1 Review of Probability

Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.)
of a random variable X is denoted by F(zx) = P(X < z), —o0 < & < 00, and if the random
variable is continuous then its probability density function is denoted by f(z) which is related
to F'(x) via

fr) = F)= R
Fa) = [ sy

The probability mass function (p.m.f.) of a discrete random variable is given by
p(k)=P(X =k), —00o < k < o0,

for integers k. o
1 — F(z) = P(X > z) is called the tail of X and is denoted by F(z) =1 — F(x). Whereas
F(x) increases to 1 as x — oo, and decreases to 0 as x — —oo, the tail F(x) decreases to 0 as
z — oo and increases to 1 as £ — —o0.
If a r.v. X has a certain distribution with c.d.f. F(z) = P(X < z), then we write, for
simplicity of expression,
X ~F. (1)

1.1 Moments and variance

The expected value of a r.v. is denote by E(X) and defined by

EX) = Z kp(k), discrete case,
k=—o00
E(X)= / xf(x)dz, continuous case.

— 00

E(X) is also referred to as the first moment or mean of X (or of its distribution).
Higher moments E(X™), n > 1 can be computed via

E(X") = Z E"p(k), discrete case,

k=—o00

o0
E(X™) :/ a" f(z)dx, continuous case,
o0

and more generally F(g(X)) for a function g = g(z) can be computed via

E(g(X)) = i g(k)p(k), discrete case,

k=—00
E(g(X)) = /OO g(z) f(z)dz, continuous case.

— 00



(Leting g(x) = 2™ yields moments for example.)
Finally, the variance of X is denoted by Var(X), defined by E{|X — E(X)|?}, and can be
computed via

Var(X) = E(X?) — E*(X), (2)
the second moment minus the square of the first moment.

For any r.v. X and any number a

E(aX) = aE(X), and Var(aX) = a*Var(X). (3)
For any two r.v.s. X and Y

E(X+Y)=EX)+EY). (4)

If X and Y are independent, then
Var(X+Y) =Var(X) + Var(Y). (5)

The above properties generalize in the obvious fashion to to any finite number of r.v.s.
In general (independent or not)

Var(X+Y)=Var(X)+V(Y)+2Cou(X,Y),

where

Cov(X,Y) ¥ E(XY) - E(X)E(Y).

When Cov(X,Y) > 0, X and Y are said to be positively correlated, whereas when
Cov(X,Y) < 0, X and Y are said to be negatively correlated. When Cov(X,Y) = 0, X
and Y are said to be uncorrelated, and in general this is weaker than independence of X and
Y: there are examples of uncorrelated r.v.s. that are not independent.

1.2 Moment generating functions
The moment generating function (mgf) of a r.v. X (or its distribution) is defined for all
s € (—00,00) by

M(s) € B(e™) (6)

= / e f(z)dx (: Z e**p(k) in the discrete r.v. case)

It is so called because it generates the moments of X by differentiation at s = 0:

M'(0) = E(X), (7)
and more generally
M™(0) = BE(X™), n> 1. (8)
The mgf uniquely determines a distribution in that no two distinct distributions can have
the same mgf. So knowing a mgf characterizes the distribution in question.
If X and Y are independent, then E(e*X*Y)) = E(esXesY) = E(e*X)E(e®Y), and we
conclude that the mgf of an independent sum is the product of the individual mgf’s.

Sometimes to stress the particular r.v. X, we write Mx(s). Then the above independence
property can be concisely expressed as

Mx v (s) = Mx(s)My(s), when X and Y are independent.



Remark 1.1 For a given distribution, M (s) = oo is possible for some values of s, but there is a
large useful class of distributions for which M (s) < oo for all s in a neighborhood of the origin,
that is, for s € (—e,€) with € > 0 suffiently small. Such distributions are referred to as light-
tailed because their tails can be shown to tend to zero quickly. There also exists distributions of
non-negative r.v.s. for which M(s) = oo, s > 0, and this can be so even if the distribution has
finite moments of all orders (see the lognormal distribution for example). A large class of such
distributions are referred to as heavy-tailed because their tails tend to zero slowly. An example
of a very heavy-tailed distribution is the Pareto distribution; for a > 0 a constant its tail is of
the form by F(x) =27% > 1, F(z) =1, z € [0,1).

