
IEOR 6711: Stochastic Models, I

Fall 2010, Professor Whitt, Final Exam

There are four questions, each with several parts. Questions 2 and 4 are longer than the
others and thus count more.

1. The Eight (8) Subway Line. (20 points)

A new subway line has been added to the West Side for the convenience of Columbia
students. It has six stations. Going north, it starts at 88th street (station 1) and has stops at
98th street (station 2), 108th street (station 3), 118th street (station 4), 128th street (station
5) and 138th street (station 6). It can change tracks and directions at the two end points, so
that the trains travel in a loop, going north from station 1 to station 6 and then back south
from station 6 to station 1, where it then goes north again. Subway trains follow a strict
schedule: The travel time between successive stations is constant, equal to 2 minutes. There
are two subway trains, one starting north from station 1 and the other starting south from
station 6. Thus, at station 2, the intervals between successive trains in a specified direction
are exactly 10 minutes. That is, a southbound train comes to station 2 every 10 minutes and
also a northbound train comes to station 2 every 10 minutes. At the end stations, the story is
different; e.g., at station 1 all arriving subway trains are southbound from 2, but one arrives
every 10 minutes.

Customers arrive at station i to use the subway according to a Poisson process with rate
λi per minute. Suppose that the subway has unlimited capacity and that the time to load and
unload passengers can be ignored. Suppose that each customer entering station i gets off at
station j with probability Pi,j , independently of all other customers (where Pi,i = 0). Suppose
that people get on subways only in the direction they want to go.

(a) Give an expression for the expected number of customers to get on the subway (neces-
sarily going north) at each visit to station 1.

(b) Suppose that 8 customers get on the subway at station 1 (necessarily going north) at
time t. What is the probability that exactly 3 of these customers had to wait more than 4
minutes before getting on the subway?

(c) Give an expression for the probability that the number of customers getting off the
northbound subway at a visit to station 4 is exactly j.

(d) Give an expression for the probability that, simultaneously, the number of customers
getting off the northbound subway at a visit to station 4 is j and the number getting off at
the next stop, at station 5, is k.

(e) Suppose that λi = 2 for all i and Pi,j = 1/5 for all j with j 6= i. How can you determine
a convenient accurate approximation for the probability that the number of customers getting
off the northbound subway at one specified visit to station 5 is greater than 20? Is that
probability more than 1/20?



2. The Movement of a Taxi (30 points)

A continuously operating taxi serves three locations: A, B and C.

idle times:
The taxi sits idle at each location an exponential length of time before departing to make a
trip to one of the other two locations. The mean idle times are 2 minutes at A, 1 minute at B
and 2 minutes at C. The idle times and travel times are mutually independent.

transition probabilities:
From A, the taxi next goes to B with probability 1/3 and to C with probability 2/3.
From B, the taxi next goes to A with probability 1/2 and to C with probability 1/2.
From C, the taxi next goes to B with probability 1/3 and to A with probability 2/3.

travel times:
The travel times between A and B in either direction are uniformly distributed in the interval
[5, 15] minutes.
The travel times between A and C in either direction are uniformly distributed in the interval
[20, 60] minutes.
The travel times between B and C in either direction are uniformly distributed in the interval
[20, 40] minutes.

(a) What is the long-run proportion of all taxi trips starting from location A?

(b) What is the long-run proportion of time that the taxi’s most recent stop was at location
A?

(c) What is the long-run proportion of time that the taxi is idle at location A?

(d) Let Pt(A) be the probability that the taxi is idle at location A at time t. Does Pt(A)
converge to a proper limit as t →∞? Why or why not? If so, what is that limit?

(e) What is the rate at which the taxi makes trips departing from location A heading
toward location B?

(f) What is the long-run conditional probability that the taxi will come next to location
B, given that the taxi is now traveling away from location A?

(g) What is the long-run proportion of time that the taxi is traveling from A to C and the
remaining time before getting to C is at least 30 minutes?

(h) Which of the previous answers would change if the travel times were changed from
uniform to exponential with the same mean? (You need not do any new computations?)

