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1. Introduction

We now turn to continuous-time Markov chains (CTMC’s), which are a natural
sequel to the study of discrete-time Markov chains (DTMC’s), the Poisson process and the
exponential distribution, because CTMC’s combine DTMC’s with the Poisson process and
the exponential distribution. Most properties of CTMC’s follow directly from results about
DTMC’s, the Poisson process and the exponential distribution. .

Like DTMC’s, CTMC’s are Markov processes that have a discrete state space, which we
can take to be the positive integers. Just as with DTMC’s, we will focus on the special case
of a finite state space, but the theory and methods extend to infinite discrete state spaces,
provided we impose additional regularity conditions. We will usually assume that the state
space is the set {0,1,2,...,n} containing the first n 4+ 1 nonnegative integers for some positive
integer n, but any finite set can be so labelled. Just as with DTMC’s, a finite state space
allows us to apply square (finite) matrices and elementary linear algebra. The main difference
is that we now consider continuous time. We consider a stochastic process {X(t) : t > 0},
where time ¢ is understood to be any nonnegative real number. The random variable X () is
the state occupied by the CTMC at time t.

As we will explain in Section 3, a CTMC can be viewed as a DTMC with altered transition
times. Instead of unit times between successive transitions, the times between successive tran-
sitions are allowed to be independent exponential random variables with means that depend
only on the state from which the transition is being made. Alternatively, as we explain in Sub-
section 3.4, a CTMC can be viewed as a DTMC (a different DTMC) in which the transition
times occur according to a Poisson process. In fact, we already have considered a CTMC with
just this property (but infinite state space), because the Poisson process itself is a CTMC.
For that CTMC, the associated DTMC starts in state 0 and has only unit upward transitions,
moving from state ¢ to state ¢ + 1 with probability 1 for all . A CTMC generalizes a Poisson
process by allowing other transitions. For a Poisson process, X (t) goes to infinity as t — oc.
We will be interested in CTMC’s that have proper limiting distributions as ¢t — oc.

Here is how the chapter is organized: We start in Section 2 by discussing transition prob-
abilities and the way they can be used to specify the finite-dimensional distributions, which
in turn specify the probability law of the CTMC. Then in Section 3 we describe four different
ways to construct a CTMC model, giving concrete examples. In Section 4 we indicate how to
calculate the limiting probabilities for an irreducible CTMC. There are different ways, with
the one that is most convenient usually depending on the modelling approach. In Section 5
we discuss the special case of a birth-and-death process, in which the only possible transitions
are up one or down one to a neighboring state. The number of customers in a queue (waiting
line) can often be modelled as a birth-and-death process. The special structure of a birth-and-
death process makes the limiting probabilities even easier to compute. Finally, in Section 6
we discuss reverse-time CTMC’s and reversibility. We apply those notions to start analyzing
some networks of queues.

2. Transition Probabilities and Finite-Dimensional Distributions

Just as with discrete time, a continuous-time stochastic process is a Markov process if
the conditional probability of a future event given the present state and additional information
about past states depends only on the present state. A CTMC is a continuous-time Markov
process with a discrete state space, which can be taken to be a subset of the nonnegative
integers. That is, a stochastic process {X () : t > 0} (with an integer state space) is a CTMC



if
P(X(s+1t)=jlX(s) =i, X(r) =ip,r € A, C[0,5)) = P(X(s +1) = j|X(s) =i) (2.1

for all states i and j and for all times s > 0 and ¢ > 0. On the left in (2.1), we are conditioning
on the values of X (r) for all times 7 in a subset of “past” times Ay in addition to the value at
the “present” time s. In general, Ag could be an arbitrary subset of [0,s) = {r: 0 < r < s},
but to have the conditional probability in (2.1) well defined by elementary methods, we assume
that Ay is a finite subset.

The conditional probabilities P(X (s+t) = j| X (s) = i) are called the transition probabil-
ities. We will consider the special case of stationary transition probabilities (sometimes
referred to as homogeneous transition probabilities), occurring when

P(X(s+ 1) = jlX(s) = 1) = P(X(t) = j|X(0) =) = Pi(t) (2.2)

for all states ¢ and j and for all times s > 0 and t > 0; the independence of s characterizes the
stationarity. We assume stationary transition probabilities unless stipulated otherwise.

Thus a key concept for CTMC’s is the notion of transition probabilities. However, the
transition probabilities of CTMC’s are not so easy to work with. As a consequence, we usually
do not directly use transition probabilities when we construct and analyze CTMC models.
First, when we construct a CTMC model, we invariably do not directly define the transition
probabilities (although their structure will be implied by what we do define). Second, after
constructing a CTMC model, we usually do not calculate the transition probabilities. Instead,
we usually calculate the associated limiting probabilities, denoted by «;:

a; = lim P ;(t) = lim P(X(t) = j|X(0) =), (2.3)
t—o0 t—o0
because they are much easier to calculate, and because they usually serve as excellent approx-
imations for the exact transition probabilities P; j(t) when t is large. (We use the notation o
for the limiting probability vector of the CTMC, instead of 7, because we reserve 7 for the
limiting probability vector for an associated DTMC; see Section 3.1 and Theorem 4.2.)

Consistent with what we have written in (2.3), under regularity conditions, the limiting
probabilities a; will not to depend on the initial state. Indeed, that will be true provided the
CTMC is irreducible, which means (just as in discrete time) that it is possible with some
positive probability to get from any state to any other state at some finite time, which may
involve multiple transitions. (Just as in discrete time, for irreducibility, we do not require
that we reach these other states in a single transition.) We assume irreducible CTMC’s unless
stipulated otherwise.

This chapter is largely about constructing CTMC models and calculating the limiting
probability vector @ = (g, aq,...,a5). As with DTMC’s, we will also want to apply the
limiting probability vector a to answer a variety of related questions of interest. But, to
repeat, neither constructing the CTMC model nor calculating the limiting probability vector
a will directly involve the transition probabilities. Nevertheless, the transition probabilities
are very important for understanding CTMC'’s.

Just as in discrete time, the evolution of the transition probabilities over time is described
by the Chapman-Kolmogorov equations, but they take a different form in continuous time. In
formula (2.4) below, we consider a sum over all possible states at some intermediate time. In
doing so, we simply write a sum over integers. When we do that, we understand the sum to
be over all possible states.



Lemma 2.1. (Chapman-Kolmogorov equations) For all s > 0 and t > 0,

1] SJFt Z-sz ij : (24)

Proof. We can compute P; j(s + t) by considering all possible places the chain could be at
time s. We then condition and and uncondition, invoking the Markov property to simplify the
conditioning; i.e.,

Pii(s+t) = P(X(s+t):j\X(O):i)
= ZP (s+1t) =4, X(s) = k|X(0) =)

= ZP (s) = k|X(0) = i)P(X (s +t) = j| X (s) = k, X(0) = )
= ZP(X(S) =k|X(0) =0)P(X(s+t)=j|X(s) =k) (Markov property)
= Z P; 1(s)Py j(t) (stationary transition probabilities) . m

Using matrix notation, we write P(t) for the square matrix of transition probabilities
(P;;(t)), and call it the transition function. In matrix notation, the Chapman-Kolmogorov
equations reduce to a simple relation among the transition functions involving matrix mul-
tiplication:

P(s+t) = P(s)P(t) (2.5)

forall s > 0 and ¢t > 0. It is important to recognize that (2.5) means (2.4). From the perspective
of abstract algebra, equation (2.5) says that the transition function has a semi-group property,
where the single operation is matrix multiplication. (It is not a group because an inverse is
missing.)

A CTMC is well specified if we specify: (1) its initial probability distribution - P(X (0) = i)
for all states 7 - and (2) its transition probabilities - P; j(t) for all states ¢ and j and positive
times ¢t. First, we can use these two elements to compute the distribution of X (¢) for each ¢,
namely,

P(X ZP )Pij(t) . (2.6)

However, in general, we want to do more. We want to know about the joint distributions in
order to capture the dependence structure. Recall that the probability law of a stochas-
tic process is understood to be the set of all its finite-dimensional distributions. A finite-
dimensional distribution is

P(X(t1) = j1, X(t2) = jo, - - -, X (tk) = J) (2.7)

for states j; and times ¢; satisfying 0 < ¢t; < to < --- < tg. The probability law is specified
by all these finite-dimensional distributions, considering all positive integers k, and all sets
of k states and k ordered times. It is important that we can express any finite-dimensional
distribution in terms of the initial distribution and the transition probabilities. For example,
assuming that ¢; > 0, we have

P(X(t1) :jbX(tZ) = jJo,..., X(tx) = jr)
- ZP = Jo ijjl (tl)leij (t2 - tl) X X f)jkflvjk (tk - tk—l) . (2'8)



In summary, equation (2.8) shows that we succeed in specifying the full probability law
of the DTMC, as well as all the marginal distributions via (2.6), by speciying the initial
probability distribution - P(X (0) = 4) for all 4 - and the transition probabilities P; ;(t) for all
t, i and j or, equivalently, the transition function P(t). However, when we construct CTMC
models, as we do next, we do not directly specify the transition probabilities. We will see that,
at least in principle, the transition probabilities can be constructed from what we do specify,
but we usually do not carry out that step.

3. Modelling

We now turn to modelling: constructing a CTMC model. We saw that a DTMC model
is specified by simply specifying its one-step transition matrix P and the initial probability
distribution. Unfortunately, the situation is more complicated in continuous time.

In this section we will describe four different approaches to constructing a CTMC model.
With each approach, we will need to specify the initial distribution, so we are focusing on
specifying the model beyond the initial distribution. The four approaches are equivalent: You
get to the same result from each and you can get to each from any of the others. Even though
these four approaches are redundant, they are useful because they together give a different
more comprehensive view of a CTMC. We see different things from different perspectives,
much like the Indian fable about the blind men and the elephant, recaptured in the poem by
John Godfrey Saxe (1816-1887):

The Blind Men and the Elephant

It was six men of Indostan

To learning much inclined,

Who went to see the Elephant
(Though all of them were blind),
That each by observation

Might satisfy his mind.

The First approached the Elephant,
And happening to fall

Against his broad and sturdy side,
At once began to bawl:

“God bless me! but the Elephant

Is very like a wall!”

The Second, feeling of the tusk,
Cried, “Ho! what have we here

So very round and smooth and sharp?
To me tis mighty clear

This wonder of an Elephant

Is very like a spear!”

The Third approached the animal,
And happening to take
The squirming trunk within his hands,



Thus boldly up and spake:
“I see,” quoth he, “the Elephant
Is very like a snake!”

The Fourth reached out an eager hand,
And felt about the knee.

“What most this wondrous beast is like
Is mighty plain,” quoth he;

“ Tis clear enough the Elephant

Is very like a tree!”

The Fifth, who chanced to touch the ear,
Said: “Een the blindest man

Can tell what this resembles most;

Deny the fact who can

This marvel of an Elephant

Is very like a fan!”

The Sixth no sooner had begun
About the beast to grope,

Than, seizing on the swinging tail
That fell within his scope,

“I see,” quoth he, “the Elephant
Is very like a rope!”

And so these men of Indostan
Disputed loud and long,

FEach in his own opinion

Exceeding stiff and strong,

Though each was partly in the right,
And all were in the wrong!

For some applications, one modelling approach may be more natural than the others. Or
one modelling approach may be more convenient for analyzing the model.