Remark 1.2 For non-negative r.v.s. X, it is sometimes more common to use the Laplace trans-
form, L(s) = E(e~*X), s > 0, which is always finite, and then (—1)"£(™(0) = E(X"), n > 1.
For discrete r.v.s. X, it is sometimes more common to use

M(z)=E(zY)= ) 2"pk), |2/ <1

k=—00
for the mgf in which case moments can be generated via M'(1) = E(X), M"(1) = E((X)(X —
1)), MM (1) = B(X(X —1)--- (X —(n—1))), n> 1.
1.3 Examples of well-known distributions

Discrete case

1. (Bernoulli distribution with success probability p) With 0 < p < 1 a constant, X has
p.m.f. p(k) = P(X = k) given by

p(l) = p,
p(0) = 1-p,
p(k) = 0, otherwise.

Thus X only takes on the values 1 (success) or 0 (failure).

A simple computation yields

E(X) = p
Var(X) = p(l1-p)
M(s) = pe®+1—p.

Bernoulli r.v.s. arise naturally as the indicator function, X = I{A}, of an event A, where

def [ 1, if the event A occurs;
A} = {0, otherwise.

Then p = P(X = 1) = P(A) is the probability that the event A occurs. For example, if
you flip a coin once and let A = {coin lands heads}, then for X = I{A}, X = 1 if the
coin lands heads, and X = 0 if it lands tails. Because of this elementary and intuitive
coin-flipping example, a Bernoulli r.v. is sometimes referred to as a coin flip, where p is
the probability of landing heads.

Observing the outcome of a Bernoulli r.v. is sometimes called performing a Bernoulli
trial, or experiment.



Keeping in the spirit of (1) we denote a Bernoulli p r.v. by

X ~ Bern(p).

. (Binomial distribution with success probability p and n trials) If we consecutively perform
n independent Bernoulli p trials, Xi,...,X,,, then the total number of successes X =
X1+ -+ X, yields the Binomial r.v. with p.m.f.

(DpF(L—p)"k, i 0 <k <mn
0, otherwise.

p(k) = {

In our coin-flipping context, when consecutively flipping the coin exactly n times, p(k)
denotes the probability that exactly k of the n flips land heads (and hence exactly n — k
land tails).

A simple computation (utilizing X = X; + --- 4+ X,, and independence) yields

E(X) = np
Var(X) = np(l-p)
M(s) = (pe®+1—p)".

Keeping in the spirit of (1) we denote a binomial n, p r.v. by

X ~ bin(n,p).

. (geometric distribution with success probability p) The number of independent Bernoulli
p trials required until the first success yields the geometric r.v. with p.m.f.

1—p)Ft ifk>1;
k, — p( p 9 -
p(k) {0, otherwise.

In our coin-flipping context, when consecutively flipping the coin, p(k) denotes the prob-
ability that the k" flip is the first flip to land heads (all previous k — 1 flips land tails).
The tail of X has the nice form F(k) = P(X > k) = (1 —p)*, k > 0.

It can be shown that

B(X) = ;
Var(X) = (1p—2p)
_ pe’
M(s) T—(—pe

(In fact, computing M (s) is straightforward and can be used to generate the mean and
variance. )

Keeping in the spirit of (1) we denote a geometric p r.v. by

X ~ geom(p).



Remark 1.3 As a variation on the geometric, if we change X to denote the number of
failures before the first success, then (since the first flip might be a success yielding no
failures at all), the p.m.f. becomes

p(k) _ {p(l _p)kv it k> 0;

0, otherwise,

and p(0) = p. Then E(X) = (1 —p)p~! and Var(X) = (1 — p)p~2. Both of the above are
called the geometric distribution.

4. (Poisson distribution with mean (and variance) \) With A > 0 a constant, X has p.m.f.
S L
B =€ if £ > 0;
p(k) { 0, otherwise.

