
IEOR 6711: Stochastic Models, I

Fall 2010, Professor Whitt, Final Exam

SOLUTIONS

There are four questions, each with several parts. Question 2 is longer than the others and
thus counts more.

1. The Eight (8) Subway Line.

A new subway line has been added to the West Side for the convenience of Columbia
students. It has six stations. Going north, it starts at 88th street (station 1) and has stops at
98th street (station 2), 108th street (station 3), 118th street (station 4), 128th street (station
5) and 138th street (station 6). It can change tracks and directions at the two end points, so
that the trains travel in a loop, going north from station 1 to station 6 and then back south
from station 6 to station 1, where it then goes north again. Subway trains follow a strict
schedule: The travel time between successive stations is constant, equal to 2 minutes. There
are two subway trains, one starting north from station 1 and the other starting south from
station 6. Thus, at station 2, the intervals between successive trains in a specified direction
are exactly 10 minutes. That is, a southbound train comes to station 2 every 10 minutes and
also a northbound train comes to station 2 every 10 minutes. At the end stations, the story is
different; e.g., at station 1 all arriving subway trains are southbound from 2, but one arrives
every 10 minutes.

Customers arrive at station i to use the subway according to a Poisson process with rate
λi per minute. Suppose that the subway has unlimited capacity and that the time to load and
unload passengers can be ignored. Suppose that each customer entering station i gets off at
station j with probability Pi,j , independently of all other customers (where Pi,i = 0). Suppose
that people get on subways only in the direction they want to go.

(a) Give an expression for the expected number of customers to get on the subway (neces-
sarily going north) at each visit to station 1.

————————————————————————-
Let N1(t) be the number of customers that arrive to station 1 in the time interval [0, t].

This is a Poisson process with rate λ1. The times between successive subways at station 1 is
10 minutes. Each subway comes from station 2 and then heads back north to station 2. The
expected number that get on a subway at each visit to station 1 is the expected number of
arrivals over an interval of length 10 minutes. Hence the mean is

E[N1(10)] = 10λ1.

————————————————————————-

(b) Suppose that 8 customers get on the subway at station 1 (necessarily going north) at
time t. What is the probability that exactly 3 of these customers had to wait more than 4
minutes before getting on the subway?

————————————————————————-
Given that 8 customers got on the subway at time t, there must have been 8 arrivals

in the 10-minute interval [t − 10, t]. Given this number, the actual arrival times of the 8
customers are distributed as independent random variables, each uniformly distributed over
the ten-minute interval. The probability that each customer had to wait more than 4 minutes



is thus 6/10 = 0.6. The probability that exactly 3 of these customers had to wait more than
4 minutes before getting on the subway is given by the binomial probability

b(3; 8, 0.6) =
8!

3!5!
(0.6)3(0.4)5 = 0.12386

(This is exploiting one of the basic properties of the Poisson process.)

————————————————————————-

(c) Give an expression for the probability that the number of customers getting off the
northbound subway at a visit to station 4 is exactly j.

————————————————————————-
The number of people to get on the northbound subway at station at station i that get

off at station 4 is an independent thinning (with probability Pi,4) of the number that gets on
the northbound subway at station i, which has mean 10λi, and is thus itself a Poisson random
variable with mean 10λiPi,4. The numbers for different starting stations i are independent
Poisson random variables, because the arrival processes at the different stations are independent
Poisson processes. Finally, the sum of independent Poisson random variables is again a Poisson
random variable with a mean equal to the sum of the component means. Let D4 be the number
of people to get off the northbound subway at station 4. The expected number of customers
to get off is Thus,

P (D4 = j) =
e−m4mj

4

j!

where
m4 = E[D4] = 10λ1P1,4 + 10λ2P2,4 + 10λ3P3,4.

————————————————————————-

(d) Give an expression for the probability that, simultaneously, the number of customers
getting off the northbound subway at a visit to station 4 is j and the number getting off at
the next stop, at station 5, is k.

————————————————————————-
Independent thinnings of Poisson random variables become independent Poisson random

variables. Thus these are independent random variables. Hence,

P (D4 = j, D5 = k) =
e−m4mj

4

j!
× e−m5mj

5

j!

where m4 is defined in part (e) and

m5 = E[D5] = 10λ1P1,5 + 10λ2P2,5 + 10λ3P3,5 + 10λ4P4,5.

————————————————————————-
(e) Suppose that λi = 2 for all i and Pi,j = 1/5 for all j with j 6= i. How can you determine

a convenient accurate approximation for the probability that the number of customers getting
off the northbound subway at one specified visit to station 5 is greater than 20? Is that
probability more than 1/20?

————————————————————————-
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Applying part (d), we can insert these numbers to get

m5 = E[D5] = 10λ1P1,5 + 10λ2P2,5 + 10λ3P3,5 + 10λ3P3,5 = 4× (10× 2× 1
5
) = 16.

Hence, D5 has a Poisson distribution with a mean of m5 = E[D5] = 16. We can now use a
normal approximation for the Poisson distribution, which is appropriate when the mean is not
too small.

P (D5 > 20) = P

(
D5 −E[D5]√

V ar(D5)
>

20−E[D5]√
V ar(D5)

)

≈ P

(
N(0, 1) >

20−E[D5]√
V ar(D5)

)
= P

(
N(0, 1) >

20− 16√
16

)

= P (N(0, 1) > 1) ≈ 0.16

Even without a table, you should know that P (N(0, 1) > 1) > 0.05.
For a slightly more refined approximation, we could account for the integer-valued random

variable that we are dealing with. We would then look at

P (D5 > 20) = P (D5 > 20.5) ≈ P (N(0, 1) > (20.5− 16)/4) = P (N(0, 1) > 1.125) ≈ 0.13,

which is still well above 0.05.