3.1. A DTMC with Exponential Transition Times

In order to construct a CTMC model, it is natural to build on our knowledge of DTMC’s.
So we first consider a way to exploit DTMC’s in our construction of the CTMC model. To
do so in the strongest way, we start with a DTMC having a transition matrix P, and then
modify the way the transitions occur. Instead of having each transition take unit time, now
we assume that each transition takes a random time. In particular, we assume that the time
required to make a transition from state ¢ has an exponential distribution with rate v;, and
thus mean 1/v;, independent of the history before reaching state i.

This modelling approach is convenient for simulating the CTMC; we can recursively gen-
erate successive transitions. This modelling approach also avoids technical complications that
arise in the conventional transition-rate approach, to be introduced in the next subsection.



This modelling approach is also appealing because many applications are naturally expressed
in this way.

Example 3.1. (Pooh Bear and the Three Honey Trees) A bear of little brain named
Pooh is fond of honey. Bees producing honey are located in three trees: tree A, tree B and
tree C. Tending to be somewhat forgetful, Pooh goes back and forth among these three honey
trees randomly (in a Markovian manner) as follows: From A, Pooh goes next to B or C
with probability 1/2 each; from B, Pooh goes next to A with probability 3/4, and to C with
probability 1/4; from C, Pooh always goes next to A. Pooh stays a random time at each
tree. (Assume that the travel times can be ignored.) Pooh stays at each tree an exponential
length of time, with the mean being 5 hours at tree A or B, but with mean 4 hours at tree C.
Construct a CTMC enabling you to find the limiting proportion of time that Pooh spends at
each honey tree.

Note that this problem is formulated directly in terms of the DTMC, describing the random
motion at successive transitions, so it is natural to use this initial modelling approach. Here
the transition matrix for the DTMC is

A [0 1/2 1/2
P=B | 3/4 0 1/4
c\1 0 0

In the displayed transition matrix P, we have only labelled the rows. The columns are assumed
to be labelled in the same order.

As specified above, the exponential times spent at the three trees have means 1/vy =
1/vp = 5 hours and 1/vc = 4 hours. In the Section 4 we will see how we can calculate the
limiting probabilities for this CTMC and answer the question about the long-run proportion
of time that Pooh spends at each tree. =

With this initial modelling approach, it is natural to assume, as was the case in Example
3.1, that there are no one-step transitions in the DTMC from any state immediately back to
itself, but it is not necessary to make that assumption. We get a CTMC from a DTMC and
exponential transition times without making that assumption.

However, to help achieve a simple relation between the first two modelling approaches, we
make that assumption here: We assume that there are no one-step transitions from
any state to itself in the DTMC,; i.e., we assume that P;; = 0 for all . However, we
emphasize that this assumption is not critical, as we will explain after we introduce the third
modelling approach. Indeed, we will want to allow transitions from a state immediately to itself
in the fourth - uniformization - modelling approach. That is a crucial part of that modelling
approach.

In closing this subsection, we remark that this first modelling approach corresponds to
treating the CTMC as a special case of a semi-Markov process (SMP). An SMP isa DTMC
with independent random transition times, but it allows the distributions of the intervals
between transitions to be non-exponential; see Section 77.

3.2. Transition Rates and ODE’s

A second modelling approach is based on representing the transition probabilities as the
solution of a system of ordinary differential equations, which allows us to apply well-established
modelling techniques from the theory of differential equations in a deterministic setting; e.g.,
see Simmons (1991). With this second modelling approach, we directly specify transition rates.



We proceed with that idea in mind, but without assuming knowledge about differential
equations. We focus on the transition probabilities of the CTMC, even though they have
not yet been specified. With the transition probabilities in mind, we assume that there are
well-defined derivatives (from above or from the right) of the transition probabilities at 0. We
assume these derivatives exist, and call them transition rates.

But first we must define zero-time transition probabilities, which we do in the obvious
way: We let P(0) = I, where [ is the identity matrix; i.e., we set P;;(0) = 1 for all ¢ and we
set P; j(0) = 0 whenever ¢ # j. We are just assuming that you cannot go anywhere in zero
time.

We then let the transition rate from state i to state j be defined in terms of the derivatives:

Qij = Pz‘/,j(0+) = dpzl’i(t)!tzw . (3.1)
In (3.1) 0+ appears to denote the right derivative at 0 because P; ;(t) is not defined for ¢t < 0.

This approach is used in most treatments of CTMC’s, but without mentioning derivatives

or right-derivatives. Instead, it is common to assume that

P;j(h) =Qijh+o(h) as h |0 if j#i (3.2)
and
P;i(h) —1=Qih+o(h) as h]O, (3.3)

where o(h) is understood to be a quantity which is asymptotically negligible as h | 0 after
dividing by h. (Formally, f(h) = o(h) as h | 0if f(h)/h — 0as h | 0.)

For a finite state space, which we have assumed, and for infinite state spaces under extra
regularity conditions, we will have

—Qii = Z Qi (3.4)
JiFi
because the transition probabilities P; ;(t) sum over j to 1. Moreover, we have

—Qi; =v; forall 7, (3.5)

because we have assumed that P;; = 0 in the first modelling approach.
In other words, these two assumptions mean that

i P () = £i,5(0)
h|0 h

=Q;; forall ¢ and j, (3.6)

which is just what is meant by (3.1).

In summary, we first assumed that transition probabilities are well defined, at least for zero
time and small positive time intervals, and then assume that they are differentiable from the
right at 0. We remark that it is possible to weaken that assumption, and only assume that the
transition probabilities are continuous at 0: P(h) — P(0) =1 as h | 0. Then it is possible to
prove that the derivatives exist; see Sections II.1 and II.2 of Chung (1967).

Having defined the transition rates in terms of the assumed behavior of the transition
probabilities in a very short (asymptotically negligible) interval of time, we can specify the
CTMC model by specifying these transition rates; i.e., we specify the transition-rate matrix @,
having elements @); j. (But we do not first fully define the transition probabilities themselves!)
Thus, just as we specify a DTMC model via a matrix P, we can specify a CTMC model via
the transition-rate matrix Q.



When specifying the transition-rate matrix @, it suffices to specify the off-diagonal elements
Qi j for i # j, because the diagonal elements Q); ; are always defined by (3.4). The off-diagonal
elements are always nonnegative, whereas the diagonal elements are always negative. Each
row sum of () is zero.

Even though this modelling approach for CTMC’s is similar to what we did for DTMC’s,
it is more complicated, because the rate matrix ) is harder to interpret than the one-step
transition matrix P. (The discussion above is intended to help interpretation.) In fact, this
approach to CTMC modelling is perhaps best related to modelling with ordinary differential
equations, as mentioned at the beginning of this subsection.

To construct the transition probabilities P; j(t) from the transition rates Q; ; = Pi” j(0+), we
apply the Chapman-Kolmogorov equations in Lemma 2.1 in order to show that the transition
probabilities satisfy two systems of ordinary differential equations (ODE’s) generated
by the transition rates. In matrix notation, these will be simple first-order linear ODE’s.

Theorem 3.1. (Kolmogorov forward and backward ODE’s) The transition probabilities
satisfy both the Kolmogorov forward differential equations

Pz-’yj(t):ZP@k(t)Qk,j forall ¢ and j, (3.7)
k

which in matriz notation is the matrizx ODE
P'(t) = P()Q , (3.8)
and the Kolmogorov backward differential equations

PLi(t) =" QixPiy(t) forall i and j, (3.9)
k

which in matriz notation is the matrizc ODE

P'(t) = QP(1) , (3.10)

Proof. We start with the forward equation, using matrix notation. We apply the Chapman-
Kolmogorov equations in Lemma 2.1 to write

P(t+h) = P(t)P(h)

and then do an asymptotic analysis as h | 0. (This is tantamount to doing a careful asymptotic
analysis of what happens in a small interval after time ¢.) We subtract P(t) from both sides
and divide by h, to get
P(t+ h) — P(t) P(h)—1
h h ’
where [ is the identity matrix. Recalling that I = P(0), we can let h | 0 to get the desired
result (3.8). To get the backward equation (3.10), we start with

— P(t)

P(t+h) = P(h)P(t)

and reason in the same way. (This is tantamount to doing a careful asymptotic analysis of
what happens in a small interval after time 0, and then applying P(t) thereafter.) =

To help remember which ODE is forward and which is backwards, note that P(t)Q
appearing on the righthand side of the forward ODE is in alphabetic order, whereas QP(t)



appearing on the righthand side of the backward ODE is in reverse (backward) alphabetic
order.

With a finite state space, both ODE’s are always well defined. With an infinite state space,
there can be technical problems, because there could be infinitely many transitions in finite
time. With an infinite state space, the forward ODE can be more problematic, because it
presumes the process got to time ¢ before doing the asymptotic analysis. Here we assume a
finite state space, so we do not encounter those pathologies. Under regularity conditions, those
pathologies will not occur with infinite state spaces either.

To obtain the transition function P(¢) from the transition-rate matrix ), we can solve one
of these ODE’s. In preparation, we review the simple one-dimensional story. Suppose that we
have an ODE f'(t) = cf(t), where f is understood to be a differentiable real-valued function
f with known initial value f(0). If we divide both sides by f(t), we get f'(¢)/f(t) = ¢. Since
f/(t)/f(t) is the derivative of log f(t), we can integrate to get

log f(t) —log f(0) =ct or f(t)=f(0)e”, t>0.

Thus we see that f must be an exponential function.

Closely paralleling the real-valued case, the matrix ODE’s in (3.8) and (3.10) have an
exponential solution, but now a matrix-exponential solution. (Since P(0) = I, the initial
condition plays no role, just as above when f(0) = 1.) In particular, as a consequence of
Theorem 3.1, we have the following corollary.

Theorem 3.2. (matrix exponential representation) The transition function can be ex-
pressed as a matriz-exponential function of the rate matriz Q, i.e.,

=@ = Z Qntn (3.11)

This matriz exponential is the unique solution to the two ODE’s with initial condition P(0) = 1.

Proof. If we verify or assume that we can interchange summation and differentiation in
(3.11), we can check that the displayed matrix exponential satisfies the two ODE’s:

d o Qntn B o d Qntn Qntn 1 Q t ot
altz_;J nl _Oﬁ n! _Z n! _QZ = Qe

n=0

We give a full demonstration at the end of Subsection 3.4. =

However, in general the transition function P(t) is not elementary to compute via (3.11);
see Moler and Van Loan (2003). Indeed, one of the ways to evaluate the matrix-exponential
function displayed in (3.11) is to numerically solve one of the ODE’s as expressed in (3.8) or
(3.10).

We now illustrate this second modelling approach with an example.

Example 3.2. (Copier Breakdown and Repair) Consider two copier machines that are
maintained by a single repairman. Machine ¢ functions for an exponentially distributed amount
of time with mean 1/;, and thus rate +;, before it breaks down. The repair times for copier
i are exponential with mean 1/4;, and thus rate f3;, but the repairman can only work on one
machine at a time. Assume that the machines are repaired in the order in which they fail.
Suppose that we wish to construct a CTMC model of this system, with the goal of finding the



long-run proportions of time that each copier is working and the repairman is busy. How can
we proceed?

An initial question is: What should be the state space? Can we use 4 states, letting the
states correspond to the subsets of failed copiers? Unfortunately, the answer is “no,” because
in order to have the Markov property we need to know which copier failed first when both
copiers are down. However, we can use 5 states with the states being: 0 for no copiers failed, 1
for copier 1 is failed (and copier 2 is working), 2 for copier 2 is failed (and copier 1 is working),
(1,2) for both copiers down (failed) with copier 1 having failed first and being repaired, and
(2,1) for both copiers down with copier 2 having failed first and being repaired. (Of course,
these states could be relabelled 0, 1, 2, 3 and 4, but we do not do that.)