The Poisson distrubution has the interesting property that both its mean and variance
are identical E(X) = Var(X) = A. Its mgf is given by

M(s) = M),

The Poisson distribution arises as an approximation to the binomial (n,p) distribution
when n is large and p is small: Letting A = np,

k
ny g n—k A

Keeping in the spirit of (1) we denote a Poisson A r.v. by
X ~ Poiss()\).

Continuous case

1. (uniform distribution on (a,b)) With a and b constants, X has density function

fa) = { 7 ifx € (a,b)

0, otherwise,
c.d.f.
i ifx € (a,b);
F(:I:):{l7 if x > b;
0, if x <a,
and tail

B b=z if 2 € (a,b);
Fz)=40 if x > b;
1, if x <a.

A simple computation yields

B(X) = a—2|—b
—a)?
Var(X) = (b D )
BSb — esa
M(s) = m.



When a = 0 and b = 1, this is known as the uniform distribution over the unit interval,
and has density f(z) =1,z € (0,1), E(X) = 0.5, Var(X) = 1/12, M(s) = s~(e* — 1).

Keeping in the spirit of (1) we denote a uniform (a,b) r.v. by

X ~unif(a,b).
. (exponential distribution) With A > 0 a constant, X has density function

[ xe™ if x>0
f(x)_{o, it x <0,

_ A : .
F(:v):{l e T, %fmZO,
0, if x <0,

and tail \
- AT x>0
F — e ) 1 - )
(z) { 1,  ifz<o0,

A simple computation yields

BX) = 1
Var(X) = %
M(s) = )\is'

The exponential is famous for having the unique memoryless property,
PX—-y>z|X>y)=P(X>x), x>0, y>0,
in the sense that it is the unique distribution with this property.

(The geometric distribution satisfies a discrete version of this.)

Keeping in the spirit of (1) we denote an exponential A r.v. by

X ~ exp(A).

. (normal distribution with mean p and variance o?: N(u,0?)) The normal distribution is
extremely important in applications because of the Central Limit Theorem (CLT). With
—00 < j1 < oo (the mean) and 02 > 0 (the variance) constants, X has density function

1 —(z—p)?
flx) = e 27 | —00 << 00.
oV 2w

This is also called the Gaussian distribution. We denote it by N(u,c?). When p = 0 and
0? =1 it is called the standard or unit normal, denoted by N(0,1). If Z is N(0,1), then
X =0Z+pis N(u,0?). Similarly, if X is N(u,0?), then Z = (x — p)/o is N(0,1). Thus
the c.d.f. F(x) can be expressed in terms of the c.d.f. of a unit normal Z. We therefore
give the N(0,1) c.d.f. the special notation O(z);

2
O(z) = P(Z <z 2 dy,

== e
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and we see that

O(x) does not have a closed form (e.g., a nice formula that we can write down and plug
into); hence the importance of good numerical recipes for computing it, and tables of its
values.

The moment generating function of N (i, 0?) can be shown to be
M(S) _ 68“4_8202/2.
Keeping in the spirit of (1) we denote a N(u,0?) r.v. by

X ~ N(p,0?).

4. (lognormal distribution) If Y is N(u,0?), then X = ¥ is a non-negative r.v. having the
lognormal distribution; called so because its natural logarithm Y = In(X) yields a normal
I.V.

X has density

xo\ 2w

| —m@-w?
ﬂ@:{ e 22, ifz>0;
0, if z <0.

Observing that E(X) and E(X?) are simply the moment generating function of N(u,o?)
evaulated at s =1 and s = 2 respectively yields

J2
BE(X) = ety
Var(X) = 62”+”2(e“

F o).
(It can be shown that M(s) = oo for any s > 0.)

The lognormal distribution plays an important role in financial engineering since it is
frequently used to model stock prices. As with the normal distribution, the c.d.f. does
not have a closed form, but it can be computed from that of the normal via P(X < x) =
P(Y < 1In(z)) due to the relation X = ¥, and we conclude that F(x) = O((In(x) —pu) /o).
Thus computations for F'(z) are reduced to dealing with ©(xz), the c.d.f. of N(0,1).

