
IEOR 6711: Stochastic Models I

Professor Whitt, Thursday, November 29, 2012

Weirdness in CTMC’s
“Where’s your will to be weird?” – Jim Morrison, The Doors

“We are all a little weird. And life is a little weird. And when we find someone whose
weirdness is compatible with ours, we join up with them and fall into mutually satisfying
weirdnessand call it love – true love.” – Robert Fulghum, True Love

“Some are born weird, some achieve it, others have weirdness thrust upon them.” – Dick
Francis, To the Hilt

“To spend hundreds and hundreds of hours sitting in front of a computer screen staring
at lines of information is pretty tedious. More like a computer programmer. And no matter
how cool the Matrix made looking at code seem, computer programmers are even weirder than
authors.” – Christopher Hopper, The White Lion Chronicles

1 Weirdness in CTMC’s

See Chung [9] or Chapter 15 of Breiman [7] for an early account of the foundations. See Karlin
and McGregor [11, 12] for early foundational papers on BD processes. See Asmussen [6],
Chapter II and Section II.2 for a recent account. Many books have reasonable accounts. The
W 2 Lecture Notes on CTMC’s focuses on the finite state case, which avoids all the weirdness.
The results in the infinite-state case are the same, under appropriate regularity conditions.

For more information about any concept discussed below, see the Wikipedia entry.

1.1 The Strong Markov Property

It is important that the Markov property extend to random stopping times. There are compli-
cations about the strong Markov property in general Markov processes, but all CTMC’s have
the strong Markov property.

1.2 Instantaneous Transitions: Pure-Jump Processes

This pathology has transitions occurring in 0 time. This is avoided by direct assumption.
We directly assume that for each initial state i that the process remains in state i for an
exponential length of time with positive finite mean, We then say we are considering a Markov
jump process.

1.3 Explosions and the Minimal Construction

Explosions occur when the process diverges to infinity in finite time. This is possible, even for
Markov jump processes. A CTMC is called regular if the number of transitions from each
state in finite time is finite with probability 1; i.e., a regular CTMC has no explosions. For a
pure birth process, divergence to infinity turns out to occur if and only if the expected time to
go from any state to infinity is finite.



Theorem 1.1 (explosions in a pure birth process) A pure birth process is explosive (diverges
to infinity in finite time) if and only if the mean time to diverge is finite, i.e.,

∞∑

n=1

(1/λn) < ∞. (1)

Example 1.1 Here are simple examples: A pure birth process is explosive is λn = cn2, n ≥ 1,
but not if λn = cn, n ≥ 1.

The CTMC can be well defined even with explosions. The minimal construction for a
CTMC is based on exponential holding times in each state and a DTMC transition matrix at
transition times, but with the added feature that the process is absorbed in an extra “death
state” ∆ after infinitely many transitions have taken place. Let Sn be the time of the nth

transition. Let
S∞ ≡ sup

n≥1
Sn, (2)

which is less than or equal it infinity. let the process be defined by

X(t) ≡ ∆ if t ≥ S∞. (3)

The extra state ∆ plays no role in a regular CTMC.

Theorem 1.2 (Reuter’s condition) A pure-jump CTMC is regular if and only if the only
nonnegative bounded solution y to the matrix equation

Qy = y (4)

is the 0 vector, with yj = 0 for all j.

See Proposition II.3.3 on p. 47 of Asmussen [6].

Theorem 1.3 (Kolmogorov ODE’s) The Kolmogorov forward and backward ODE’s have unique
identical solutions for any regular pure-jump CTMC.

Theorem 1.4 (Kolmogorov ODE’s for minimal construction) The minimal construction yields
a solution to the Kolmogorov forward and backward ODE’s.

Theorem 1.5 (regularity and recurrence of BD processes) An irreducible BD process is recur-
rent, and thus regular, if and only if

∞∑

n=0

(λnrn)−1 = ∞, (5)

where r0 ≡ 1 and

rn ≡ λ0 × λ1 × · · ·λn−1

µ1 × µ2 × · · ·µn
, n ≥ 1. (6)

Corollary 1.1 (bounded birth rates) An irreducible finite-state BD process is always regular
if the birth rates are bounded.
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Theorem 1.6 (positive recurrence of BD processes) An irreducible BD process is positive re-
current if and only if it is recurrent and

∞∑

n=0

rn < ∞ (7)

for rn defined above. In which case, there is a unique stationary distribution and limiting
distribution, which coincide and satisfy

αj ≡ lim
t→∞P (X(t) = j) =

rj∑∞
n=0 rn

, j ≥ 0. (8)

Corollary 1.2 (finite-state BD processes BD processes) An irreducible finite-state BD process
is always positive recurrent.

