation for renewal counting processes (or any counting
process) given in (7.20) on p. 423 of Ross [11]. We use that relation here:

Lemma 3.1 (basic inverse relation) For any sequence of nondecreasing nonnegative numbers

{xn : n ≥ 1},
xn ≤ t if and only if c(t) > n. (28)

The second proposition says that convergence is “preserved” under the inverse function in
(27). In fact, there is an equivalence of convergence.
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Proposition 2 (preservation of convergence under inverse) For any sequence of nondecreasing

nonnegative numbers {xn : n ≥ 1}, there is convergence

lim
n→∞

xn
n

= x > 0, (29)

if and only if there is convergence

lim
t→∞

c(t)

t
= 1/x > 0. (30)

Proof. This is implied by Theorem 3.4.1 and Corollary 3.4.1 in [16]. We do the two directions
in turn.

(i). One direction: (29) implies (30). This direction is a variant of the standard proof
of the strong law of large numbers (SLLN) for renewal processes, Proposition 7.1 on p. 728 of
Ross [11]. Here is a direct proof: First, observe that the definition of c(t) in (27) implies that

xc(t) ≤ t < xc(t)+1 for all t > 0. (31)

so that, after dividing through by c(t),

xc(t)

c(t)
≤

t

c(t)
<

xc(t)+1

c(t)
=

(

xc(t)+1

c(t) + 1

)(

c(t) + 1

c(t)

)

for all t > 0. (32)

Since the limit in (29) is assumed to hold, necessarily c(t) → ∞ as t → ∞. Hence (c(t) +
1)/c(t) → 1 as t → ∞ and, by virtue of (29),

xc(t)

c(t)
→ x and

xc(t)+1

c(t) + 1
→ x as t → ∞. (33)

Hence, the lower and upper bounds on t/c(t) in (32) both converge to x as t → ∞. By this
“sandwich” argument, we deduce that

lim
t→∞

t

c(t)
= x. (34)

That can be further justified by applying the limit inferior and limit supremum. From (33),
we get

x = lim
t→∞

xc(t)

c(t)
≤ lim inf

t→∞

t

c(t)
≤ lim sup

t→∞

t

c(t)
≤ lim

t→∞

xc(t)+1

c(t) + 1
= x (35)

and

x ≤ lim inf
t→∞

t

c(t)
≤ lim sup

t→∞

t

c(t)
≤ x, (36)

which implies (34). In turn (34) implies that

lim
t→∞

c(t)

t
=

1

x
, (37)

which completes the proof in one direction: (29) implies (30).
(ii). The other direction: (30) implies (29). Now suppose that (30) holds. Thus, for

ǫ > 0 specified, there exists t0 such that

t(x−1 − ǫ) ≤ c(t) ≤ t(x−1 + ǫ) < t(x−1 + 2ǫ) for all t ≥ t0. (38)
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We now use the floor and ceiling functions: ⌊x⌋ is the greatest integer less than or equal to x,
while ⌈x⌉ is the least integer greater than or equal to x. Using these functions, we have

n1(t) ≡ ⌊t(x−1 − ǫ)⌋ ≤ c(t) < ⌈t(x−1 + 2ǫ)⌉ ≡ n2(t) for all t ≥ t0. (39)

Then Lemma 3.1 implies that

xn1(t) ≤ t < xn2(t) for all t ≥ t0. (40)

Now let t1(n) and t2(n) be functions of n defined by

t1(n) ≡
n

x−1 − ǫ
and t2(n) ≡

n

x−1 + 2ǫ
(41)

and observe that
n1(t1(n)) = n2(t2(n)) = n for all n. (42)

Hence, for all
n ≥ n0 ≡ ⌈t0(x

−1 + 2ǫ)⌉, (43)

we have

t1(n0) =
⌈t0(x

−1 + 2ǫ)⌉

x−1 − ǫ
>

⌈t0(x
−1 + 2ǫ)⌉

x−1 + 2ǫ
= t2(n0) ≥ t0 (44)

and, by (40),
t2(n) ≤ xn2(t2(n)) = xn = xn1(t1(n)) ≤ t1(n) (45)

or, equivalently,
n

x−1 + 2ǫ
≤ xn ≤

n

x−1 − ǫ
, (46)

so that
1

x−1 + 2ǫ
≤

xn
n

≤
1

x−1 − ǫ
(47)

or

x−
2ǫx

1 + 2ǫx
≤

xn
n

≤ x+
ǫ

1− ǫx
(48)

From (48), we see that, for any x > 0 and target error bound δ for |(xn/n)−x|, we can choose
ǫ ≡ ǫ(x, δ) suitably small to achieve it. Then, with ǫ specified, we let t0 ≡ t0(ǫ) be as needed
to obtain (38) and then we choose n0 ≡ n0(t0) as in (43). That completes the proof.

