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A Quick Introduction to Stochastic Calculus

1 Introduction

The purpose of these notes is to provide a quick introduction to stochastic calculus. We will
first focus on the Ito integral, which is a stochastic integral. We will do that mostly by focusing
hard on one example, in which we integrate Brownian motion with respect to Brownian motion.
We will then briefly outline the way an Ito integral is defined. It will be apparent that the
theory of stochastic integration draws heavily on the theory of martingales. A key concept is
the notion of quadratic variation.

After defining the Ito integral, we shall introduce stochastic differential equations (SDE’s)
and state Ito’s Lemma. Ito’s lemma provides a way to construct new SDE’s from given ones.
It is the stochastic calculus counterpart of the chain rule in calculus. It can be understood
by considering a Taylor series expansion and understanding how it should be modified in this
stochastic setting. Drawing on quadratic variation, we replace the squared differential (dB)2

by dt.
Finally, we will state the Black-Scholes partial differential equation for the arbitrage-free

time-dependent and state-dependent price of a (financial) derivative of a stock, assuming that
the stock is governed by geometric Brownian motion. Ito’s lemma converts an SDE for the
stock price into another SDE for the derivative of that stock price. An arbitrage-free argument
produces the final Black-Scholes PDE.

2 A Revealing Example

We will discuss the special stochastic integral
∫

B dB, where B ≡ {B(t) : t ≥ 0} is standard
Brownian motion (BM), and its value

∫ t

0
B(s) dB(s) =

B(t)2

2
− t

2
, t ≥ 0 . (1)

We assume that B is the same BM in both places, as integrand and integrator.

2.1 The Chain Rule from Calculus

Suppose that u is a differentiable real-valued function of a real variable, which is the com-
position of two other functions: u = f ◦ g, i.e., u(t) = f(g(t)), t ≥ 0, where f and g are
differentiable functions. The chain rule gives us the derivative of u in terms of the derivatives
of the component functions f and g:

u′(t) ≡ du

dt
= f ′(g(t))g′(t), t ≥ 0 .



The chain rule leads to an associated formula for integrals:
∫ t

0
b db ≡

∫ t

0
b(s)b′(s) ds =

b(t)2

2
, (2)

provided that b is a differentiable function, because, we can apply the chain rule to the alleged
value of the integral: Here u = f ◦ g, where f(x) ≡ x2/2 and g = b. Applying the chain rule
with u(t) = b(t)2/2, we get

du

dt
=

d(b(t)2/2)
dt

= b(t)b′(t) .

Thus we have verified the formula for the integral.
Thus, if BM had nice differentiable sample paths (which it does not!), then instead of (1)

we would have the corresponding formula without the last term in (1), as in (2). However,
since the paths of BM are not differentiable, the standard calculus rules do not apply, and we
need to do something else, which ends up with (1). That last term needs to be explained.

2.2 A General Stochastic Integral

The left side of formula (1) is a special case of the stochastic integral

∫ t

0
X(s) dM(s), t ≥ 0 , (3)

where X ≡ {X(t) : t ≥ 0} and M ≡ {M(t) : t ≥ 0} are both allowed to be stochastic
processes. Formula (1) is the special case in which both of these stochastic processes are
standard Brownian motion (BM).

Our goal is to give a brief explanation of expression (3). The story is actually quite involved,
but it is not difficult to understand some of the main features. For more details, see Karatzas
and Shreve (1988) or Steele (2001), for example. Karatzas is right here at Columbia and offers
advanced courses related to this material and its application to finance.

What do we assume about the integrand X and the integrator M? It is critically important
that we allow these two stochastic processes to be dependent in order to treat many intended
applications. We will not try to be excessively general. We will assume that X and M both
are stochastic processes with continuous sample paths. That is the case for various smooth
functions of BM. We note that this smoothness condition can be generalized.

We will assume that M is a martingale (MG) with respect to some family of histories,
called a filtration {Ft : t ≥ 0}. If M is defined to be a martingale with respect to some other
stochastic process Y ≡ {Y (t) : t ≥ 0}, for which the critical condition is

E[M(t)|Y (u), 0 ≤ u ≤ s] = M(s) for all s, 0 ≤ s < t ,

then Fs is the collection of events generated by {Y (u), 0 ≤ u ≤ s}, and we often rewrite the
MG condition as

E[M(t)|Fs] = M(s) for all s, 0 ≤ s < t .