Keeping in the spirit of (1) we denote a lognormal y, o2 r.v. by
X ~ lognorm(u, o?).
5. (Pareto distribution) With constant a > 0, X has density

—(1+a) if x> 1:
_ Jax , ifx>1;
ﬂ@_{m ifo<l,’



c.d.f. I
F(x):{l_x , ifz>1;

0, ifx <1,
and tail ;
. —a : > 1
Tl o o4 >l
(z) { 1,  ifz<l.
(In many applications, a is an integer.) A simple computation yields
EX) = Ll’ a > 1; (= oo otherwise)
a4 —
a a 2 .
Var(X) = 5 (ﬁ) , a>2; (= oo otherwise).

(It can be shown that M(s) = oo for any s > 0.)
It is easily seen that E(X"™) = oo for all n > a: The Pareto distribution has infinite

moments for high enough n. The Pareto distribution has the important feature that its

tail F'(x) = 7% tends to 0, as © — oo, slower than does any exponential tail e=** or

any lognormal tail. It is an example of a distribution with a very heavy or fat tail. Data
suggests that the distribution of stock prices resembles the Pareto more than it does the
widely used lognormal.

Keeping in the spirit of (1) we denote a Pareto a r.v. by
X ~ Pareto(a).
Remark 1.4 Variations on the Pareto distribution exist which allow the mass to start at

different locations; F(x) = (¢/(c + x))%, = > 0 with ¢ > 0 and a > 0 constants for
example.

1.4 Calculating expected vaues by integrating the tail

Given a continuous non-negative random variable X, we typically calculate, by definition, its
expected value (also called its mean) via

B(X) /0 Y f(@)da,

where f(z) is the density function of X. However, it is usually easier to calculate E(X) by
integrating the tail F'(x):

Proposition 1.1 (Computing F(X) via Integrating the Tail Method) If X is a non-
negative random variable, then E(X) can be computed via

E(X) = /0 " Fla)da. )

Proof : Letting
def [ 1, if X > x;
I(:r:)—I{X>a:}—{O’ X <z



denote the indicator function for the event {X > z},

X 00
X :/ dx :/ I(z)dz,
0 0

which is easily seen by graphing the function I(x) as a function of z (which yields a rectangle
with length X and height 1, thus with area X). Taking expectations we conclude that

E(X) = E{ /0  I(2)da).

Finally, interchanging the order of integral and expected value (allowed since everything
here is non-negative; formally this is an application of Fubini’s Theorem) and recalling that
E(I{B}) = P(B) for any event B, where here B = {X > z}, yields

B(X) = /OOO E(I(x))de = /OOO P(X > a)dr,

as was to be shown.

1.4.1 Examples
1. (Ezponential distribition:) F(z) = e~** which when integrated yields

0 1
E(X) :/0 e Mdr = X

T

Note that computing this expected value by integrating zf(z) = zle™
integration by parts.

would require

2. (Computing E(min{X,Y}) for independent X and Y :)

Consider two r.v.s. X and Y. Let Z min{X,Y} (the minimum value of X and Y/
Z=XitX<Y Z=YifY <X). Then P(Z > z) = P(X > 2,Y > z) because the
minimum of X and Y is greater than z if and only if both X and Y are greater than z. If we
also assume that X and Y are independent, then P(X > 2,Y > z) = P(X > z)P(Y > z2),
and so (when min{X,Y} is non-negative) we can compute E(Z) via

E(Z) = /OOO P(Z > 2)dz — /OOO P(X > 2)P(Y > 2)dz,

a very useful result. For example, suppose X ~ exp(1l) and Y ~ exp(2) are independent.
Then for Z = min{X,Y}, P(Z > z) = e *e”?* = ¢ 3% and we conclude that E(Z) =
Joo e 3 dz =1/3.

(In fact what we have shown here, more generally, is that the minimum of two independent

expontially distributed r.v.s. is itself expontially distributed with rate as the sum of the
individual rates.)