4 A Statistical Approach

We advocate taking a statistical approach with data over a finite time interval. Thus, in
a stationary setting, we regard the finite averages as realizations of random estimators of
underlying unknown “true” values L, λ and W . We suggest estimating confidence intervals,
just as in steady-state simulation, and discuss how to do so in [5].

In nonstationary settings, we can also use a statistical approach. Since the parameters L,
λ and W are no longer defined, we regard the finite averages as estimators of their expected
values. Then we may rely on samples from multiple days to provide a basis for estimating
these expected values. Again we can estimate confidence intervals. Without stationarity, it is
important to consider bias. In [5, 6] we suggest refined estimators to reduce the bias.

Here is the essence of a typical application: We start with the observation of L(s), the
number of items in the system at time s, for 0 ≤ s ≤ t. From that sample path, we can
directly observe the arrivals (jumps up) and departures (jumps down). Hence, we can easily
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estimate the arrival rate λ and the average number in system L. However, based only on the
available information, we typically cannot determine the time each item spends in the system,
because the items need not depart in the same order that they arrived. Nevertheless, we can
estimate the average waiting time by W = L/λ, using our estimates of L and λ. We can also
estimate confidence intervals. See [5, 6] for further discussion.

References

[1] El-Taha, M., S. Stidham, Jr. 1999. Sample-Path Analysis of Queueing Systems, Kluwer,
Boston.

[2] Glynn, P. W., W. Whitt. 1986. A central-limit-theorem version of L = λW . Queueing

Systems 1 191–215.

[3] Hall, R.W. (1991), Queueing Methods for Services and Manufacturing, Englewood Cliffs,
NJ: Prentice Hall.

[4] Jewell, W. S. 1967. A simple proof of L = λW . Oper Res. 15 1109–1116.

[5] Kim, S.-H., W. Whitt. (2013) Statistical Analysis with Little’s Law. Operations Research

61 1030–1045.

[6] Kim, S.-H., W. Whitt. (2013a) Estimating Waiting Times with the Time-Varying Little’s
Law. Probability in the Engineering and Informational Sciences,
27 471–506

[7] Little, J. D. C. 1961. A proof of the queueing formula: L = λW . Oper. Res. 9 383–387.

[8] Little, J. D. C. 2011. Little’s law as viewed on its 50th anniversary. Oper. Res. 59 536–539.

[9] Mandelbaum, A. 2011. Little’s law over a finite horizon. Pages 17.1-17.6 in Teaching
notes on Little’s law in a course on Service Engineering, October 2011. Available at:
http://iew3.technion.ac.il/serveng/Lectures/lectures.html (Accessed August 3, 2012)

[10] Nozari, A. and W. Whitt. 1988. Estimating Average Production Intervals Using Inventory
Measurements: Little’s Law for Partially Observable Processes. Oper. Res. 36 (2) 208-223.

[11] Ross, S. M. (2010), Introduction to Probability Models, 10th edition, Academic Press.

[12] Rudin, W. (1976), Principles of Mathematical Analysis, 3rd edition, McGraw-Hill.

[13] Stidham, S., Jr. 1974. A last word on L = λW . Oper. Res. 22 417–421.

[14] Whitt, W. (1991), A review of L = λW . Queueing Systems 9 235–268.

[15] Whitt, W. (1992), Correction note on L = λW . Queueing Systems 12 431–432.

[16] Whitt, W. (2002), Preservation of Pointwise Convergence. Internet Supplement to

Stochastic-Process Limits

Available at: http://www.columbia.edu/∼ww2040/supplement.html

[17] Whitt, W. (2012), Extending the FCLT Version of L = λW . Operations Research Letters

40 230–234.

10