From the problem specification, it is natural to work with transition rates, where these
transition rates are obtained directly from the originally-specified failure rates and repair rates
(the rates of the exponential random variables). In Figure 1 we display a rate diagram
showing the possible transitions with these 5 states together with the appropriate rates. It can
be helpful to construct such rate diagrams as part of the modelling process.

Rate Diagram

7/]. = rate copier j fails, ,Bj = rate copier jrepaired

Figure 1: A rate diagram showing the transition rates among the 5 states in Example 3.2,
involving copier breakdown and repair.

From Figure 1, we see that there are 8 possible transitions. The 8 possible transitions
should clearly have transition rates

Qo1 = 71,Q0,2 = 72,Q1,0 = 51, Ql,(1,2) =2, Q2,0 = B, QQ,(Q,I) =71, Q(1,2),2 = [, Q(2,1),1 = [ .

10



In other words, the rate matrix should be

0 —(71+72) M V2 0 0
1 B1 —(72 + B1) 0 v 0
Q= 2 B2 0 —(m+pB2) 0 m
(1,2) 0 0 51 —pf1 0
(2,1) 0 Ba 0 0 —f

In Section 4, we will compute the limiting probability distribution of this CTMC and answer
the questions posed above. =

3.3. Competing Clocks with Exponential Timers

We now present a third modelling approach, which is an appealing constructive alternative
to the second modelling approach based on rates of unknown transition functions. This third
modelling approach is even more natural for Example 3.2. This third approach also helps link
the first two modelling approaches.

With this third modelling approach, movement from state to state is determined by “com-
peting” clocks with timers that go off at random, exponentially-distributed, times. For each
state 7, there is a clock associated with each state j the process could possibly move to in a
single transition from state i. Let C; be the set of states that the CTMC can possibly move
to from state 7 in a single transition. Equivalently, C; is the set of active clocks in state 1.
(We here assume that the process does not move from state ¢ immediately back to state i.)

Each time the CTMC moves to state ¢, clocks with timers are set or reset, if necessary
to go off at random times T; ; for each j € C;. Each clock has an exponential timer; i.e., the
random time T; ; is given an exponential distribution with (positive finite) rate @; ; and thus
mean 1/Q; ; (depending on ¢ and j). Moreover, we assume that these newly set times T; ; are
mutually independent and independent of the history of the CTMC prior to that transition
time. By the lack-of-memory property of the exponential distribution, resetting running timers
is equivalent (leaves the probability law of the stochastic process unchanged) to not resetting
the times, and letting the timers continue to run.

Example 3.3. (Copier Breakdown and Repair Revisited) At this point we should re-
consider Example 3.2 and observe that it is even more natural to define the CTMC through
the proposed clocks with random timers. The random times triggering transitions are the
exponential times to failure and times to repair specified in the original problem formulation.
However, there is a difference: In the actual system, those random times do not get reset at
each transition epoch. But, because of the lack-of-memory property of the exponential dis-
tribution, a timer that is still going can be reset at any time, including one of these random
transition times, without changing the distribution of the remaining time. Thus the clocks
with random timers does produce a valid representation of the desired CTMC model. =

We now discuss the implications of the model specification in terms of exponential timers.
As a consequence of these probabilistic assumptions, with probability 1, no two timers ever
go off at the same time. (Since the exponential distribution is a continuous distribution, the
probability of any single possible value is 0.) Let T; be the time that the first timer goes off in
state ¢ and let IV; be the index j of the random timer that the first goes off; i.e.,

T, = min {73} (3.12)
J

and
N;=j suchthat T;,=1T;. (3.13)

11



(The index j yielding the minimum is often called the argmin.) We then let the let the process
move from state i next to state NV; after an elapsed time of T;, and we repeat the process,
starting from the new state N;.

To understand the implications of these exponential clocks, recall basic properties of the
exponential distribution. Recall that the minimum of several independent exponential
random variables is again an exponential random variable with a rate equal to the sum of
the rates. Hence, T; has an exponential distribution, i.e.,

P(T;<t)y=1-¢€e"" t>0, (3.14)
where
vi=—Qi; = Z Qij (3.15)
JyF
as in (3.4) and (3.5). (Again we use the assumption that P;; = 0 in the first modelling
approach.)

Moreover, recall that, when considering several independent exponential random variables,
each exponential random variable is the exponential random variable yielding the min-
imum with a probability proportional to its rate, so that

Qij _Qij

P(N; =j) = or j#i. (3.16)

a Dk eti Qik Vi

Moreover, as discussed before in relation to the exponential distribution, the random variables
T; and N; are independent random variables:

Qi

Vi

P(T; <t,N; = j) = P(T; < t)P(N; = j) = (1 — e ") < ) forall ¢ and j.

After each transition, new timers are set, with the distribution of T; ; being the same at
each transition to state 7. So new timer values are set only at transition epochs. However, by
the lack-of-memory property of the exponential distribution, the distribution of the remaining
times T; ; and the associated random variables T; and N; would be the same any time we
looked at the process in state 1.

The analysis we have just done translates this clock formulation directly into a DTMC
with exponential transition times, as in our first modelling approach in Subsection 3.1: The
one-step transition matrix P of the DTMC is

Qi _Qid gy, (3.17)

P,;,=P(N;=j) =
v ( ’ J) Zk,k;ﬁi Qi,k v;

with P;; = 0 for all 4, as specified in (3.16), while the rate v; of the exponential holding time
in state ¢ is specified in (3.15).

Moreover, it is easy to see how to define transition rates as required for the second modelling
approach. We just let Q);; be the rate of the exponential timer 7; ;. We have chosen the
notation to make these associations obvious. Moreover, we can use the exponential timers
to prove that the transition probabilities of the CTMC are well defined and do indeed have
derivatives at the origin.

The construction here makes it clear how to relate the first two modelling approaches.
Given the rate matrix @), we define the one-step transition matrix P of the DTMC by (3.17)
and the rate ; of the exponential transition time in state ¢ by (3.15). That procedure gives us
an underlying DTMC P with ]5” = 0 for all 4.

12



These equations also tell us how to go the other way: Given (P,v), we let

Qij =viFP;; for j#i and Q;; = — Z Qij =v; forall . (3.18)
JJ#i

From this analysis, we see that the CTMC is uniquely specified by the rate matrix @Q; i.e.,
two different @@ matrices produce two different CTMC’s (two different probability laws, i.e.,
two different f.d.d.’s). That property also holds for the first modelling approach, provided that
we assume that P;; = 0 for all <. Otherwise, the same CTMC can be represented by different
pairs (P,v). There is only one if we require, as we have done, that there be no transitions from
any state immediately back to itself.

We can also use this third modelling approach to show that the probability law of the CTMC
is unaltered if there are initially one-step transitions from any state to itself. If we are initially
given one-step transitions from any state to itself, we can start by removing them, but without
altering the probability law of the original CTMC. If we remove a DTMC transition from state
1 to itself, we must compensate by increasing the transition probabilities to other states and
increasing the mean holding time in state <. To do so, we first replace initial transition matrix
P with transition matrix P where P, : = 0 for all <. To do so without altering the CTMC, we
must let the new transition probability be the old conditional probability given that there is
no transition from state 7 to itself; i.e., we let

P. .
PZ--—% forall i and j. (3.19)

We never divide by zero, because P;; < 1 (assuming that the chain has more than two states
and is irreducible). Since we have eliminated DTMC transitions from state i to itself, we must
make the mean transition time larger to compensate. In particular, we replace 1/v; by 1/;,
where

1 .
o= ) = P (3.20)
1- P ’

Theorem 3.3. (removing transitions from a state back to itself) The probability law
of the CTMC is unaltered by removing one-step transitions from each state to itself, according

0 (3.19) and (3.20).

Proof. The tricky part is recognizing what needs to be shown. Since (1) the transition rates
determine the transition probabilities, as shown in Subsection 3.2, (2) the transition probabil-
ities determine the finite-dimensional distributions and (3) the finite-dimensional distributions
are regarded as the probability law of the CTMC, as shown in Section 2, it suffices to show
that we have the right transition rates. So that is what we show.

Applying (3.18), we see that the transition rates of the new CTMC (denoted by a hat) are
Pi .

L = yP;, (3.21)

= =u(1— Py)—0l
Ql»] VZ 7.7 VZ( lﬂ) (1 _ P/Lﬂ)

just as in (3.18). =

In closing, we remark that this third modelling approach with independent clocks corre-
sponds to treating the CTMC as a special case of a generalized semi-Markov process
(GSMP); e.g., see Glynn (1989). For general GSMP’s, the clocks can run at different speeds
and the timers can have nonexponential distributions.
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3.4. A DTMC with Poisson Transitions

Our final modelling approach is not really a direct modelling approach, but rather an
intermediate modelling approach, starting from the first modelling approach involving a DTMC
with exponential transition times, that facilitates further analysis. Indeed, this modelling
approach can be regarded as a special case of the first modelling approach. But it provides a
different view of a CTMC.

In our first modelling approach, involving a DTMC with exponential transition times, the
means of those transition times 1/v; could vary from state to state. However, if it happened
that these means were all the same, then we could represent the CTMC directly as a DTMC
with transitions governed by an independent Poisson process, because in a Poisson process the
times between transitions are IID exponential random variables.

Specifically, if the mean transition time is 1/1p for all states, then we can generate all
transitions from a Poisson process with rate 1. Let {Y}, : n > 0} be the DTMC with one-step
transition matrix P and let {N(¢) : t > 0} be an independent Poisson process with rate vy.
Under that condition, the CTMC {X(¢) : t > 0} can be constructed as a random time
change of the DTMC {Y,, : n > 0} by the Poisson process {N(t) : t > 0}, i.e.,

X(t)=Ynw, t=>0. (3.22)
As a consequence,

Vot)

Pi(t) = P(X(t) = jIX(0) ZP ZP (3.23)

This situation may appear to be very special, but actually any finite-state CTMC can
be represented in this way. We can achieve this representation by using the technique of
uniformization, which means making the rates uniform or constant.

We make the rates uniform without changing the probability law of the CTMC by intro-
ducing one-step transitions from some states to themselves, which we can regard as fictitious
transitions, because the process never actually moves. We can generate potential transi-
tions from a Poisson process with rate A, where A is chosen so that

Vi = —Qii = Z Qij <A forall 7, (3.24)
JJ#i

as in (3.15).

When the CTMC is in state i, each of these potential transitions is a real transition (to
another state) with probability v;/\, while the potential transition is a fictitious transition (a
transition from state i back to state i, meaning that we remain in state ¢ at that time) with
probability 1—(v;/)\), independently of past events. In other words, in each state i, we perform
independent thinning of the Poisson process having rate A, creating real transitions in
state ¢ according to a Poisson process having rate v;, just as in the original model.

The uniformization construction requires that we change the transition matrix of the em-
bedded DTMC. The new one-step transition matrix allows transitions from a state to itself.
In particular, the new one-step transition matrix P is constructed from the CTMC transition
rate matrix @) and \ satisfying (3.24) by letting

A

P = for j#i (3.25)
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and

N _ v Qi > i Qi
31_1—24P@,]—1—f:1+ ;’:1—%. (3.26)
JiJ e
In matrix notation, }
P=T+)'Q. (3.27)

Note that we have done the construction to ensure that P is a bonafide Markov chain transition
matrix; it is nonnegative with row sums 1.