Coupled with the MG property for M , we also assume that X(t) is determined by the filtration
up to time t for each t ≥ 0. We say that X is adapted to the filtration {Ft : t ≥ 0}, written
succinctly as X(t) ∈ Ft. In other words, X(t) is regarded as a function of {Y (u), 0 ≤ u ≤ t}
for each t ≥ 0. These assumptions on the pair (X,M) make increments M(t + u)−M(t) have
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conditional expectation 0 given the history of both X and M up to time t, and whatever else,
if anything, is in the filtration {Ft : t ≥ 0}.

These MG properties of M and X can be generalized too, but they cannot be removed
entirely. Many generalizations have been developed over the last 50 years. There is a rich and
complicated theory.

2.3 Approximating Sums

We define the left side of (3) in essentially the same way that we define the Riemann integral
in calculus: We define it as the limit of approximating sums over a discrete time grid, as the
discrete grid gets finer and finer. The difficulty is that one has to be careful taking this limit
because the usual assumptions for the Riemann integral are not satisfied here.

Following the procedure for the Riemann integral, we pick n + 1 ordered points ti in the
interval [0, t] satisfying 0 = t0 < t1 < · · · < tn = t and let the approximating sum be

Sn ≡
n−1∑

i=0

X(si)(M(ti+1)−M(ti)) , (4)

where si is some point in the interval [ti, ti+1], i.e., where ti ≤ si ≤ ti+1. We want to define the
integral as the limit as we take more and more points, letting the maximum interval ti+1 − ti
go to 0 as n →∞.

There are two problems:

(1) We have to be careful how we define the limit. We do not want to try to have convergence
with probability one for each sample point. (Instead we shall have mean-squared convergence,
but we will not elaborate.)

(2) We have to be careful how we select the point si within the interval [ti, ti+1]. We will
pay careful attention to this detail because that choice can affect the answer. Indeed, we can
get different answers if (i) we let si = ti or if si = ti+1. Indeed, if we let si = αti + (1−α)ti+1,
then in general we get different answers for each value of α with 0 ≤ α ≤ 1. We will use the
Ito integral, which lets si = ti. The case α = 1/2 leads to what is called the Fisk-Stratonovich
integral. We will see that this choice makes a difference in the relatively elementary setting of
(1).

Even if we address these two problems, there are technical issues. We still need the MG
structure for M and X briefly outlined above.

2.4 The Ito Integral for our BM Example

Having made the choice si = ti in the last subsection, we have the following approximating
sums for our initial stochastic integral in (1):

∫ t

0
B(s) dB(s) ≈

n−1∑

i=0

B(ti)(B(ti+1)−B(ti)) . (5)

To see what happens, it is convenient to rewrite each summand as

B(ti)(B(ti+1)−B(ti)) =
1
2
(B(ti+1)2 −B(ti)2)− 1

2
(B(ti+1)−B(ti))2 . (6)
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(verify that by expanding the final quadratic term.) That leads to the single sum in (5) being
replaced by two sums, but now the first sum is telescoping, i.e., there is massive cancellation
when we add, yielding

n−1∑

i=0

(B(ti+1)2 −B(ti)2) = B(tn)2 −B(0)2 = B(t)2 − 0 = B(t)2 . (7)

When we put the whole thing together, we get
n−1∑

i=0

B(ti)(B(ti+1)−B(ti)) =
B(t)2

2
− 1

2

n−1∑

i=0

(B(ti+1)−B(ti))2 (8)

We now need to know what happens to the final sum of squares of the increments of BM.
The limit is called the quadratic variation of BM. It turns out that, with probability 1,

n−1∑

i=0

(B(ti+1)−B(ti))2 → t as n →∞ with max {ti+1 − ti} → 0 . (9)

We now present some partial supporting evidence. We show a weaker form of convergence
(convergence in mean square): To quickly see why the limit should be valid, calculate the
mean and variance, first for a single summand and then for each term:

E[(B(ti+1)−B(ti))2] = E[(B(ti+1 − ti))2] = ti+1 − ti ,

so that, by another telescoping argument,

E

[
n−1∑

i=0

(B(ti+1)−B(ti))2
]

