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1 Communication classes and irreducibility for Markov chains

For a Markov chain with state space S, consider a pair of states (i, j). We say that j is reachable
from i, denoted by i → j, if there exists an integer n ≥ 0 such that Pn

ij > 0. This means that
starting in state i, there is a positive probability (but not necessarily equal to 1) that the chain
will be in state j at time n (that is, n steps later); P (Xn = j|X0 = i) > 0. If j is reachable
from i, and i is reachable from j, then the states i and j are said to communicate, denoted by
i←→ j. The relation defined by communication satisfies the following conditions:

1. All states communicate with themselves: P 0
ii = 1 > 0.

2. Symmetry: If i←→ j, then j ←→ i.

3. Transitivity: If i←→ k and k ←→ j, then i←→ j.

The above conditions imply that communication is an example of an equivalence relation,
meaning that it shares the properties with the more familiar equality relation “ = ”:

i = i. If i = j, then j = i. If i = k and k = j, then i = j.
Only condition 3 above needs some justification, so we now prove it for completeness:

Suppose there exists integers n, m such that Pn
ik > 0 and Pm

kj > 0. Letting l = n + m,
we conclude that P l

ij ≥ Pn
ikP

m
kj > 0 where we have formally used the Chapman-Kolmogorov

equations. The point is that the chain can go from i to j by first going from i to k (n steps)
and then (independent of the past) going from k to j (an additional m steps).

If we consider the rat in the open maze, we easily see that the set of states C1 = {1, 2, 3, 4}
all communicate with one another, but state 0 only communicates with itself (since it is an
absorbing state). Whereas state 0 is reachable from the other states, i→ 0, no other state can
be reached from state 0. We conclude that the state space S = {0, 1, 2, 3, 4} can be broken up
into two disjoint subsets, C1 = {1, 2, 3, 4} and C2 = {0} whose union equals S, and such that
each of these subsets has the property that all states within it communicate. Disjoint means
that their intersection contains no elements: C1 ∩ C2 = ∅.

A little thought reveals that this kind of disjoint breaking can be done with any Markov
chain:

Proposition 1.1 For each Markov chain, there exists a unique decomposition of the state space
S into a sequence of disjoint subsets C1, C2, . . .,

S = ∪∞i=1Ci,

in which each subset has the property that all states within it communicate. Each such subset
is called a communication class of the Markov chain.

If we now consider the rat in the closed maze, S = {1, 2, 3, 4}, then we see that there is only
one communication class C = {1, 2, 3, 4} = S: all states communicate. This is an example of
what is called an irreducible Markov chain.

A Markov chain for which there is only one communication class is called an irre-
ducible Markov chain.
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Examples

1. Simple random walk is irreducible. Here, S = {· · · − 1, 0, 1, · · ·}. But since 0 < p < 1,
we can always reach any state from any other state, doing so step-by-step, using the fact
that Pi,i+1 = p, Pi,i−1 = 1 − p. For example −4 → 2 since P 6

−4,2 ≥ p6 > 0, and 2 → −4
since P 6

2,−4 ≥ (1− p)6 > 0; thus −4←→ 2. In general Pn
i,j > 0 for n = |i− j|.

2. Random walk from the gambler’s ruin problem is not irreducible. Here, the random walk
is restricted to the finite state space {0, 1, . . . , N} and P00 = PNN = 1. C1 = {0}, C2 =
{1, . . . N − 1}, C3 = {N} are the communication classes.

3. Consider a Markov chain with S = {0, 1, 2, 3} and transition matrix given by

P =


1/2 1/2 0 0
1/2 1/2 0 0
1/3 1/6 1/6 1/3
0 0 0 1

 .

Notice how states 0, 1 keep to themselves in that whereas they communicate with each
other, no other state is reachable from them (together they form an absorbing set). Thus
C1 = {0, 1}. Whereas every state is reachable from state 2, getting to state 2 is not possible
from any other state; thus C2 = {2}. Finally, state 3 is absorbing and so C3 = {3}. This
example illustrates the general method of deducing communication classes by “staring”
at the transition matrix.

2 Positive Recurrence and Stationarity

2.1 Recurrence and transience

Let τii denote the return time to state i given X0 = i:

τii = min{n ≥ 1 : Xn = i|X0 = i}, τii
def= ∞, if Xn 6= i, n ≥ 1.