Uniformization is useful because it allows us to apply properties of DTMC’s to analyze
CTMC’s. For the general CTMC characterized by the rate matrix ), we have transition
probabilities P; ;(t) expressed via P in (3.25)-(3.27) and X as

oM
Poj(t) = P(X() = §1X(0) Z —p=Yp A oy

k=0

where P is the DTMC transition matrix constructed in (3.25)-(3.27). We also have represen-
tation (3.22) provided that the DTMC {Y,, : n > 0} is governed by the one-step transition
matrix P and the Poisson process {N(t) : t > 0} has rate X in (3.24).

But how do we know that equations (3.25) and (3.28) are really correct?

Theorem 3.4. (validity of uniformization) The CTMC constructed via (3.25) and (3.28)
leaves the probability law of the CTMC unchanged.

Proof. We can justify the construction by showing that the transition rates are the same.
Starting from (3.28), we see that, for i # j,

Py = YRS

WTR
k

= WPl +o(h) = AhQ”

+o(h) = Qi jh+o0(h) as h]O, (3.29)

consistent with (3.2), while

Pii(h)—1 = ZP!?M 1

’ g
= Pi(,]ie_)\h + )‘hi)il,i +o(h) -1
= 1—)\h+o(h)+)\h<1+Q;’i>+o(h)—1
= Qish+o(h) as hl|O, (3.30)

consistent with (3.3). =
We now give a full proof of Theorem 3.2, showing that the transition function P(¢) can be
expressed as the matrix exponential e%*.

Proof of Theorem 3.2. (matrix-exponential representation) Apply (3.25) to see that
P = \71Q + I. Then substitute for P in (3.28) to get

L O.1) L= —XE(\$)E o0 N
Pty = S P St R — ey (D
k=0 k=0 —

= o M(QFADE _ M QE N _ Qt — z '

k!
k=0
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In the next section we will show how uniformization can be applied to quickly determine
existence, uniqueness and the form of the limiting distribution of a CTMC.

4. Limiting Probabilities

Just as with DTMC’s, the CTMC model specifies how the process moves locally. Just as
with DTMC’s, we use the CTMC model to go from the assumed local behavior to deduce global
behavior. That is, we use the CTMC model to calculate its limiting probability distribution, as
defined in (2.3). We then use that limiting probability distribution to answer questions about
what happens in the long run. In this section we show how to compute limiting probabilities.
The examples will illustrate how to apply the limiting distribution to answer other questions
about what happens in the long run.

But first we want to establish a firm foundation. We will demonstrate existence and
uniqueness of a limiting distribution, which justifies talking about “the” limiting distribution
of an (irreducible) CTMC. We also want to show that the limiting distribution of a CTMC
coincides with the (unique) stationary distribution of the CTMC. A probability vector [ is a
stationary distribution for a CTMC {X(¢) : t > 0} if P(X(¢t) = j) = B for all t and j
whenever P(X(0) = j) = ; for all j. In general the two notions - limiting distribution and
stationary distribution - are distinct, but for CTMC’s there is a unique probability vector with
both properties.

Example 4.1. (distinction between the concepts) Before establishing positive results for
CTMC’s, we show that in general the two notions are distinct: there are stationary distributions
that are not limiting distributions; and there are limiting distributions that are not stationary
distributions.

(a) Recall that a periodic irreducible finite-state DTMC has a unique stationary probability
vector, which is not a limiting probability vector; the transitions probabilities Pfj alternate
as k increases, assuming a positive value at most every d steps, where d is the period of the
chain. (A CTMC cannot be periodic.)

(b) To go the other way, consider a stochastic process {X(t) : ¢ > 0} with continuous
state space consisting of the unit interval [0,1]. Suppose that the stochastic process moves
deterministically except for its initial value X (0), which is a random variable taking values
in [0,1]. After that initial random start, let the process move deterministically on the unit
interval [0, 1] according to the following rules: From state 0, let the process instantaneously
jump to state 1. Otherwise, let the process move according to the ODE
dX(t)

= _X(1),t>0.

X'(t) I

Then {X(¢) : t > 0} is a Markov process with a unique limiting distribution. In particular,

tlirglo X(t) =0 with probability 1,
so that the limiting distribution is unit probability mass on 0. However, that limit distribution
is not a stationary distribution. Indeed, P(X(t) = 0) = 0 for all ¢ > 0 and all distributions
of X(0). If P(X(0) =0) =1, then P(X(t) = et forall t)=1. Even though this Markov
process has a unique limiting probability distribution, there is no stationary probability vector
for this Markov process. =

But the story is very nice for irreducible finite-state CTMC’s: Then there always exists a
unique stationary probability vector, which also is a limiting probability vector. The situation

16



is somewhat cleaner for CTMC’s than for DTMC'’s, because we cannot have periodic CTMC’s.
That is implied by the following result.

Lemma 4.1. (positive transition probabilities) For an irreducible CTMC, P; ;(t) > 0 for
allv, 7 and t > 0.

Proof. The argument going forward in time is easy: By Lemma 2.1, if P; ;(s) > 0, then

P i(s+1) ZR k(8)Pyi(t) > Pij(s)Pj;(t) > Pij(s)e%9t >0 forall t>0,

because P; ;(t) is bounded below by the probability of no transition at all from state j in time
t, which is e%iit. (Recall that Q] j < 0.) More generally, we apply representation (3.28).
Since the CTMC is irreducible, P;;(t) > 0 for some t. By representation (3.28), we thus
have Pk > 0 for some k, implying that the embedded DTMC with transition matrix P is
1rreduc1ble From here on, we argue by contradiction: Suppose that P; ;(t ) = ( for some t > 0.
Then, by representation (3.28), szj = 0 for all k, which would imply that P is reducible. Since
that is a contradiction, we must have P; ;(t) > 0 for all t > 0, as claimed. =

Theorem 4.1. (existence and uniqueness) For an irreducible finite-state CTMC, there
exists a unique limiting probability vector «; i.e., there exists a unique probability vector o
such that

tlilglolji’j(t) =a; forall i and j. (4.1)

Moreover, that limiting probability vector o is the unique stationary probability vector, i.e.,
if
P(X(0)=j)=a; foral j,
then
P(X(t)=j)=a; forall j and t>0. (4.2)

Proof. We will apply established results for DTMC’s in the setting of the fourth modelling
approach in Subsection 3.4; i.e., we will apply uniformization. To do so, we apply representation
(3.28). From that representation and Lemma 4.1, it follows immediately that the CTMC is
irreducible if and only if the embedded Markov chain with transition matrix P is irreducible.
Assuming that the CTMC is indeed irreducible, the same is true for that embedded DTMC.
By making A in (3.24) larger if necessary, we can have P“ > 0 for all 4, so that the embedded
DTMC with transition matrix P can be taken to be aperiodic as well.

Given that the DTMC with transition matrix P is irreducible and aperiodic, we know that
the embedded DTMC has a unique stationary distribution 7 satisfying

T=7P and we=1,

with the additional property that

Pfj—w’%j as k— o0

for all 7 and j. From representation (3.28), it thus follows that 7 is also the limiting distribution
for the CTMC,; i.e., we have
O[j:ﬁ'j for all ]
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Here is a detailed mathematical argument: For any € > 0 given, first choose ko such that
\Pfj — 7| < €/2 for all k > kg. Then choose ty such that P(N(t) < ko) < €/4 for all t > ty.
As a consequence, for t > t,
|Fij(t) — 7| = |P(X(t) = j|X(0) =i, N(t) < ko) — ;| P(N(t) < ko)
+|P(X(t) = j|X(0) = i, N(t) = ko) — 7| P(N(t) = ko)

< 2P(N(t) < ko) + P(N(t) > ko)g < % + % <e. (4.3)

Moreover, there can be no other stationary distribution, because any stationary distribution of
the CTMC has to be coincide with the limiting distribution of the DTMC, again by (3.28). =

We now turn to calculation. We give three different ways to calculate the limiting distribu-
tion, based on the different modelling frameworks. (We do not give a separate treatment for
the competing clocks with exponential timers. We treat that case via the transition rates.) To
sum row vectors in matrix notation, we right-multiply by a column vector of 1’s. Let e denote
such a column vector of 1’s.

Theorem 4.2. (calculation)

(a) Given a CTMC characterized as a DTMC with one-step transition matriz P and tran-
sitions according to a Poisson process with rate A\, as in Subsection 3.4,

aj =5 forall j, (4.4)
where 7 is the unique solution to
F=#%P and 7e=1, (4.5)
with P given in (3.25) or, equivalently,

Y #wPij=7; forall j and Y w;=1. (4.6)
i J

(b) Given a CTMC characterized in terms of a DTMC with one-step transition matrix P
and exponential transition times with means 1/v;, as in Subsection 3.1,

o (mi/y)
%= S ) 4.7

where w is the unique solution to

m=7nP and me=1. (4.8)

(c) Given a CTMC characterized by its transition-rate matriz QQ, as in Subsection 3.2, o
1$ the unique solution to
a@ =0 and ae=1 (4.9)

or, equivalently,

Z%‘Qi,j =0 forall j and Zai =1. (4.10)

(d) Given a CTMC characterized by its transition function P(t), perhaps as constructed
i Subsection 3.4, « is the unique solution to

aPt)=a forany t>0 and ae=1 (4.11)

or, equivalently,

ZaiPi,j(t) =a; forall j and Zai =1. (4.12)
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Proof and Discussion. (a) Exploiting Uniformization. In our proof of Theorem 4.1
above, we have already shown that « coincides with 7.

(b) Starting with the embedded DTMC. Since Theorem 4.1 establishes the existence
of a unique stationary probability distribution, it suffices to show that the distribution displayed
in (4.7) is that stationary distribution. Equivalently, it suffices to show that # = « for a in
(4.7), where 7 is the unique solution to

#=7P and 7e=1.

To see that is the case, observe that a; = cm;/v; for a defined in (4.7). To show that aP = a,
observe that
~ ~ ﬂ' ~
(@P); = Y aiPiy=c) TP
(2 (2

= c| > miGis QPM

GmviA v
. ) ) v P
. Vz )\ VJ )\
i,i£]
mP;  m T Zi,i;éj Py
I U2 S
iiA] g
_ STl mby T = Pig)
- A A v A

A A vi A A )
= ¢~ =qj. (4.13)

_ . <7rj CmiB o my, mB

From (4.7), we see that e = 1, where e is again a column vector of 1’s. That completes the
proof.

We now give a separate direct informal argument (which can be made rigorous) to
show that a has the claimed form. Let Z; ; be the time spend in state ¢ during the G visit
to state 7 and let N;(n) be the number of visits to state i among the first n transitions. Then
the actual proportion of time spent in state i during the first n transitions, say T;(n), is

N;(n
Zj:(l ) Zi,

= Ni(n
S o 7

However, by properties of DTMC’s, n~'N;(n) — m; with probability 1 as n — co. Moreover,
by the law of large numbers,

N;(n) Ni(n)
1 L Ni(n) Zj:1 Zij ' I
n ; % = < n > ( Nn) | miB[Zij] = mifvi as n— oo (4.15)

Ti(n)

: (4.14)

Thus, combining (4.14) and (4.15), we obtain

i(n _)7(7%'/1/1;) as n — oo
Ti(n) S (e /ve) , (4.16)
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supporting (4.7). For a full proof, we need to show that this same limit holds at arbitrary
times t as t — oo. It is intuitively clear that holds, but we do not prove that directly.

(c) Starting with the transition rates. We give several different arguments, from
different perspectives, to show that « is characterized as the unique solution of a) = 0 with
ae = 1.

We first apply a rate-conservation principle: In steady state, the rate of transitions into
state j has to equal the rate of transitions out of state j, for each state j. The steady-state
rate of transitions into state j is

> Qi

i,i#]
for the limiting probability vector a to be determined, while the steady-state rate of transitions
out of state j is

> Qi = —0;Q, -
1,17£]
Setting these two steady-state rates equal yields

Zaz‘Qi,j =0,
i

which, when applied to all j, is equivalent to @) = 0 in matrix notation.