Theorem 1.7 (reversibility) The stationary version (obtained by taking P (X(0) = j) = αj

for all j) of a positive recurrent irreducible BD process is time reversible, because

αiλi = αi+1µi+1 for all i ≥ 0. (9)

2 Fitting BD Processes to Data

A BD process can be fit to data from any stochastic process that makes all transitions up one
or down one. Let Ti(t) be the total time spent in state i in the interval [0, t]; Let Ai(t) be the
number of transitions up one from state i in the interval [0, t]; and Let Di(t) be the number of
transitions down one from state i in the interval [0, t]. Then define estimated birth and death
rates by

λ̄i(t) ≡ Ai(t)
Ti(t)

and µ̄i(t) ≡ Di(t)
Ti(t)

. (10)

Let the estimated steady-state distribution be

ᾱi(t) ≡ Ti(t)
t

, i ≥ 0. (11)

We might say that the BD model fits the data well if the estimated steady-state probability
vector ᾱ agrees closely with the theoretical steady-state distribution based on the estimated
birth and death rates, using formula (8). However, the estimated steady-state proba-
bility vector ᾱ automatically agrees very closely with the theoretical steady-state
probability vector based on the estimated birth and death rates. See W 2 [22] and
references therein.

In particular, Theorem 1 of [22] shows that ᾱ coincides exactly with the theoretical steady-
state probability vector based on the estimated birth and death rates if the system ends in
the same state it starts. Otherwise, there is likelihood-ratio stochastic order (which implies
ordinary stochastic order), depending on the ordering of the initial and final states. As illus-
trated by Corollary 4.1 of [22], it is possible to show, under regularity conditions, that the
difference between the two probability vectors goes to 0 as the amount of data increases. Note
that this holds without any model assumptions beyond having all transitions be up one
or down one. In particular, the model need not be Markovian and the behavior could be
highly time-dependent. The arrival rate might be highly time-dependent, such as sinusoidal.
Nevertheless, a BD model fit to the data will necessarily produce a steady-state distribution
that matches the long-run average performance. Of course, the long-run average performance
may not match what happens at any particular time.
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3 First-Passage Times in BD Processes

The first passage time from state i to state j, Ti,j , can be expressed as the sum of the first
passage times to neighboring states. If i < j then

Ti,j = Ti,i+1 + Ti+1,i+2 + · · ·+ Tj−1,j (12)

If i > j then
Ti,j = Ti,i−1 + Ti−1,i−2 + · · ·+ Tj+1,j (13)

where the sum in each case is over independent random variables.
The first passage time up to the nearest neighbor has a relatively simple form, because

it suffices to consider a finite-state absorbing CTMC; e.g., see Keilson [13]. The first pas-
sage time down is more complicated with an infinite state space. Its Laplace transform
can be computed using continued fractions, which can be used to calculate the
distribution, using numerical inversion of Laplace transforms; see Abate and W 2[3].
(The numerical inversion algorithm requires computing the Laplace transform for a modest
number of complex arguments, e.g., about 50. Those required transform values can in turn be
computed by algorithms for calculating (infinite) continued fractions.)

We now give the construction of the Laplace transform recursion for first passage times
down. For i ≥ 1, let Ti be the first passage time down from state i to state i− 1. Let f̂i(s) be
its Laplace transform, i.e.,

f̂i(s) ≡ E[e−sTi ] =
∫ ∞

0
e−sxfTi(x) dx. (14)

To develop a recursion, we consider the first transition from state i. With probability λi/(λi +
µi), the process moves up to state i+1; with probability µi/(λi +µi), the process moves down
to state i − 1. If the process moves down then the first passage is complete. If the process
moves up, then it must move down to i from i + 1 and then move down from i to i− 1. Recall
that the time of the first transition is independent of the location (basic property of minimum
of two independent exponential random variables). Let L be the location of the first transition
from i and let T be the time of that transtion. Thus, as in (4.7) of Abate and W 2 [3],

f̂i(s) ≡ E[e−sTi ] = P (L = i− 1)E[e−sT ] + P (L = i + 1)
(
E[e−sT ]f̂i+1(s)f̂i(s)

)

=
(

µi

λi + µi

)(
λi + µi

λi + µi + s

)

(
λi

λi + µi

)(
λi + µi

λi + µi + s

)
f̂i+1(s)f̂i(s), (15)

from which we obtain, by simple algebra, the recursive relation

f̂i(s) =
µi

λi + µi + s− λif̂i+1(s)
. (16)

This would be a finite recursion if there were only finitely many states, but the recursion never
ends if there are infinitely many states. Nevertheless, for conventional BD processes, we expect
a finite limit.