It represents the amount of time until the chain returns to state i given that it started in state
i. Note how never returning is allowed by defining τii = ∞, so a return occurs if and only if
τii <∞.

fi
def= P (τii < ∞) is thus the probability of ever returning to state i given that the chain

started in state i. A state i is called recurrent if fi = 1; transient if fi < 1. By the (strong)
Markov property, once the chain revisits state i, the future is independent of the past, and it is
as if the chain is starting all over again in state i for the first time: Each time state i is visited,
it will be revisited with the same probability fi independent of the past. In particular, if fi = 1,
then the chain will return to state i over and over again, an infinite number of times. That is
why the word recurrent is used. If state i is transient (fi < 1), then it will only be visited a
finite number of times (after which only the remaining states j 6= i can be visited by the chain).
Counting over all time, the total number of visits to state i, given that X0 = i, denoted by Ni,
therefore has a geometric distribution with “success” probability fi,

P (Ni = n) = fn−1
i (1− fi), n ≥ 1.

(We count the initial visit X0 = i as the first visit.)
The expected number of visits is given by E(Ni) = 1/(1− fi) and so we conclude that
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A state i is recurrent (fi = 1) if and only if E(Ni) =∞,

or equivalently

A state i is transient (fi < 1) if and only if E(Ni) <∞.

Since Ni has representation

Ni =
∞∑

n=0

I{Xn = i|X0 = i},

taking expectations yields

E(Ni) =
∞∑

n=0

Pn
i,i,

because E(I{Xn = i|X0 = i}) = P (Xn = i|X0 = i) = Pn
i,i.

We thus obtain

Proposition 2.1 A state i is recurrent if and only if

∞∑
n=0

Pn
i,i =∞,

transient otherwise.

States that are recurrent/transient all lie in the same communication class, and thus for
any given communication class C, all states i ∈ C are recurrent or transient together. This is
easily seen as follows: Suppose two state i and j communicate; choose an appropriate n so that
p = Pn

i,j > 0. Now if i is recurrent, then so must be j because every time i is visited there is
this same positive probability p (“success” probability) that j will be visited n steps later. But
i being recurrent means it will be visited over and over again, an infinite number of times, so
viewing this as a kind of Bernoulli trials experiment, we conclude that eventually there wil be
a success. Thus: if i and j communicate and i is recurrent, then so is j. Equivalenly if i and
j communicate and i is transient, then so is j.

In particular, an irreducible Markov chain must have all it states together be recurrent or
all its states together be transient. If all states are recurrent we say that the Markov chain is
recurrent; transient otherwise. The rat in the closed maze yields a recurrent Markov chain. The
rat in the open maze yields a Markov chain that is not irreducible; there are two communication
classes C1 = {1, 2, 3, 4}, C2 = {0}. C1 is transient, whereas C2 is recurrent.

Clearly if the state space is finite for a given Markov chain, then not all the states can be
transient (for otherwise after a finite number a steps (time) the chain would leave every state
never to return; where would it go?).

Thus we conclude that an irreducible Markov chain with a finite state space is recurrent:
all states are recurrent

Finally observe (from the argument that if two states communicate and one is recurrent
then so is the other) that for an irreducible recurrent chain, even if we start in some other state
X0 6= i, the chain will still visit state i an infinite number of times: For an irreducible recurrent
Markov chain, each state j will be visited over and over again (an infinite number of times)
regardless of the initial state X0 = i.

For example, if the rat in the closed maze starts off in cell 3, it will still return over and
over again to cell 1.
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2.2 Expected return time to a given state

A state j is called positive recurrent if the expected amount of time to return to state j given
that the chain started in state j has finite first moment:

E(τjj) <∞.

A positive recurrent state j is always recurrent: If E(τjj) <∞, then fj = P (τjj <∞) = 1,
but the converse is not true: a recurrent state need not be positive recurrent.

A recurrent state j for which E(τjj) =∞ is called null recurrent.
Positive recurrence is a communication class property: all states in a communication class

are all together positive recurrent, null recurrent or transient. In particular, for an irreducible
Markov chain, all states together must be positive recurrent, null recurrent or transient. If all
states in an irreducible Markov chain are positive recurrent, then we say that the Markov chain
is positive recurent. If all states in an irreducible Markov chain are null recurrent, then we say
that the Markov chain is null recurent.

In general τij
def= min{n ≥ 1 : Xn = j |X0 = i}, the time (after time 0) until reaching state

j given X0 = i, and it is easily seen and intuitive that if a chain is positive recurrent, then
E(τij) < ∞ for i 6= j also: the expected amount of time to reach state j given that the chain
started in some other state i has finite first moment.