Alternatively, we can start from the ODE’s. From Theorem 4.1, we know that P; ;(t) —
aj as t — oo for all 4 and j. Thus the right side of the backwards ODE P'(t) = QP(t)
converges, which implies that

Pz'/,j(t) = Z Qi,kPkJ(t) - ZQLka]‘ as t— o0 .
k k

However, since ), Q;, = 0 for all 4,
P/ (t)—0 as t—oo forall i and j.

When we apply these established limits for P(t) and P’(t) in the forward ODE, P'(t) =
P(t)Q, we immediately obtain the desired 0 = aQ, where cve = 1.

We can instead work with the DTMC transition matrix P. From (3.18) and (3.25), we
see that 3
Q=XP-1I). (4.17)

Multiply on the left by « in (4.17) to get
a@ = A (04]5 — a) ,

which implies that aQ = 0 if and only if aP = o

(d) Starting with the transition function P(t¢). This final characterization is similar
to part (a). Apply the explicit expression for P(t) in (3.28) with the expression P = A~'Q 4 I
to deduce that a@) = 0 if and only if aP(t) = a. =

To illustrate, we now return once more to Examples 3.1 and 3.2.
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Example 4.2. (Pooh Bear and the Three Honey Trees Revisited ) In Example 3.1
the CTMC was naturally formulated as a DTMC with exponential transition times, as in the
first modelling approach in Subsection 3.1. We exhibited the DTMC transition matrix P and
the mean transition times 1/v; before. Thus it is natural to apply Theorem 4.2 (b) in order to
calculate the limiting probabilities. From that perspective, the limiting probabilities are

mi(1/v;)

oy = ———————————
T eme(Lvk)
where the limiting probability vector 7 of the discrete-time Markov chain with transition matrix
P is obtained by solving m = 7w P with me = 1, yielding

( 8 4 5 )

T=(—=,—,—=) .

17717717

Then final steady-state distribution, accounting for the random holding times, is

111

o=G17)-

We were then asked to find the limiting proportion of time that Pooh spends at each of
the three trees. Those limiting proportions coincide with the limiting probabilities. That can
be demonstrated by applying the renewal-reward theorem from renewal theory, specifically,
Theorem ?7. =

Example 4.3. (Copier Maintenance Revisited Again) Let us return to Example 3.2 and
consider the question posed there: What is the long-run proportion of time that each copier
is working and what is the long-run proportion of time that the repairman is busy? To have
concrete numbers, suppose that the failure rates are y; = 1 per month and s = 3 per month;
and suppose the repair rates are $1 = 2 per month and 2 = 4 per month.

We first substitute the specified numbers for the rates +; and (; in the rate matrix @ in
(4.3), obtaining

0 -4 1 3 0 0
1 2 -5 0 3 0

Q= 2 4 0 -5 0 1
(1L,2) | 0 0 2 -2 0

21) \o 4 0 0 -4

Then we solve the system of linear equations a) = 0 with ae = 1, which is easy to do
with a computer and is not too hard by hand. Just as with DTMC'’s, one of the equations in
a@) = 0 is redundant, so that with the extra added equation ae = 1, there is a unique solution.
Performing the calculation, we see that the limiting probability vector is

416 36 24 9
o = (00,01, 02, 0(12), A(2,1)) = [ o0 Toes ms Tocs Too

129712971297 1297 129
Thus, the long-run proportion of time that copier 1 is working is ag + as = 80/129 ~ 0.62,
while the long-run proportion of time that copier 2 is working is ag 4+« = 60/129 ~ 0.47. The
long-run proportion of time that the repairman is busy is a1 +ag + a2y + @21y =1 —ap =
85/129 =~ 0.659,

Now let us consider an alternative repair strategy: Suppose that copier 1 is more
important than copier 2, so that it is more important to have it working. Toward that end,
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suppose the repairman always work on copier 1 when both copiers are down. In particular,
now suppose that the repairman stops working on copier 2 when it is down if copier 1 also
subsequently fails, and immediately shifts his attention to copier 1, returning to work on copier
2 after copier 1 has been repaired. How do the long-run proportions change?

With this alternative repair strategy, we can revise the state space. Now it does suffice to
use 4 states, letting the state correspond to the set of failed copiers, because now we know
what the repairman will do when both copiers are down; he will always work on copier 1. Thus
it suffices to use the single state (1,2) to indicate that both machines have failed. There now
is only one possible transition from state (1,2): Q1,2)2 = p1. We display the revised rate
diagram in Figure 2 below.

Revised Rate Diagram

7/]‘ = rate copier j fails, ,Bj = rate copier jrepaired

Figure 2: A revised rate diagram showing the transition rates among the 4 states in Example
3.3, where the repairman always works on copier 1 first when both have failed.

The associated rate matrix is now

0 —(71 +72) gl 72 0
Q= 1 B —(v2+ 1) 0 V2
2 Ba 0 —m+6) m
(1,2) 0 0 B —b
or, with the numbers assigned to the parameters,
0 -4 1 3 0
1 2 -5 0 3
Q= 2 4 0 -5 1
(1,2) o 0 2 =2
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Just as before, we obtain the limiting probabilities by solving a@) = 0 with ae = 1. Now
we obtain

20 4 18 15
57 577 57’ 57)

Thus, the long-run proportion of time that copier 1 is working is ag+ag = 38/57 = 2/3 ~ 0.67,
while the long-run proportion of time that copier 2 is working is ag + a1 = 24/57 =~ 0.42. The
new strategy has increased the long-run proportion of time copier 1 is working from 0.62 to
0.67, at the expense of decreasing the long-run proportion of time copier 2 is working from
0.47 to 0.42. The long-run proportion of time the repairman is busy is 1 — ag = 37/57 ~ 0.649,
which is very slightly less than before.

We conclude by making some further commentary. We might think that the revised
strategy is wasteful, because the repairman quits working on copier 2 when copier 1 fails after
copier 2 previously failed. By shifting to work on copier 1, we might think that the repairman
is being inefficient, “wasting” his expended effort working on copier 2, making it more likely
that both copiers will remain failed. In practice, under other assumptions, that might indeed
be true, but here because of the lack-of-memory property of the exponential distribution, the
expended work on copier 2 has no influence on the remaining required repair times. From a
pure efficiency perspective, it might be advantageous to give one of the two copiers priority at
this point, but not because of the expended work on copier 2. On the other hand, we might
prefer the original strategy from a “fairness” perspective. In any case, the CTMC model lets us
analyze the consequences of alternative strategies. As always, the relevance of the conclusions
depends on the validity of the model assumptions. But even when the model assumptions are
not completely realistic or not strongly verified, the analysis can provide insight. =

o= (ao,al,a2,a(1,2)) = (

5. Birth-and-Death Processes

Many CTMC’s have transitions that only go to neighboring states, i.e., either up one
or down one; they are called birth-and-death processes. Motivated by population models, a
transition up one is called a birth, while a transition down one is called a death. The birth
rate in state ¢ is denoted by \;, while the death rate in state ¢ is denoted by p;. The rate
diagram for a birth-and-death process (with state space {0,1,...,n}) takes the simple linear
form shown in Figure 3.

Thus, for a birth-and-death process, the CTMC transition rates take the special form

Qi,i+1 = )\Z', Qi,ifl = U and QiJ =0 if ] % {Z — 1,i,i—|— 1}, 1< <n-1 , (5.1)
with

Qo1 =X, Qo;j=0 if 7¢{0,1}, Qun-1=pn and Q,;=0 if j¢{n—-1n}.
(5.2)
As before, the row sums of () are zero.

A further special case is a pure-birth process, which only has transitions up one (equiv-
alently, all death rates are 0). We have already encountered a special pure-birth process (on
the nonnegative integers) - the Poisson process - which has constant birth rate, i.e., \; = A for
all ¢. Similarly, a pure-death process has only transitions down one. For a finite state space, a
pure-death process is equivalent to a pure-birth process, because we can just relabel the states.

The special structure of a birth-and-death process makes it easier to calculate the limiting
probabilities. First, we observe that the global-balance equations (flow into state j equals
flow out of state j), captured by the equation a@) = 0, can be replaced by more elementary
detailed-balance equations.
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Rate Diagram for a Birth-and-Death Process

birth rates =—»
/1 0 /1] /’Lz

ﬂ’n—l
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298
A N

H, Hy Hit Hn

< death rates

Figure 3: A rate diagram showing the transition rates for a birth-and-death process.

Theorem 5.1. (detailed-balance equations) For a birth-and-death process, the limiting
probability vector o is the unique solution to the detatiled-balance equations

ajNj = ojpipijrr forall j, 0<j<n-—1, (5.3)

with ae = 1.

Proof. We give two different proofs: First, just as for a general CTMC, we can apply a
rate-conservation principle, but now in a more special form. Because the birth-and-death
process can move only to neighboring states, we can deduce that the steady-state rate of
transitions up from state j to state j + 1, a;\;, must equal the steady-state rate of transitions
down from state j+1 to state j, aj;1pj41. That is, there is rate conservation between any two
neighboring states. That yields the detailed-balance equations in (5.3). The rate-conservation
principle itself follows from a simple observation. In the time interval [0,¢], the number of
transitions up from state j to state j + 1 can differ by at most by one from the number of
transitions down from state j + 1 to state j.

From the perspective of a general CTMC, we already have established that « is the
unique solution to a@ = 0 with ae = 1. For a birth-and-death process, the j* equation in the
system a@) = 0 is

(OéQ)j = Oéjflx\jfl — Ozj()\j + ,uj) + Q11 = 0 for 1<j<n-1, (5.4)
with
(aQ)o = —apro+ a1 =0 and (aQ)n = ap—1An—1— Qnpin =0 . (5.5)

24



From (5.3)-(5.5), we see that the sum of the first j equations of the form (5.4) and (5.5) from
a@ = 0 coincides with the ;' detailed-balance equation in (5.3), while the difference between
the 5 and (j — 1)** detailed-balance equations coincides with the j* equation from (5.4) and
(5.5). Hence the two characterizations are equivalent. m=

In fact, it is not necessary to solve a system of linear equations each time we want to
calculate the limiting probability vector «, because we can analytically solve the detailed-
balance equations to produce an explicit formula.

Theorem 5.2. (limiting probabilities) For a birth-and-death process with state space {0, 1, ...

" og<j<n, (5.6)

o = = <7<
! ZZ:ork

where
)\0 X )\1 Xoewe X)\jfl

B X g X Xy

(5.7)

ro=1 and r;=

Proof and Discussion. By virtue of Theorem 5.1, it suffices to solve the detailed-balance
equations in (5.3). We can do that recursively:

)\j—l

ey

aj = aj_1 forall j7>1,
which implies that
aj =rjo0 forall j>1,

for rj in (5.7). We obtain the final form (5.6) when we require that ce =1. =

Example 5.1. (a small barbershop) Consider a small barbershop, where there are only
two barbers, each with his own barber chair. Suppose that there is only room for at most 5
customers, with 2 in service and 3 waiting. Assume that potential customers arrive according
to a Poisson process at rate A = 6 per hour. Customers arriving when the system is full
are blocked and lost, leaving without receiving service and without affecting future arrivals.
Assume that the duration of each haircut is an independent exponential random variable with
a mean of u~! = 15 minutes. Customers are served in a first-come first-served manner by the
first available barber.