=
n−1∑

i=0

(ti+1 − ti) = tn − t0 = t (10)

for all partitions.
We now show that the variance is getting negligible:

V ar[(B(ti+1)−B(ti))2] = V ar[(B(ti+1 − ti))2]
= V ar(N(0, ti+1 − ti)2)
= V ar((

√
ti+1 − ti)2N(0, 1)2)

= V ar((ti+1 − ti)N(0, 1)2)
= (ti+1 − ti)2V ar(N(0, 1)2)
= (ti+1 − ti)2E[(N(0, 1)2 − 1)2)
= 2(ti+1 − ti)2

However,
(ti+1 − ti)2 ≤ (ti+1 − ti)max {ti+1 − ti} ,

where max {ti+1 − ti} → 0 as n →∞, as part of our conditions. Hence

V ar

(
n−1∑

i=0

((B(ti+1)−B(ti))2)

)
=

n−1∑

i=0

V ar((B(ti+1)−B(ti))2)

= 2
n−1∑

i=0

(ti+1 − ti)2

≤ 2
n−1∑

i=0

(ti+1 − ti) max {ti+1 − ti}

= 2tmax {ti+1 − ti} → 0 as n →∞ . (11)
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Hence the mean of the second sum goes to t and the variance goes to 0. That directly shows
convergence of the approximating sums in the sense of mean square (i.e., Zn → Z in mean
square if E[|Zn − Z|2] → 0), which implies convergence in probability and convergence in
distribution (Zn ⇒ Z). The limit actually holds with probability one, but that extension is
not too critical. Careful treatment of the modes of convergence become important in this
setting.

2.5 Using Grid Points at the Other End: the Backwards Ito Integral

In the last subsection we let si = ti. Now we want to see what happens if instead we were to
let si = ti+1. We get a different answer. We now have the following approximating sums for
our stochastic integral in (1):

∫ t

0
B(s) dB(s) ≈

n−1∑

i=0

B(ti+1)B(ti+1)−B(ti) . (12)

By adding and subtracting B(ti), i.e., by writing B(ti+1) = B(ti) + B(ti+1)−B(ti+1), for
each summand, we can obtain the previous approximation plus an additional term: We get

n−1∑

i=0

B(ti+1)(B(ti+1)−B(ti)) =
n−1∑

i=0

B(ti)(B(ti+1)−B(ti)) +
n−1∑

i=0

(B(ti+1)−B(ti))2 . (13)

From the previous reasoning, we get convergence to the previous value (1/2)(B(t)2− t) for the
first term plus t for the new second term. Hence we get the alternative expression

∫ t

0
B(s) dB(s) =

B(t)2

2
+

t

2
, t ≥ 0 , (backwards Ito integral) (14)

If instead we let si = (ti + ti+1)/2, then we get the Fisk-Stratonovich integral
∫ t

0
B(s) dB(s) =

B(t)2

2
, t ≥ 0 , (Fisk-Stratonovich integral) , (15)

agreeing with (2). The standard approach is to use (1).

3 Properties of General Stochastic Integrals

The general integral in (3) is defined as the limit of approximating sums as in (4) with si = ti
for all i: ∫ t

0
X(s) dM(s) ≈

n−1∑

i=0

X(ti)(M(ti+1)−M(ti)) . (16)

As before, we require that M and X have continuous sample paths, we require that M be a
MG relative to {Ft : t ≥ 0}, and we require that X(t) be adapted to Ft for each t.

With this definition and these assumptions, the stochastic integral in (4) itself becomes a
martingale stochastic process (as a function of the time argument t, relative to the filtration
{Ft : t ≥ 0} governing the integrator M).

First, given that M is a MG, the discrete-time processes {M(ti) : ı ≥ 0} obtained through
the approximation in (16) is itself a discrete-time martingale for each partition we form. More-
over, given that we let si = ti as we have stipulated, the approximating sum in (16) becomes a
martingale as well, which is often called a martingale transform. (For this, it is critical that
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we chose si = ti.) One immediate consequence of these MG properties is that the stochastic
integral and the approximating sums have mean 0 for each t.