2.3 Limiting or stationary distribution

When the limits exist, let πj denote the long run proportion of time that the chain spends in
state j:

πj = lim
n→∞

1
n

n∑
m=1

I{Xm = j} w.p.1. (1)

Including the initial condition X0 = i, this is more precisely stated as:

πj = lim
n→∞

1
n

n∑
m=1

I{Xm = j | X0 = i} w.p.1, for all initial states i. (2)

Taking expected values (recall that E(I{Xm = j}) = P (Xm = j)) yields

πj = lim
n→∞

1
n

n∑
m=1

P (Xm = j | X0 = i),

= lim
n→∞

1
n

n∑
m=1

Pm
ij , for all initial states i. (3)

For illustrative purposes, we assume for now that the state space S = IN = {0, 1, 2, . . .} or
some finite subset of IN.

If for each j ∈ S, πj exists with πj > 0, then π = (π0, π1, . . .) forms a probability distribution
on the state space S, and is called the limiting or stationary or steady-state distribution of the
Markov chain.

Recalling that Pm
ij is precisely the ijth component of the matrix Pm (P multiplied by itself

m times), we conclude that in matrix form (3) is expressed by

lim
n→∞

1
n

n∑
m=1

Pm =

π
π
...

 =

π0, π1, . . .
π0, π1, . . .

...

 (4)
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That is, when we average the m-step transition matrices, each row converges to the vector of
stationary probabilities π = (π0, π1, . . .). The ith row refers to the intial condition X0 = i in
(3), and for each such fixed row i, the jth element of the averages converges to πj .

A nice way of interpreting π: If you observe the state of the Markov chain at some random
time way out in the future, then πj is the probability that the state is j.

To see this: Let N (our random time) have a uniform distribution over the integers
{1, 2, . . . n} where n is large; P (N = m) = 1/n, m ∈ {1, 2, . . . n}. N is taken independent
of the chain. Now assume that X0 = i. Then by conditioning on N = m we obtain

P (XN = j) =
n∑

m=1

P (Xm = j|X0 = i)P (N = m)

=
1
n

n∑
m=1

Pm
i,j

≈ πj ,

where we used (3) for the last line.

2.4 Connection between E(τjj) and πj

The following is intuitive and very useful:

Proposition 2.2 If {Xn} is a positive recurrent Markov chain, then the stationary distribution
π exists and is given by

πj =
1

E(τjj)
> 0, for all states j.

The intuition: On average, the chain visits state j once every E(τjj) amount of time.
Proof :

First assume that X0 = j. If we let Yn denote the amount of time spent between the
(n − 1)th and nth visit to state j, then we visit state j for the nth time at time Y1 + · · · + Yn,
where Y1 = τjj . The idea here is to break up the evolution of the Markov chain into cycles
where a cycle begins every time the chain visits state j. Yn is the nth cycle-length. By the
Markov property, the chain starts over again and is independent of the past everytime it enters
state j (formally this follows by the Strong Markov Property). This means that the cycle lengths
{Yn : n ≥ 1} form an i.i.d sequence with common distribution the same as the first cycle length
τjj . In particular, E(Yn) = E(τjj) for all n ≥ 1.

Now observe that the number of visits to state j is precisely n visits at time Y1 + · · ·+ Yn,
and thus the long run proportion of visits to state j per unit time can be computed as

πj = lim
n→∞

1
n

n∑
k=1

I{Xk = j}

= lim
n→∞

n∑n
i=1 Yi

=
1

E(τjj)
, w.p.1,

where the last equality follows from the Strong Law of Large Numbers (SLLN). πj > 0
because E(τjj) <∞ by definition of positive recurrence.
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Finally, if X0 = i 6= j, then we can first wait until the chain enters state j (which it will
eventually, by recurrence), and then proceed with the above proof.

The above result is useful for computing E(τjj) when π has already been found: For example,
consider the rat in the closed off maze problem from HMWK 2. Given that the rat starts off
in cell 1, what is the expected number of steps until the rat returns to cell 1? The answer is
simply 1/π1. But how do we compute π? We consider that problem next.

2.5 Computing π: Main Theorem

Given a n−vector y = (y1, y2, . . . , yn) and a n×n matrix A, yA denotes mutiplication of y with
A yielding a n− vector. (y is dotted with each column of A, and n =∞ is allowed.) Example:
n = 4, y = (4, 6, 8, 2)

A =


0 1/2 1/2 0

1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0


yA = (6(1/2) + 8(1/2), 4(1/2) + 2(1/2), 4(1/2) + 2(1/2), 6(1/2) + 8(1/2)) = (7, 3, 3, 7).

Theorem 2.1 Suppose {Xn} is an irreducible Markov chain with transition matrix P . Then
{Xn} is positive recurrent if and only if there exists a (non-negative, summing to 1) solution,
π = (π0, π1, . . .), to the set of linear equations π = πP . In this case, π is precisely the stationary
distribution for the Markov chain and is unique.