We can ask a variety of questions: (a) What is the long-run proportion of time there are
two customers in service plus two customers waiting? (b) What is the (long-run) proportion
of time each barber is busy? We might then go on to ask how this long-run behavior would
change if we changed the number of barbers or the number of waiting spaces.

We start by constructing the model. Let Q(t) denote the number of customers in the
system at time t. Then the stochastic process {Q(t) : t > 0} is a birth-and-death process with
six states: 0,1,2,3,4,5. Indeed, this is a standard queueing model, commonly referred to
as the M/M/2/3 queue. The first M means a Poisson arrival process (M for Markov), the
second M means IID exponential service times (M again for Markov), the 2 is for 2 servers,
and the 3 is for 3 additional waiting spaces.) It is common to use A to denote the arrival rate
and p the service rate of each server.

We can represent the CTMC in terms of competing exponential timers, as in Subsection
3.3. The possible triggering events are an arrival (birth), causing the state to go up 1, or a
departure (death), causing the state to go down 1. It is of course important that these are
independent exponential random variables.
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The blocking alters the arrival process. The blocking means that no arrivals can enter in
state 5. By making the state space {0, 1,...,5}, we have accounted for the blocking. Since the
interarrival times of a Poisson process have an exponential distribution, there are active clocks
with exponential timers corresponding to the event of a new arrival in states 0-4. The arrival
clock in state i has mean 1/\; = 1/\, where A = 6 per hour is the arrival rate of the Poisson
process. Hence the birth rates are A\; = 6, 0 < i < 4. We have A5 = 0, because there are no
arrivals when the system is full.

Since the service times are independent exponential random variables, the active clocks
corresponding to departures also can be represented as exponential random variables. (Recall
that the minimum of independent exponential variables is again exponential with a rate equal
to the sum of the rates.) There are active clocks with exponential timers corresponding to the
event of a new departure in states 1-5. The departure clock in state i has mean 1/u;, where
;i is the death rate to be determined. Since the mean service time is 1/p = 15 minutes, the
service rate for each barber is u = 1/15 per minute or u = 4 per hour. However, we must
remember that the service rate applies to each server separately. Since we are measuring time
in hours, the death rates are p; = p =4, po = pg = g = ps = 2u = 8. We have pg = 0 since
there can be no departures from an empty system.

Given the birth rates and death rates just defined, we can draw the rate diagram for the

six states 0,1,...,5, as in Figure 3. The associated rate matrix is now
0 -6 6 0 0 0 0
1 4 —-10 6 0 0 0
2 0 8§ —14 6 0 0
@= 3 0 0 8 —14 6 0
4 0 0 0 8 —14 6
5 0 0 0 0 8 =8

We now can apply Theorem 5.2 to calculate the limiting probabilities. From (5.6) and
(5.7),

where 79 = 1 and

Here
12
ro = 1:57
512
6 3 768
T _= _—_= - = —
! 4~ 27 512
6x6 36 9 576
T _= = —_— = - = —
2 4x8 32 8 512
_ 6x6x6_§_@
" T Ux8x8 32 512
_ 2Tx6 81 324
™ T 32x8 128 512
81x6 243
7“5 = = —_—
128x 8 512
Hence,
512 768 576 432
o) = —, p=——, g=——, Q3= ——
0 28557 1 28557 2 928557 ° 2855
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324 243
o4 = —— and as=_——.
4 2855 >~ 9855

This particular calculation is admittedly a bit tedious, but it is much better than solving the
system of equations based on @) = 0, which would be required for a general CTMC.

Given the steady-state probability vector a = (ay,...,as5), you can then answer the
questions posed: (a) The long-run proportion of time there are two customers in service
plus two customers waiting is ay. (b) The (long-run) proportion of time each barber is busy
is (1/2)aq + ag + +ag + a4 + as. (The two barbers are each busy half of the time that only
one barber is busy.) Finally, we could see how these answers would change if we changed the
number of barbers or the number of waiting spaces. We would just perform a similar analysis
with the alternative model(s). =

Example 5.2. (customers that balk and abandon) Consider the same barbershop with
two barbers and three waiting spaces, as specified above, but in addition suppose that cus-
tomers may elect to balk or abandon. In particular, suppose that an arriving customer finding
both barbers busy, but an available waiting space, will elect to stay, independently of all past
events, with probability 2/3; otherwise, the arrival will balk, i.e., refuse to join and instead
immediately leave, without affecting future arrivals. Moreover, suppose that each arriving cus-
tomer who is not blocked and who elects to wait is only willing to wait a certain time before
starting service; otherwise the customer will abandon, i.e., leave without receiving service
and without affecting future arrivals. Let the amount of patience of successive customers, i.e.,
these successive times to abandon, be IID exponential random variables with mean 6! = 10
minutes.

Again we can ask a variety of questions: (a) What is the rate of customer abandonment?
(b) What is the long-run proportion of potential arrivals that enter and then abandon? (c)
What proportion of potential customers enter upon arrival (i.e., neither balk nor are blocked)?
(d) What proportion of potential customers are served?

Even though it may not be entirely evident at first, the stochastic process representing the
number of customers in the system over time is again a birth-and-death process. Again we
can represent the CTMC in terms of competing exponential timers, as in Subsection 3.3. The
possible triggering events are an arrival (birth), causing the state to go up 1, or a departure
(death), causing the state to go down 1, where the departure may be due to service completion
or abandonment. As noted before, the blocking means that no arrivals can enter in state
5. The balking alters the arrival process further. The balking corresponds to performing an
independent thinning of the external Poisson arrival process in states 2-4. In those states, the
actual arrivals form a Poisson process with arrival rate A x (2/3) = 6 x (2/3) = 4 per hour.
Since the interarrival times of a Poisson process have an exponential distribution, there are
active clocks with exponential timers corresponding to the event of a new arrival in states 0-4.
The arrival clock in state ¢ has mean 1/);, where ); is the birth rate to be determined. The
birth rates in these states are: \g = Ay = A = 6 per hour and Ao = A3 = Ay =6 x (2/3) =4
per hour. (The reduction is due to the balking. We have A5 = 0, because there are no arrivals
when the system is full.)

Since the service times and times to abandon are independent exponential random variables,
the active clocks corresponding to departures also can be represented as exponential random
variables. As before, there are active clocks with exponential timers corresponding to the event
of a new departure in states 1-5. The departure clock in state i has mean 1/p;, where p; is the
death rate to be determined. As before, the service rate for each barber is 4 = 4 per hour. Since
the mean time to abandon is 1/6 = 10 minutes for each customer, the individual abandonment
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rate is # = 1/10 per minute or 6 per hour. However, we must remember that the service rate
applies to each server separately, while the abandonment rate applies to each waiting customer
separately. Thus the death rates are py = p =4, uo =2 =8, us =2u+0 =8+ 6 = 14,
pa =2 4+20 =8+12=20, s =2+ 30 =8+ 18 = 26. (o =0.)

Given the new birth rates and death rates just defined, we can draw the new rate diagram

for the six states 0,1,...,5, as in Figure 3. The new rate matrix is
0 -6 6 0 0 0 0
1 4 —-10 6 0 0 0
2 0 8§ —12 4 0 0
@= 3 0 0 14 —-18 4 0
4 0 0 0 20 —-24 4
5 0 0 0 0 26 —26

We now can apply Theorem 5.2 to calculate the limiting probabilities. From (5.6),

where 79 = 1 and

r; 1 1<i<s
H1 X g Xoeee X g

Here
L 3640
O T 7 3640
6 3 5460
7"1 = _—__— - = —
42 3640
6x6 36 9 4095
T = - - = - = —
2 4x8 32 8 3640
L_ 6x6x4 36 _ 9 _ 1170
37 4x8x14 112 28 3640
~9x4 9 2y
"7 98% 20 140 3640
9 x4 18 9 36
'S = = = —— —
5 140 x 26 1820 910 3640
Hence,
W _ 3640 5460 4095 - 1170
O 7 14635° "' 146357 % 146357 14635
234 1 36
[0 = —_— all oy = —— .
4 14635 > 14635
Given the steady-state probability vector « = («p,...,as5), you can then answer the

other questions: (a) The rate of customer abandonments is faz + 20ay + 30a; = 6as +
12a4 + 18as. (b) The long-run proportion of potential customers that enter and abandon is
the rate customers abandon, just determined, divided by the arrival rate, i.e.,

(Oas + 20y + 30a5)  (6as + 124 + 18axs)

\ = 6 = a3+ 2a4 + 35 .

Questions (c¢) and (d) are more tricky, because they ask about the proportion of customers
having a specified experience, instead of the long-run proportion of time. However, it turns
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out that these notions agree in this problem, because the arrival process of potential customers
is a Poisson process. There is a principle called Poisson Arrivals See Time Averages
(PASTA) that implies that the proportion of customers that see some state upon arrival
coincides with the proportion of time the process spends in that state, provided that the
arrival process is Poisson (and other regularity conditions hold, which they do here; e.g., see
Section 5.16 of Wolff (1989), Melamed and Whitt (1990) or Stidham and El Taha (1999) ).
Hence, consistent with intuition, the long-run proportion of all potential customers that are
blocked coincides with the long-run proportion of time that the system is full, which is a5. (But
that property would not remain true if we made the arrival process non-Poisson.) Similarly,
the long-run proportion of customers that balk is 1/3 times the long-run proportion of time
that the system is in one of the states 2, 3 or 4, which is (1/3) x (a2 + a3 + a4). (c) Hence
the long-run proportion of potential customers enter upon arrival (i.e., neither balk nor are
blocked) is 1 — (1/3) x (a2 + a3 + a4) — as.

(d) We can find the long-run proportion of potential customers served in two different ways:

Method 1. The long-run proportion of customers served is 1 minus the sum of the
proportions that balk, abandon and are blocked. We can thus apply the answers to previous
questions. The answer is

Qg + a3+ oy

1 3 —045—(0434'20444‘3045),
Rewriting, we get
ay  dos  Tas 11,020
| Q2 day T — 0.753 .
3 3 3 T 14,635

Method 2. The long-run proportion of customers served can be represented as the overall
service completion rate divided by the external arrival rate, counting all potential arrivals. The
denominator - the arrival rate - is A = 6 per hour. The service completion rate is

(1 x4)+ (g + as+ag +a5) X 8,

because the service rate is 4 in state 1, while the service rate is 2 x4 = 8 in states 2—5. Hence,
the long-run proportion of customers served is

2001 4(0[2 + a3 + oy + 045) B 11,020

5 ° 3 14,635

Even though the two formulas are different, they give the same answer.

Finally, just as before, we could see how these answers would change if we changed the
number of barbers or the number of waiting spaces. We would just perform a similar analysis
with the alternative model(s). =

In many applications it is natural to use birth-and-death processes with infinite state
spaces. As in other mathematical settings, we primarily introduce infinity because it is more
convenient. With birth-and-death processes, an infinite state space often simplifies the form
of the limiting probability distribution. We illustrate by giving a classic queueing example.

Example 5.3. (the M/M/1 Queue) One of the most elementary queueing models is the
M/M/1 queue, which has a single server and unlimited waiting room. As with the M/M/s/r
model considered in Example 5.1 (with § = 2 and r = 3), customers arrive in a Poisson
process with rate A and the service times are IID exponential random variables with mean
1/p. The number of customers in the system at time t as a function of ¢, say Q(t), is then
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a birth-and-death process. However, since there is unlimited waiting room, the state space is
infinite.

With an infinite state space, we must guard against pathologies. In order to have a proper
stationary distribution (which coincides with the limiting distribution), it is necessary to require
that the arrival rate A be less than the maximum possible rate out, u. Equivalently, we require
that the traffic intensity p = A/u be strictly less than 1.