Our analysis of the special Brownian stochastic integral in (1) suggests that a key role is
played by the quadratic variation process. In this general martingale setting, it is defined
as

〈M〉 ≡ lim
i=n−1∑

i=0

(M(ti+1)−M(ti))2 , (17)

where the limit is as n →∞ with the partitions of the interval [0, t] getting finer and finer. It
turns out that 〈M〉 ≡ {〈M〉(t) : t ≥ 0} can also be characterized (in our setting) as the unique
nonnegative nondecreasing (and predictable, not to be explained) process such that M2−〈M〉
is a martingale. (There are some regularity conditions here.)

For Brownian motion, 〈M〉(t) = t and this characterization of 〈M〉 says that B(t)2 − t
is a MG, which we have already seen to be the case. The stochastic process B(t)2 − t is the
quadratic martingale associated with BM. An immediate consequence of this quadratic MG
representation for the stochastic integral is that the variance of the MG M(t) is E[〈M〉(t)] for
each t.

For the stochastic integral, we have the related property that

I(t)2 − 〈I〉(t) ≡
(∫ t

0
X(s) dM(s)

)2

−
∫ t

0
X(s)2 d〈M〉(t) (18)

is a martingale, so that the variance of the stochastic integral is

V ar(I(t)) = E

[(∫ t

0
X(s) dM(s)

)2
]

= E

[∫ t

0
X(s)2 d〈M〉(t)

]
. (19)

4 SDE’s and Ito’s Lemma

We first specify what we mean by a stochastic process satisfying a stochastic differential equa-
tion (SDE). We then state Ito’s lemma, which provides the SDE of a smooth function of a
process satisfying an SDE.

4.1 Stochastic Differential Equations

Suppose that X is a stochastic process satisfying the stochastic differential equation
(SDE)

dX = adt + bdB , (20)

where B is BM, by which we mean

dX(t) = a(X(t), t)dt + b(X(t), t)dB(t) , (21)

where a and b are real-valued functions on R2, by which we mean the X satisfies the integral
equation

X(t) =
∫ t

0
a(X(s), s)ds +

∫ t

0
b(X(s), s)dB(s) , (22)

where the last integral is defined as an Ito integral. Such a process X is often called an Ito
process. Note that the process X appears on both sides of the equation, but the value at
t given on the left depends only on the values at times s for s ≤ t. Assuming that X has
continuous paths, it suffices to know X(s) for all s < t on the right. on the right. Nevertheless,
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there is a need for supporting theory (which has been developed) about the existence and
uniqueness of asolution to the integral equation (or equivalently the SDE).

An elementary example arises when X(t) = µt+σB(t), where µ and σ are constants. Then
we have (20) with a(x, t) = µ and b(x, t) = σ, independent of x and t. Then we can directly
integrate the SDE to see that the process is BM with drift µ and diffusion coefficient σ2.

Another important example is standard geometric Brownian motion (GBM). Then
we have (20) with a(x, t) = µx and b(x, t) = σx. Letting the stock price at time t be S(t), we
write the classical GBM SDE as

dS = µSdt + σSdB , (23)

where again µ and σ are constants. Note that S appears in both terms on the right.

4.2 Ito’s Lemma

Now we see what happens when we consider a smooth function of an Ito process. We assume
given the Ito process X in (20)-(22). Now suppose that f : R2 → R is a smooth function,
with continuous second derivatives. Ito’s lemma concludes that Y (t) ≡ f(X(t), t) has an SDE
representation with

dY =
(

ft + afx +
1
2
b2fx,x

)
dt + bfxdB (24)

or, in more detail,

dY (t) ≡ df(X(t), t) =
(

∂f

∂t
+ a(X(t), t)

∂f

∂x
+

1
2
b(X, t)2

∂2f

∂x2

)
dt + b(X(t), t)

∂f

∂x
dB(t); (25)

or, in even more detail

dY (t) ≡ df(X(t), t) =
(

∂f

∂t
(X(t), t) + a(X(t), t)

∂f

∂x
(X(t), t) +

1
2
b(X, t)2

∂2f

∂x2
(X(t), t)

)
dt

+b(X(t), t)
∂f

∂x
(X(t), t)dB(t) . (26)

In other words, Y satisfies the associated SDE with coefficients aY and bY that are functions
of (X(t), t) and the function f . In particular,

dY = aY dt + bY dB ,

where

aY (X(t), t, f) =
∂f

∂t
(X(t), t) + a(X(t), t)