For example consider the matrix

P =

(
0.5 0.5
0.4 0.6

)

which is clearly irreducible. View it as corresponding to the Markov chain for weather on each
day (0 for rain, 1 for no rain). For π = (π0, π1), the equations π = πP yields

π0 = 0.5π0 + 0.4π1, π1 = 0.5π0 + 0.6π1.

We can also utilize the “probability” condition that π0 +π1 = 1. Solving yields π0 = 4/9, π1 =
5/9. We conclude that this chain is positive recurrent with stationary distribution (4/9, 5/9):
The long run proportion of days that it rains is 4/9; the long run proportion of days that it
does not rain is 5/9. Furthermore, since πj = 1/E(τjj), we conclude that the expected number
of days until it rains again given that it rained today is 9/4.

The above theorem is important because if you have an irreducible MC, then: on the one
hand you can try to solve the set of equations: π = πP and

∑
n πn = 1. If you do solve them

for some π, then this solution π is unique and is the stationary distribution, and the chain is
positive recurrent.

On the other hand, if before solving, you have a candidate π for the stationary distribution
(perhaps by guessing), then you need only plug in the guess and verify that it satisfies π = πP .
If it does, then your guess π IS the the stationary distribution, and the chain IS positive
recurrent.
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Proof of Theorem 2.1

Here we prove one side of Theorem 2.1: Assume the chain is irreducible and positive recurrent.
Then we know that π exists (as defined in Equations (1), (3)) and can even be given by
πj = 1/E(τjj).

On the one hand, if we multiply (on the right) each side of Equation (4) by P , then we
obtain

lim
n→∞

1
n

n∑
m=1

Pm+1 =

π
π
...

P.

But on the other hand,

lim
n→∞

1
n

n∑
m=1

Pm+1 = lim
n→∞

1
n

n∑
m=1

Pm + lim
n→∞

1
n

Pn+1

=

π
π
...

+ lim
n→∞

1
n

Pn+1 (from (4))

=

π
π
...

 ,

because limn→∞
1
nPn+1 = 0 (since pn+1

ij ≤ 1 for all i, j).
Thus, we obtain π

π
...

 =

π
π
...

P,

yielding (from each row) π = πP .
Summarizing: If a Markov chain is positive recurrent, then the stationary distribution

π (non-negative, summing to 1) exists as defined in Equations (1), (3), is given by πj =
1/E(τjj), j ∈ S, and must satisfy π = πP . The converse also turns out to be true for
an irreducible Markov chain (proof omitted): For an irreducible Markov chain, if π = πP
has a non-negative, summing to 1 solution π, then the chain is positive recurrent with πj =
1/E(τjj), j ∈ S. (Uniqness of π follows since πj = 1/E(τjj).)

2.6 Finite state space case

When the state space of a Markov chain is finite, then the theory is even simpler:

Theorem 2.2 Every irreducible Markov chain with a finite state space is in fact positive re-
current and thus has a stationary distribution (unique probability solution to π = πP ).

Finite state space means, for example, that S = {0, 1, 2 . . . b} for some number b. This is a
very useful result. For example, it tells us that the rat in the maze Markov chain, when closed
off from the outside, is positive recurrent, and we need only solve the equations π = πP to
compute the stationary distribution.
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2.7 Stationarity of positive recurrent chains

The word “stationary” means “does not change with time”, and we now proceed to show why
that word is used to describe π.

For a given discrete probability distribution ν = (ν0, ν1, . . . , ), we use the notation X ∼ ν
to mean that X is a random variable with distribution ν: P (X = j) = νj , j ≥ 0.

Proposition 2.3 For a positive recurrent Markov chain with stationary distribution π, if X0 ∼
π, that is, if P (X0 = j) = πj , j ≥ 0, then in fact Xn ∼ π for all n ≥ 0, that is, P (Xn = j) =
πj , j ≥ 0.

In other words: By starting off the chain initially with its stationary distribution, the chain
remains having that distribution for ever after. This is what is meant by stationary, and why
π is called the stationary distribution for the chain.

Proof : Suppose that X0 ∼ π. Then by conditioning on {X0 = i}

P (X1 = j) =
∞∑
i=0

P (X1 = j|X0 = i)P (X0 = i)

=
∞∑
i=0

Pi,jπi

= πj ,

where the last equality follows from the fact that π must satisfy π = πP via Theorem 2.1. Thus
X1 ∼ π, so that P (X2 = j|X1 = i)P (X1 = i) = Pi,jπi, and we see that the above conditioning
argument now yields X2 ∼ π, and in general (by induction) Xn ∼ π, n ≥ 0.
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