When we apply the extension of Theorem 5.2 to infinite state spaces, under the assumption

that p < 1, we get
r

aj = —==>—, where 7;= ., >0, 5.8
j Zz?;o e j I (5.8)
which implies that « is the geometric distribution; i.e.,

lim P(QU) = j1Q0) = 1) =a; = (1=p)¢/. 20, (5.9

which has mean p/(1 — p).
If instead we considered the M/M/1/r model (the M/M/1 model with a finite waiting

room), which has 1 server and r extra waiting spaces, then the birth-and-death process has
r+2 states, from 0 to r+1. The limiting distribution then becomes the truncated geometric
distribution: ‘

_ (A=p)p’

The geometric distribution in (5.9) is more appealing than the truncated geometric distribution
in (5.10) because of its cleaner form. However, the finite-waiting room model applies without
constraint on p; a proper limiting distribution exists for p > 1 as well as for p < 1. =

6. Reverse-Time CTMC’s and Reversibility

Just as for DTMC’s, an important concept for CTMC’s is reversibility. A stochastic process
{X(t) : —00 < t < o0} is said to be reversible if it has the same probability law as {X(—t) :
—00 < t < 0o}. Thus a CTMC is reversible if we get the same CTMC if we run time backwards.

Just as for DTMC’s, we can start by constructing the reverse-time CTMC associated
with a given CTMC with transition-rate matrix () and transition function P(t). We obtain
the reverse-time Markov chain from the original (forward) CTMC by reversing time. The
reverse-time transition probabilities describe where the process came from instead of where it
is going. That is, we let

Pij (1) = P(X(s) = | X (s +1) =1) . (6.1)

We can then then apply basic properties of conditional probabilities to express these reverse-
time transition probabilities in terms of given forward-time transition probabilities; i.e.,

P(X(s) =j, X(s+t)=1i)  P(X(s) =j)Pji(t)
P(X(s+t)=1) - P(X(s+t)=1)

(6.2)
Unfortunately, however, when we do this, we see that in general we do not obtain bonafide
Markov transition probabilities; if we sum over j in (6.2), the transition probabilities do not
necessarily sum to 1, as required. We need to assume more. What we assume in addition is that
the Markov chain is in equilibrium. That is, we assume that the given (forward) CTMC
with transition function P(¢) is irreducible with initial distribution equal to its stationary

Pij (t) = P(X(s) = j|X(s +1) =) =
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distribution a. Then P(X(t) = j) = «; for all t. Under this extra equilibrium condition,
equation (6.2) can be expressed as
P(X(5) =, X(s+8) =)  ayPlt)

Pig (1) = P(X(s) = jIX (s +0) = i) = == Dt = = BRI (63)

Theorem 6.1. (reverse-time CTMC) If an irreducible CTMC is put in equilibrium by
letting its initial distribution be its stationary distribution «, then the transition probabilities
n (6.3) are bonafide transition probabilities, with the same stationary probability distribution
«, and the stochastic process satisfies the reverse-time Markov property

P(X(s)=j|X(s+t)=4,X(u) =iy, u€ Ay, C(s+t,00)) = P(X(s)=j|X(s+1t)=1)
= ;i,j (t) (64)

The reverse-time Markov property in (6.4) says that the conditional probability of a “past”
state j at time s, given the “present” state i at time s + ¢ plus the states at “future” times u
in the set A, depends only on the present state i at time s + .

Proof. First it is clear that the alleged transition probabilities in (6.3) are nonnegative.

Since aP(t) = « for each ¢, by Theorem 4.2 (d), the row sums of P now do indeed sum to 1,
as required. To see that the Markov property in (6.4) does indeed hold, apply properties of
conditional probabilities to rewrite (6.4) as

P(X(s)=j|X(s+1t)=1,X(u) =iy, u€ A, C (s+1,00))
_P(X(s):j,X(s—i—t)Z i, X(u) =iy,u € Ay C (s+t,00))
N P(X(s+t)=1i,X(u) =iy,uec A, C(s+t,00))
:P( (s) =7)P;i(t)P(X(u) =iy,u€ Ay, C (s+1t,00)|X(s+1t) =1)
P(X(s+1t)=1)P(X(u) =iy,u € Ay C (s+t,00)|X(s+1t) =1)
P(X(s) = )Put) _ a;Prult)
P(X(s+1t)=1) o

I :U

where in the last line we have first cancelled the common term P(X(u) = iy,u € A, C
(s + t,00)| X (s +t) = i) from the numerator and the denominator and then exploited the
equilibrium property. =

From (6.3), we see right away (by looking at the derivative at 0) that the reverse-time
CTMC associated with a CTMC having transition-rate matrix ) itself has transition-rate

matrix @), where
. a;jQji
AL

’

(6.5)

%
Note that any irreducible CTMC in equilibrium (initialized with its stationary distribution

«) has an associated reverse-time CTMC with transition-rate matrix (). But that does not
make the CTMC reversible. That is a stronger property: A CTMC is said to be time-reversible
or just reversible if the reverse-time CTMC coincides with the original CTMC in equilibrium,

ie., if Q= Q or, equivalently, if
@;Qij = ;jQ;; forall i and j. (6.6)

For CTMC’s, reversibility as defined at the beginning of this section is equivalent to equa-
tions (6.6). From a rate-conservation perspective, reversibility holds for a CTMC if and only if
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the steady-state rate of transitions from state ¢ to state j equals the steady-state rate of tran-
sitions from state j to state ¢ for all states ¢ and j. Thus reversibility is characterized by the
detailed-balance equations in (6.6), which are generalizations of the detailed-balance equa-
tions for birth-and-death processes in (5.3). We summarize these properties in the following
theorem.

Theorem 6.2. (reversibility of CTMC’s) A CTMC with transition rate matriz Q) is re-
versible with stationary probability vector « if and only if the detailed balance equations in (6.6)
hold.

Proof. We have seen that the detailed balance equations in (6.6) imply reversibility, given
that « is the stationary vector. Summing those equations on either ¢ or j gives a@) = 0,
implying that o must in fact be the stationary probability vector. =

As a consequence, we immediately have the following result.

Theorem 6.3. (reversibility of birth-and-death processes) All birth-and-death processes
are reversible.

By the statement in Theorem 6.3, we mean that the birth-and-death process is reversible
provided that it has a stationary probability vector a and is initialized by that stationary prob-
ability vector a.

We now observe that reversibility is inherited by truncation. We say that a CTMC with
state space S and rate matrix @ is truncated to the subset A C S if we disallow all transitions
out of the subset A; i.e., if we set @Q;; =0 for i € A and j € S — A. We obtain a new CTMC
with state space A by letting QE?) = @; for alliand j in A with i # j and Ql(j?) =— ZjeA Qij
for all 1 € A.

Theorem 6.4. (truncation) If a reversible CTMC with trate matriz Q and stationary prob-
ability vector o is truncated to a subset A, yielding the rate matriz Q) defined above, and
remains irreducible, then the truncated CTMC with the rate matriz Q) is also reversible and
has stationary probability vector

oA = L, orall jeA. 6.7

S f j (6.7)
Proof. It is elementary that the truncated CTMC with the probability vector a4) in (6.7)
satisfies the detailed balance equations in (6.6) if the original CTMC does, which holds by
Theorem 6.2. =

We have seen an instance of Theorem 6.3 when we looked at the M /M /1/r queueing model
in (5.10), following Example 5.3.

We now apply reversibility to get something new and interesting. For that, we consider
the M /M /s queue with s servers, unlimited waiting room, Poisson arrival process with arrival
rate A and IID exponential service times with mean 1/u. The number in system over time is
a birth-and-death process with constant birth rate A and death rates p; = min {j, s}u. Since
there is an infinite state space, we require that p = A\/su < 1 in order to have a proper limiting
distribution.

Theorem 6.5. (departures from an M/M/s queue) The departure process from an M /M /s

queue in equilibrium (with p = X\/spu < 1) is a Poisson process with departure rate equal to the
arrival rate .
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Proof. Having p = A/su < 1 ensures that a proper limiting probability vector a exists.
Put the system in equilibrium by letting the initial distribution be that limiting distribution.
By Theorem 6.3, the CTMC is reversible. Thus, in equilibrium, the process counting the
number of customers in the system at any time in reverse time has the same probability law as
the original process. However, reversing time changes departures (jumps down) into arrivals
(jumps up) and vice versa. So the departures must form a Poisson process with rate A. =

Theorem 6.5 is quite remarkable. It takes some effort to even directly show that the
time between successive departures in an M/M/1 queue in equilibrium has an exponential
distribution with mean 1/A. That is an instructive exercise.

We can do more: We can establish an even more surprising result. Let Q(¢) be the number in
system at time ¢, either waiting or being served, and let D(t) count the number of departures
in the interval [0,¢]. We can show that the distribution of the queue length at time ¢ is
independent of the departures prior to time ¢, for the M /M /s queue in equilibrium!

Theorem 6.6. (more about departures from an M/M/s queue) For an M/M/s queue
in equilibrium (with p = \/su < 1), the number in system at time t, Q(t), is independent of
{D(s) : 0 < s <t}, the departure process before time t.

Proof. Just as for Theorem 6.5, having p = A\/su < 1 ensures that a proper limiting proba-
bility vector « exists. As before, put the system in equilibrium by letting the initial distribution
be the limiting distribution. By Theorem 6.3, the CTMC is reversible. Thus, in equilibrium,
the process in reverse time has the same probability law as the original process. With any one
ordering of time, the arrival process after time ¢ is independent of the queue length at time .
by the independent-increments property of the Poisson process. Since arrivals and departures
switch roles when we reverse time, we deduce the asserted conclusion as well. =

We now go on to consider networks of queues. We first combine Theorems 6.5 and 6.6 with
Example 5.3 to obtain the limiting distribution for the number of customers at each station
for two single-server queues in series. In particular, consider an M /M /1 model with arrival
rate A and service rate p1, where p; = A/u; < 1. Let all departures from this M /M /1 queue
proceed next to a second single-server queue with unlimited waiting room and ITD exponential
service times with individual service rate p2, where also po = A/us < 1. This model is often
referred to as the M/M/1 — /M/1 tandem queue. Let Q;(t) be the number of customers at
station ¢ at time ¢, either waiting or being served.

Theorem 6.7. (the limiting probabilities for then M/M/1 — /M/1 tandem queue)
For the M/M/1 — /M/1 tandem queue in equilibrium (with p; = X\/sp; < 1 for each i), the
departure processes from the two queues are Poisson processes with rate A and

tlgglo P(Q1(t) = j1,Qa(t) = j2) = (1 — p1)pl (1 — p2)p%  forall ji and jo . (6.8)

Theorem 6.7 concludes that the limiting probabilities for the two queues in series are the
same as for two independent M/M/1 queue, each with the given arrival rate A\. (However,
the two stochastic processes {Q1(t) : t > 0} and {Q2(t) : t > 0}. starting in equilibrium, are
not independent. The result is for a single time ¢.) We say that the limiting distribution has
product form. That product form means that the two marginal distributions are independent.