To put this in one of the standard continued fraction (CF) representations, we want no
constant factor before f̂i+1(s) in (16). To understand the basic recursion, write out the next
step:

f̂i(s) =
µi

λi + µi + s− λiµi+1

λi+1+µi+1+s−λi+1f̂i+2(s)

. (17)
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and the step after that

f̂i(s) =
µi

λi + µi + s− λiµi+1

λi+1+µi+1+s− λi+1µi+2

λi+2+µi+2+s−λi+2f̂i+3(s)

. (18)

To obtain a clean orderly representation, we rewrite the last version as

f̂i(s) = − 1
λi−1




−λi−1µi

λi + µi + s + −λiµi+1

λi+1+µi+1+s+
−λi+1µi+2

λi+2+µi+2+s−λi+2f̂i+3(s)


 . (19)

We then express the result as

wi = ciΦ∞n=i

an

bn
or wi = ci

(
ai

bi+
ai+1

bi+1+
ai+2

bi+2+
ai+3

bi+3+
. . .

)
(20)

for
ci ≡ − 1

λi−1
, an ≡ −λn−1µn and bn ≡ λn + µn + s, n ≥ i. (21)

For a CF (sometimes called a generalized CF, because a CF can be expressed in more than
one way), we write

w = Φ∞n=1

an

bn
or w =

a1

b1+
a2

b2+
a3

b3+
a4

b4+
. . . (22)

There is a relatively simple recursion for calculating the successive approximants due to
Euler in 1737, namely,

wn =
Pn

Qn
, (23)

where P0 = 0, P1 = a1, Q0 = 1, Q1 = b1 and

Pn = bnPn−1 + anPn−2 and Qn = bnQn−1 + anQn−2, n ≥ 2. (24)

Example 3.1 A continued fraction for π is (22) with

a1 = 4, b1 = 1, an = (n− 1)2 and bn = 2 for all n ≥ 2. (25)

A continued fraction for e is b0 + w for w in (23) with b0 = 2,

an = 1 for n ≥ 1 and {bk : k ≥ 1} = {1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . .} (26)

This is sequence A003417 in the online encyclopedia of sequences (OEIS).

For more on integer sequences and stochastic models, see Abate and W 2 [4, 5].

4 Comparing BD processes

Two BD process can be compared using a sample-path stochastic ordering if the smaller one
has lower birth rates and higher death rates. To do the construction, use thinning of a Poisson
process whenever the two processes are in the same state i. Let potential transitions be
generated with a Poisson process having rate (λ(1)

i

∨
λ

(2)
i ) + (µ(1)

i

∨
µ

(2)
i ). Make the upper

process have a birth whenever the lower process has a birth; make the lower process have
a death whenever the upper process has a death. In that way the two processes each have
the given probability law, but the sample paths are ordered w.p.1. This is a variant of the
comparisons in W 2 [20].
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Theorem 4.1 (sample path stochastic order for BD processes) For i = 1, 2, let λ
(i)
k , k ≥ 0

and µ
(i)
k , k ≥ 1, be birth and death rates for two BD processes. If

λ
(1)
k ≤ λ

(2)
k and µ

(1)
k ≥ µ

(2)
k for all k, (27)

then there exists special versions of these BD processes {X(i)(t) : t ≥ 0} constructed on the
same sample space such that each separately has the correct probability law as a BD process,
while

P (X(1)(t) ≤ X(2)(t) for all t ≥ 0) = 1. (28)

Here is a typical corollary. Let T
(i)
j,k be the first passage time from state j to state k in BD

process i. Let ≤st denote stochastic order; see Chapter 9 of Ross.

Corollary 4.1 (stochastic order of first passage for BD processes) Consider two BD processes
with birth and death rates ordered as in (27). If j ≤ k, then

T
(2)
j,k ≤st T

(1)
j,k . (29)

If j ≥ k, then
T

(1)
j,k ≤st T

(2)
j,k . (30)

Proof. We establish only (29). Apply Theorem 4.1 to get (28). If j ≤ k, then for that special
construction get

P (T (2)
j,k ≤ T

(1)
j,k )) = 1. (31)

As an immediate consequence, get

P (T (2)
j,k > a) ≤ P (T (1)

j,k > a) for all a, (32)

which is equivalent to the stated conclusion. Notice that the last statement applies to the
distribution of the two processes viewed separately; i.e., it no longer depends on the special
construction.

5 Spectral Representation

Time-reversible CTMC’s such as BD processes have spectral representations where the eigen-
values and eigenvectors are all real. See Chapter 3 of Keilson [13] or see Abate and W 2 [2]
and references therein. These spectral representations provide explicit representations for the
transient transition probabilities and explicit representations for the rate of convergence to the
steady-state probability vector.