∂f

∂x
(X(t), t) +

1
2
b(X, t)2

∂2f

∂x2
(X(t), t)

and
bY ((X(t), t, f) = b(X(t), t)

∂f

∂x
(X(t), t)

The surprising part is the term

1
2
b(X, t)2

∂2f

∂x2
(X(t), t)

appearing in aY . That would not be there if B had differentiable sample paths. An intuitive
proof of Ito’s lemma follows by applying a second-order Taylor series expansion. In that
expansion we need to replace the (dB)2 term by dt. This stems from the quadratic variation
of BM.
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4.3 Two Examples

Example 4.1 (logarithm of GBM) In (23) we have the standard SDE representation of GBM.
Suppose that we now consider the logarithm: ln (S(t)/S(0)) = ln (S(t)) − ln (S(0)). We can
apply the function f(x, t) = ln(x), for which fx = 1/x, fx,x = −1/x2 and ft = 0. Hence we get

d ln (S(t)/S(0) = (µ− σ2

2
)dt + σdB , (27)

from which we immediately see that

ln (S(t)/S(0)) = (µ− σ2

2
)t + σB(t), t ≥ 0 . (28)

Note that the drift of this Brownian motion is not µ. The drift terms in the two specifications
do not agree. Given that

ln (S(t)/S(0)) = νt + σB(t), t ≥ 0 , (29)

we get
E[S(t)] = S(0)e(ν+σ2/2)t, t ≥ 0 , (30)

whereas from the SDE it would be E[S(t)] = S(0)eµt. The parameters µ and ν in these two
representations should be related by

µ = ν +
σ2

2
or ν = µ− σ2

2
. (31)

For more discussion, see pages 307-313 of Luenberger (1998).

Example 4.2 (our initial Brownian stochastic integral example) Suppose we apply Ito’s lemma
to ordinary BM with f(x) = x2. We start with the SDE in (20) being dB (having a = 0 and
b = 1). When we apply Ito’s lemma with f(x) = x2, we get

dB(t)2 = dt + 2B(t)dB(t) (32)

or

B(t)2 = t + 2
∫ t

0
B(s) dB(s) , (33)

just as in our initial BM stochastic integral.

5 The Black-Scholes Equation

The Black-Scholes equation is a partial differential equation (PDE) satisfied dy a deriva-
tive (financial) of a stock price process that follows GBM, under the no-arbitrage condition. We
start with GBM represented as an SDE. We then apply Ito’s lemma to describe the derivative
as an SDE. However, the arbitrage-free condition serves to eliminate the stochastic BM com-
ponent, leaving only a deterministic PDE for the time-dependent and state-dependent price of
the security.

In more detail, we start with the stock price process satisfying the GBM SDE in (23). We
represent the price of the derivative of the stock price process as f(S(t), t), where f : R2 → R is
a smooth function. We then apply Ito’s lemma and consider the consequences of the arbitrage-
free condition. That forces the Black-Scholes PDE. See Hull (2006) and Luenberger (1998)
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for quick informal proofs. See Steele (2001) for a more careful treatment, with insightful
discussion.

Before we apply the arbitrage-free argument, we simply apply Ito’s Lemma to obtain an
SDE for the stock derivative. Given that S follows the GBM SDE in (23), we can apply (25)
to see that the derivative, say Y (t) = f(S(t), t)), satisfies the associated SDE

dY (t) ≡ df(S(t), t) =
(

∂f

∂t
+ µS(t)

∂f

∂x
+

1
2
σ2S(t)2

∂2f

∂x2

)
dt + σS(t)

∂f

∂x
dB(t). (34)

It is understood that the partial derivatives in (34) are evaluated at (S(t), t), as made explicit
in (26).

An additional finance argument is needed to go from this SDE to the Black-Scholes PDE.
Suppose that the interest rate is r. Risk neutrality is achieved by setting µ = r, using the SDE
representation in (23). The resulting Black-Scholes PDE is

∂f

∂t
+

∂f

∂S
rS +

1
2
σ2S2 ∂2f

∂S2
= rf . (35)

In more detail, we have

∂f

∂t
(S(t), t) +

∂f

∂S
(S(t), t)rS(t) +

1
2
σ2S(t)2

∂2f

∂S2
(S(t), t) = rf(S(t), t) . (36)
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