(i) Suppose that the travel times are indeed changed from uniform to exponential with the
same mean. Let X(t) be the state of the taxi at time t, e.g., idle at A or traveling from A to
B. Give an explicit formula (not numerical value) for the conditional probability

P (X(2) = idle atB and X(7) = idle atC|X(0) = idle atA).
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3. Uniform random numbers (20 points)

Consider a sequence of i.i.d. uniform random numbers {Un : n ≥ 1}, where Un is uniformly
distributed on the interval [0, 1]. Let Sn be the sum of the first n uniform numbers, i.e.,

Sn ≡ U1 + U2 + · · ·+ Un, n ≥ 1,

with S0 ≡ 0. Let Fn be the fractional part of Sn, defined by

Fn ≡ Sn − bSnc, n ≥ 1,

where bxc is the floor function, yielding the greatest integer less than or equal to the real
number x. Let Rn be the remainder beyond n of the first partial sum to exceed n. That is let
Zn be the least integer k such that Sk > n, and let

Rn ≡ SZn − n, n ≥ 1.

Let ⇒ denote convergence in distribution.

(a) Is the stochastic process {Fn : n ≥ 1} a Markov process? Why or why not?

(b) Is the stochastic process {Rn : n ≥ 1} a Markov process? Why or why not?

(c) Prove that there exists a random variable F such that Fn ⇒ F as n →∞ and determine
the probability distribution of the random variable F .

(d) Prove that there exists a random variable R such that Rn ⇒ R as n →∞ and determine
the probability distribution of the random variable R.

(e) Compare the probability distributions of the random variables F and R. Are the
distributions the same? Are the distributions stochastically ordered? Or do neither of these
relations hold?

4. New Airport Security Check (30 points)

A new elaborate airport security check has been designed with three inspection stations.
At each inspection station, passengers are processed one at a time in order of arrival at that
station. There is ample waiting space at each station. Suppose that the processing times at
the stations are exponentially distributed random variables. Let the mean processing times
be 10 seconds at station 1, 20 second at station 2 and 10 minutes at station 3 (more serious
inspection).

Suppose that passengers may enter the security check system at either station 1 or station
2. Suppose that passengers arrive at station 1 according to a Poisson process with rate 2 per
minute; suppose that passengers arrive at station 2 according to a Poisson process with rate 1
per minute.

Suppose that 1/4 of all passengers undergoing inspection at station 1 must repeat inspection
at station 1, where they are required to go to the end of the queue at station 1. Suppose that
1/2 of all passengers undergoing inspection at station 1 must go next to inspection at station
2, where they are required to go to the end of the queue at station 2. Suppose that 1/100 of all
passengers completing inspection at station 1 must go next to inspection at station 3. Suppose
that 1/2 of all passengers undergoing inspection at station 2 must go next to inspection at
station 1, where they are required to go to the end of the queue at station 1. Suppose that no
customers completing inspection at station 2 need to immediately repeat inspection at station
2. Suppose that 1/50 of all passengers completing inspection at station 2 must go next to

3



inspection at station 3. The remaining passengers completing inspection at stations 1 and
2 leave the system. All passengers completing inspection at station 3 leave the system after
completing inspection at station 3. Suppose that 1/1000 passengers completing inspection at
station 3 are classified as a serious security risk.

(a) Specify the customary (required) assumptions on the model elements that make the
stochastic process recording the number of passengers at each of the three stations a continuous-
time Markov chain (CTMC), and specify the model. Henceforth assume that these assumptions
are in force.

(b) Given this model, what is the long-run proportion of time that station 2 is busy? What
is the long-run proportion of time that station 1 is busy? What is the long-run average waiting
time per passenger to complete the entire inspection process.

(c) How do long-run proportions of time that stations 1 and 2 are busy in part (b) change
when the arrival rate of passengers at station 1 from outside the system is changed from 2 per
minute to 1 per minute? Henceforth (for all the remaining questions), assume that the arrival
rate at station 1 from outside the system is indeed 1 per minute.

(d) Given the adjusted model in part (c), what is the probability that there is simultaneously
1 passenger at station 1, 2 passengers at station 2 and 3 passengers at station 3 at some time
t after the system has been operating for a long time?

(e) Given the model, what is the long-run proportion of all arriving passengers that will be
classified as a serious security risk?

(f) If possible, construct the reverse-time Markov chain associated with the CTMC specified
in part (a), as adjusted in part (c).

(g) Identify conditions, if possible, under which the stochastic process recording the number
of passengers at each of the three stations is a time-reversible continuous-time Markov chain.

(h) Indicate how to efficiently prove that the result in (d) is correct.
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