3. (Computing E{(X — k)*} :) For any number a, the positive part of a is defined by

at @ max{0,a} (the maximum value of 0 and a; a* = a if a > 0; 0 otherwise). For
fixed k > 0 and any random variable X, with c.d.f. F(z), let Y = (X — k)™, the positive
part of X —k. Then since Y is non-negative we can compute E(Y) by integrating its tail.



But for any x > 0, it holds that a® > =z if and only if a > =z, yielding (X — k)t > z if
and only if (X — k) > z; equivalently if and only if X > = + k. We thus conclude that

PY >xz)=P(X >z +k)=F(z+k) yielding

E(Y) = /OOO Fla+ k)de = /koo F(x)dz,

where we changed variables, u = x + k, to obtain the last integral.
For example suppose X ~ unif(0,1) and k = 0.5. Then
o0

E(X —0.5)% = / (1 — z)dz = 0.125
0.5

Application of E{(X — k)™}: Suppose that you own an option to buy a stock at price
K =2, at time T' = 6 (months from now). The stock price at time 7' = 6 will have value
X (random). You will exercise the option if and only if X > 2; and do nothing otherwise.
Then (X — 2)% is your profit at time T, and EF{(X — 2)*} your expected profit.

1.4.2 Computing higher moments

It can be shown more generally that the n' moment of X, E(X") = [° 2" f(z)dz, can be
computed as

oo
E(X"™) :/ nz" 'P(X > z)dx, n > 1, (10)
0
yielding the second moment of X when n = 2:

B(X?) = /OOO 20 P(X > z)dr. (11)

1.4.3 Discrete-time case

Integrating the tail method also is valid for non-negative discrete-time random variables; the
integral is replaced by a summation:

B(X) = f: P(X > k).
k=0

For example, if X has a geometric distribution, then
F(k) = (1 —p)*, k>0 yielding

via the sum of a geometric series.
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1.5 Strong Law of Large Numbers and the Central limit theorem (CLT)

A stochastic process is a collection of r.v.s. {X; : ¢t € T} with index set T. If ' = {0,1,2,...}
is the discrete set of integers, then we obtain a sequence of random variables Xg, X1, Xo, ...
denoted by {X,, : n > 0} (or just {X,}). In this case we refer to the value X,, as the state of
the process at time n. For example X,, might denote the stock price of a given stock at the
end of the n* day. If time n starts at n = 1, then we write {X,, : n > 1} and so on. If time is
continuous (meaning that the index set 7' = [0, 00)) then we have a continuous-time stochastic
process denoted by {X; : ¢t > 0}.

A very special (but important) case of a discrete-time stochastic process is when the r.v.s.
are independent and identically distributed (i.i.d.). In this case there are two classical and
fundamental results:

Theorem 1.1 (SLLN) If {X, : n > 1} are i.i.d. with finite mean E(X) = u, then w.p.1.,

1 n
fZXi—mu, n — o0.
iz

One of the practical consequences of the SLLN is that we can, for n large enough, use the
approximation

1 n
—ZXZ- ~ E(X),
nz’:l

when trying to determine an apriori unknown mean. The SLLN is fundamental in Monte Carlo
Simulation.

Theorem 1.2 (CLT) If{X, : n > 1} are i.i.d. with finite mean E(X) = p and finite non-zero
variance 0® = Var(X), then

1 n
Z def a\/ﬁ(zlei — np) = N(0,1), n — oo, in distribution;

limy, oo P(Zp <) = 0O(z), —00 < 2 < 0.
If 4 =0 and o2 = 1, then the CLT becomes

1 n
— > X; = N(0,1).
n

i=1

The CLT allows us to approximate sums of i.i.d. r.v.s. endowed with any c.d.f. F' (even if
unknown) by the c.d.f. of a normal, as long as the variance of F' is finite. The famous normal
approximation to the binomial distribution is but one example, for the binomial is the sum of
i.i.d. Bernoulli r.v.s., and thus the CLT applies.
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