Proof. Suppose that we initialize the system with the alleged limiting probability distribu-
tion. Since it is the product of two geometric distributions, the two marginal distributions
are independent. Hence we can first focus on the first queue. By Theorem 6.5, the depar-
ture process from this first queue is Poisson with rate A. Hence, the second queue by itself
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is an M/M/1 queue in equilibrium. Hence each queue separately has the displayed geometric
stationary distribution, which coincides with its limiting distribution. Now, considering the
system in equilibrium, by Theorem 6.6, at any time ¢, the random number Q1 (t) is indepen-
dent of the departure process from the first queue up to time ¢. That implies that Q2(¢) and
Q@1 (t) must be independent for each ¢, which implies the product-form limiting distribution in
(6.8). =

Note that the entire M/M/1 — /M/1 tandem queue is not itself reversible; it is possible
to go from state (i,7) to state (i — 1,7 + 1) (with a departure from queue 1), but it is not
possible to go back. So the detailed-balance conditions in (6.6) cannot hold. We established
Theorem 6.7 by exploiting the reversibility of only the first station by itself. However, there
is an alternative way to prove Theorem 6.7 exploiting only reverse-time CTMC’s, which has
other applications, e.g., to treat networks of Markovian queues that are not acyclic (do not
have flow in one direction only).

Theorem 6.8. (using detailed-balance equations to find limiting probabilities) Let

Q be the transition-rate matriz of an irreducible CTMC. If we can find numbers a; and @Q; ;
such that

a;Qij = Z)N forall i#j (6.9)
and - -
Qii=Y Qij=> Q=-Qy foral i, (6.10)
JIF JIF

then Q; ; are the transition rates for the reverse-time CTMC associated with () and o is the
limiting probability vector for both CTMC's.

Proof. Add over ¢ with ¢ # j in (6.9) and apply (6.10) to get

YoaiQii= a Q=0 > Qi

iij iij isij
which implies that @) = 0. Hence « is the limiting distribution for the CTMC with transition-

rate matrix Q. Consequently, (); ; are the transition rates associated with the reverse-time
CTMC based on @ in equilibrium. That implies (by summing on j in (6.9)) that « is the
limiting distribution for the reverse-time CTMC as well. =

We now apply Theorem 6.8 to give an alternative proof of Theorem 6.7, which again has
the advantage that it does not require directly solving the equation a@) = 0.

Alternative proof of Theorem 6.7. As for many harder problems, the first step is to
guess the form of the limiting distribution; i.e., we guess that a has the product form in (6.8).
We then guess that the reverse-time CTMC should be itself a M /M /1 — /M /1 tandem queue
with arrival rate A and the given service rates. Going forward from state (i, j), we have three
possible transitions: (1) to state (i 4+ 1,7) due to an arrival, (2) to state (¢ — 1,5 + 1) due to
departure from queue 1 and (3) to (i, — 1) due to departure from queue 2. We have possible
flows in the other direction for the reverse-time CTMC to state (i,7) in three possible ways:
(1) from state (i + 1,5) due to a departure from queue 1 (in original order), (2) from state
(i —1,741) due to departure from queue 2 and (3) to (¢, 7 — 1) due to an arrival from outside
at queue 2. We thus have three equations to check in order to verify (6.9):

(1= p)Pi(L = p2)pbA = (1= p1)pi™ (1 — pa2)phu
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(1= p0)pi (1= p2)ppn = (1= p1)pi (L= p2) b o

(1= p)pi(1 = p2)phpz = (1= p1)pi(1—p2)ph N, (6.11)
which are easily seen to be satisfied. It is also easy to see that (6.10) holds. For a state (4, )
with ¢ > 0 and 7 > 0, the total rate out to a new state is A + u; + 2, corresponding to the
possibilities of an arrival or a service completion at one of the two queues. For the state (0, j)
with j > 0, the total rate out to a new state is A + po in both cases, excluding the possibility
of a service completion from queue 1 in both cases. The case (i,0) is similar. For the state
(0,0), the total rate out to new states is A in both cases, corresponding to an arrival. =

Essentially the same argument applies to treat a general Markovian open network of
single-server queues. Here is the new model: Let there be m single-server queues, each with
unlimited waiting room. Let there be an external Poisson arrival process at queue ¢ with rate
Ae,i- Let the service times at queue i be exponential with mean 1/p;. Let the arrival processes
be mutually independent. Let all the service times be mutually independent and independent
of the arrival processes. Let there be Markovian routing, independent of the arrival and
service processes; i.e., let each customer, immediately after completing service at queue i, go
next to queue j with probability P; ;, independently of all previous events. Let each customer
depart from the network from queue ¢ with probability 1 — Z;nzl P; ;. If we include outside
of the network as a single state m + 1, then the routing is characterized by a DTMC. In this
routing DTMC we assume that P,41,,+1 = 1, making the outside state absorbing. Moreover,
we assume that all other states are transient states. That is, we assume that each arriving
customer will eventually depart from the system.

Consider the vector valued process Q(t) = (Q1(t), Q2(t),...,Qm(t)), where Q;(t) is the
number of customers at queue ¢, either waiting or being served, at time ¢. It is easy to see
that the stochastic process {Q(t) : t > 0} is a CTMC. The possible events are an arrival from
outside or a service completion at one of the two queues. Those all governed by the specified
rates. We will show that this CTMC also has a product-form limiting distribution, under
regularity conditions. Given the possibility of feedback now, it is even more remarkable that
the marginal distributions of the limiting probability distribution should be independent.

To characterize the limiting behavior, we first need to find the total arrival rate at each
queue, i.e., the sum of the external and internal arrival rates. In order to find the total arrival
rate to each queue, we need to solve a system of linear equations, the traffic-rate equations:

)\j = )\57]‘ + Z)\ipi7j for 1<j<m, (6.12)
=1

or, equivalently, in matrix notation,

A=A, +AP, (6.13)

which implies that
A=A (I-P) . (6.14)

The inverse (I —P) ! is the fundamental matrix of the absorbing routing DTMC. In Section
7?7 it was shown that the inverse is well defined.

In order for the solution of the traffic-rate equations to be valid total arrival rates, we have
to be sure that the net arrival rate is less than the maximum possible service rate at each
queue. As before, let the traffic intensity at queue j be

Aj .
pi=—, 1<j<m. (6.15)
Mg
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We assume that p; < 1 forall j, 1 <j <m.
With those assumptions, the CTMC {Q(t) : t > 0} has a product-form limiting distribution.

Theorem 6.9. (Markovian open network of single-server queues) Consider the Marko-
vian open network of single server queues defined above, where the inverse (I — P)™! is well
defined for the routing matrix P and p; < 1 for each i. Then the limiting distribution has
product form, with geometric marginals of the M/M/1 queue; i.e.,

t—o0

lim P(Q(t) = (ji,---»Jm)) = a(jt, - - jm) = Hl—pk : (6.16)

Proof. A direct proof is to guess that the solution if of product form, as in (6.16), and then
simply verify that @) = 0. That verification step is simplified by applying Theorem 6.8. To do

so, we need to define the candidate reverse-time CTMC with transition rates ). Just as with
Theorem 6.7, we guess that the reverse-time CTMC itself corresponds to an open network of
single-server queues, with the same service-time distributions at the queues, but we need to
guess the appropriate external arrival rates Xe,i and routing probabilities Fu The idea is to
guess those quantities by seeing what is required to have the flow rates balance in equilibrium.
First, the flow rate through each queue should be the same in either direction, so we should

have _
Ai=A; forall 7. (6.17)

Next, the reverse-time external arrival rate at queue ¢ should be equal to the forward-time
departure rate from queue i, i.e.,

Nei= N1 =Y Py) forall i. (6.18)
j=1

To complete the construction, note that the stationary flow from queue i to queue j in forward
time should equal the stationary reverse flow in reverse time, i.e.,

NP =A;Pji - (6.19)
As a consequence, we have
S Al
P Nk (6.20)
Aj
Comblmng equatlons (6.17), (6.18) and (6.20), we have defined the reverse-time model elements

—

Xeis )\Z and PJ ; for all 4 and j in terms of the corresponding forward-time modelling elements.
For the reverse-time queueing network, we should have an analog of the traffic-rate equa-
tions in (6.21) in reverse time, namely,

m
Aj=Ne,j —I-Z AiP;j for 1<j53<m, (6.21)
i=1
or, equivalently, in matrix notation,
A=Ac + AP . (6.22)

And, indeed, it is easy to check that these reverse-time traffic rate equations are valid, by
applying the definitions above.
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It then remains to verify that these guesses yield the right answer; i.e., we need to verify
equations (6.9) and (6.10) in this setting, remembering that the states now correspond to m-
tuples (i1, .. .,4m,). That is straightforward, paralleling the proof of Theorem 6.7. As before, all
transitions are triggered by arrivals and service completions (followed by a random routing). =

From the reverse-time construction just completed, we also can deduce the following corol-
lary.

Corollary 6.1. (departure processes from an open network of queues) Under the
assumptions of Theorem 6.9, the m departure processes from the network from the individual
queues are m independent Poisson processes, with the departure process from queue i having

rate
m

j=1
Moreover, the total departure process is a Poisson process with rate

m m

5= 6= Aeyj- (6.24)
j=1

j=1

Proof. For (6.24), recall that the superposition of independent Poisson processes is Poisson
with a rate equal to the sum of the rates. To see that the total rate in equals the total rate
out, as we would expect, compare the sum over ¢ of (6.23) to the sum over j of (6.21). =

In closing, we remark that Theorem 6.9 and Corollary 6.1 extend to Markovian open
networks of multi-server queues, where there may be different numbers of servers at each
queue. Again there is a product-form limiting distribution, but then the marginals have the
limiting distribution of the M/M/s queue, where s is the number of servers at that queue.
Indeed, what we have presented is only the beginning of a rich theory of stochastic networks;
e.g., see Chen and Yao (2001), Kelly (1979), Serfozo (1999), van Dijk (1993), Walrand (1988),
Whittle (1986).

7. Time-Dependent Transition Probabilities

Example 7.1. (A two-state CTMC) In the special case of a two-state CTMC it is easy to
calculate the transition probabilities. Let the states be 0 and 1. To simplify the notation, let
Qo1 =X and Q10 = p. Then Qoo = —A and Q1,1 = —p. With that notation, we can express
two of the four ODE’s as

POI,O(t) = —)\P070(t) + )\PL(](t) (71)

and
P{o(t) = pnPoo(t) — nPoa(t). (7.2)
Multiplying equation (7.1) by u and equation (7.2) by A and then adding, we obtain

WP () + APLo(H) = 0 (7.3)
Integrating equation (7.3) from 0 to ¢ yields
1P o(t) + AP1o(t) — uPoo(0) — AP1o(0) =0 .
Since Py 0(0) =1 and P; o(0) = 0, we obtain

MPQ()(t) + )\PL()(t) =M .
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Substituting this into equation (7.1), we obtain

Poo(t) = n— (u+ N Poo(t) - (7.4)

We can eliminate the constant term if we consider

18 = Poot) = 3

because
f1(t) = Pyolt) = p—(n+NPoolt) = —(A+p) f(t)
which implies first that

=—(A+p)

and then
f(t) = Cem Mt

for some constant C'. Continuing, we get

A —(\ by A —()
Py ((Poo) Poa®)\ _ [ i e 0w e
(t) = e .

Pl,[)(t) P171(t) m_ﬁe—oﬁ_u)t

From the specific form of the transition function, we can see the limit and the rate of
convergence:

W )
P,og(t) - —— as t— oo foreach ¢
170( ) )\ + L

and

I A —(Ap)t
Poolt) — = e Wt for all ¢ .
Consistent with intuition, Po(t) decreases steadily down from FPyo(0) = 1 to the limiting
steady-state value p/(\ + p) as t increases.

8. Issues

strong Markov property

infinite state spaces

infinitely many transitions in finite time

PASTA, used in BD barbershop example

transition probabilities for BD processes - Keilson

subset property of reversibility

closed Jackson networks

first passage times - inversion approach

NOTE: Put renewal-reward theorem in early chapter on SLLN and CLT. But leave hard
renewal theory for later.
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