There is a corresponding algebraic approach to DTMC’s too. The Perron-Frobenius theory
of positive matrices can be applied. The rough idea is to diagonalize the transition matrix P
in DTMC’s or P (t) in CTMC’s; i.e., we write

P = UΛU−1, (33)

where the diagonal elements of Λ are the eigenvalues of P , while U and U−1 are made up of
the associated eigenvectors. Then

Pn = UΛnU−1, n ≥ 1. (34)
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This structure occurs in a relatively simple form for reversible Markov chains. For sim-
plicity, suppose that the state space is finite of dimension m. We now give additional details,
following Keilson. First, we consider an irreducible DTMC with transition matrix P and
unique stationary probability vector π, satisfying π = πP . Let πD be the m × m diagonal
matrix with ith diagonal element πi and all off-diagonal elements 0. Then observe that the
DTMC P is reversible if and only if the m × m matrix S ≡ πDP is a symmetric
matrix. (A matrix S is symmetric if it equals its transpose, i.e., if Si,j = Sj,i for all i and
j.) We then can apply the finite spectral theorem for real symmetric matrices. The finite-
dimensional spectral theorem says that any symmetric matrix whose entries are real can be
diagonalized by an orthogonal matrix, i.e., we can write (33) where U and U−1 are real and
nonsingular with UU−1 = I and Λ is a diagonal matrix with real eigenvalues. The columns
of U are right eigenvector of P while the rows of U−1 are left eigenvectors of P . We can then
apply the Perron-Frobenius theory to conclude that there is one eigenvalue taking the value 1
and all the other eigenvalues satisfy |λi| < 1. We thus have the explicit representations

Pi,j =
m∑

k=1

Ui,kU
−1
k,j λk and Pn

i,j =
m∑

k=1

Ui,kU
−1
k,j λn

k = πj +
m−1∑

k=1

ai,jλ
n
k , (35)

where λk are real numbers and, in the last expression, ai,j are real numbers and |λk| < 1, so
that the last expression gives an explicit rate of convergence to steady state.

A corresponding story holds for CTMC’s. For finite-state CTMC’s, that can always be
achieved by uniformization (as discussed in §3.4 of the CTMC lecture notes). We can represent
a CTMC as a Poisson randomization of a DTMC. We can write the CTMC as

X(t) = YN(t), t ≥ 0, (36)

where {Yn : n ≥ 0} is a DTMC and {N(t) : t ≥ 0} is a Poisson process. We let the rate of the
Poisson process be r, where r > |Qi,i| for all i. We let the transition matrix of the DTMC be
Pi,j ≡ Qi,j/r for all i 6= j. That is we let P = I + r−1Q. We then have

Pi,j(t) =
∞∑

k=0

P k
i,j

e−rt(rt)k

k!
, (37)

as in (3.28) of the lecture notes. Hence the spectral representation for the DTMC carries over
directly to the CTMC

Pi,j(t) =
∞∑

k=0

P k
i,j

e−rt(rt)k

k!

=
∞∑

k=0

(
m∑

l=1

Ui,lU
−1
l,j λk

l

)
e−rt(rt)k

k!

=
m∑

l=1

Ui,lU
−1
l,j

∞∑

k=0

λk
l

e−rt(rt)k

k!

=
m∑

l=1

Ui,lU
−1
l,j e−rt

∞∑

k=0

(λlrt)k

k!

=
m∑

l=1

Ui,lU
−1
l,j e−r(1−λl)t. (38)
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Since |λi| ≤ 1 for all i and equals 1 for only one i, we have

Pi,j(t) = αj +
m−1∑

l=1

ai,je
−rlt, t ≥ 0, (39)

where rj > 0 for all j and ai,j is a real number for all i and j.

6 Diffusion Approximations in BD Processes

A diffusion process can be regarded as a continuous analog of a BD process. In turn, a BD
process can be regarded as a discrete analog of a diffusion process; e.g., see Feller [10]. It is
natural to consider diffusion approximations for BD processes; see [8, 17, 19].

7 Quasi-Birth-and-Death (QBD) Processes

A QBD process is a CTMC whose rate matrix has a block tri-diagonal form, so that the QBD
process is a matrix analog of a BD process; see the book by Latouche and Ramaswami [14].

The books by Neuts [15, 16] discuss far-reaching matrix generalizations of the M/G/1 and
GI/M/1 Markov chains. These are Markov chains that have the same kind of structure as
these particular queueing Markov chains, where the elements are replaced by entire matrices.
The matrices in block form are upper-triangular or lower-triangular. The QBD is a special
case of both. See Section XI.3 of [6] for a quick treatment. See [14] for the theory of QBD
processes. See Perry and W 2 [18] for an application of QBD processes in fluid approximations
based on a stochastic averaging principle.
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