————————————————————————-

2. The Movement of a Taxi

A continuously operating taxi serves three locations: A, B and C.

idle times:
The taxi sits idle at each location an exponential length of time before departing to make a
trip to one of the other two locations. The mean idle times are 2 minutes at A, 1 minute at B
and 2 minutes at C. The idle times and travel times are mutually independent.

transition probabilities:
From A, the taxi next goes to B with probability 1/3 and to C with probability 2/3.
From B, the taxi next goes to A with probability 1/2 and to C with probability 1/2.
From C, the taxi next goes to B with probability 1/3 and to A with probability 2/3.

travel times:
The travel times between A and B in either direction are uniformly distributed in the interval
[5, 15] minutes.
The travel times between A and C in either direction are uniformly distributed in the interval
[20, 60] minutes.
The travel times between B and C in either direction are uniformly distributed in the interval
[20, 40] minutes.

Please provide explicit numerical answers to all questions below, showing your method,
unless indicated otherwise.

(a) What is the long-run proportion of all taxi trips starting from location A?
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————————————————————
The transition matrix among locations, based on the transition probabilities given directly

above, is

P =
A
B
C




0 1/3 2/3
1/2 0 1/2
2/3 1/3 0




By symmetry, it is evident that the stationary vector must satisfy πA = πC . We thus easily
solve π = πP to get π = (3/8, 2/8, 3/8). The long-run proportion of all trips starting from A
is πA = 3/8.

————————————————————

(b) What is the long-run proportion of time that the taxi’s most recent stop was at location
A?

————————————————————
We can solve this problem in (at least) two ways. First, in the context of the three states

defined in part (a), we can compute the mean time spent in each state. We get the mean
vector

m ≡ (mA,mB,mC) = (32, 21, 116/3).

We then apply Theorem 4.8.3 of Ross to get the limiting probability. Let αA be the long-run
proportion of time that the last stop was in location A. (The taxi may be idle at A or traveling
away from A, toward either B or C.) We then have by Theorem 4.8.3 of Ross that

αA =
πAmA

πAmA + πBmB + πCmC
=

(96/8)
(254/8)

=
96
254

=
48
127

≈ 0.378

The second way is to first increase the number of states to distinguish between being idle
and traveling. That is done in part (c) below. After doing that, the answer becomes the
long-run proportion of time the taxi is in one of the three states A, (A,B) and (A,C), where
A means idle at A and (A,B) means traveling from A to B. From the details given below in
part (c), we see that this long run proportion is

(96/16)
(254/16)

=
96
254

=
48
127

≈ 0.378

Fortunately, the answers agree.

————————————————————

(c) What is the long-run proportion of time that the taxi is idle at location A?

————————————————————
Again, we can solve this in several ways. For this question, it is convenient to add six more

states: (A,B), (A,C), (B, A), (B, C), (C,A) and (C,B), with (A,B) meaning that the taxi is
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traveling from A to B. We then have the 9-state transition matrix

P =

A
B
C

(A,B)
(A, C)
(B,A)
(B, C)
(C, A)
(C, B)




0 0 0 1/3 2/3 0 0 0 0
0 0 0 0 0 1/2 1/2 0 0
0 0 0 0 0 0 0 2/3 1/3
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0




From one of the three locations, we go to traveling; from traveling, we go next to one of the
three locations. From the answer to part (a), it is easy to determine the stationary probability
vector for this 9× 9 chain. Since we are at the locations on half the transitions, we divide the
previous probabilities by 2. We then get π(A,B) = πAPA,B using the 3× 3 transition matrix on
the right, and so forth. Hence, it is easy to see that the stationary probability vector for this
9× 9 discrete-time Markov chain must be

π = (3/16, 2/16, 3/16, 1/16, 2/16, 1/16, 1/16, 2/16, 1/16).

This is also easily verified by direct calculation: We see that indeed π = πP for this 9-state
DTMC. (This representation plays a role in part (i) below, so I am anticipating that in my
approach, but nevertheless this approach is natural.)

We are now ready to answer the question. Let αA be the long-run proportion of time spent
by the taxi idle at location A. We then have by Theorem 4.8.3 of Ross in this more detailed
context that

αA =
πAmA∑

i πimi
,

where mi is the mean time spent in state i. The mean vector is

m = (mA,mB,mC ,m(A,B),m(A,C),m(B,A), m(B,CB), m(C,A),m(C,B)) = (2, 1, 2, 10, 40, 10, 30, 40, 30).

Hence,

αA =
(3/16)2∑

i πimi
=

(6/16)
254/16

=
6

254
=

3
127

≈ 0.0236

On the other hand, we can exploit renewal theory directly. We can start by identifying an
embedded renewal process. Let the times of successive arrivals to A constitute renewals. We
can write

αA =
mA

mA,A
so thatmA,A =

mA

αA
=

32
96/254

=
254
3

,

applying part (b). We then write

E[reward per cycle]
E[length of cycle]

=
2

254/3
=

6
254

=
3

127
≈ 0.0236

————————————————————

(d) Let Pt(A) be the probability that the taxi is idle at location A at time t. Does Pt(A)
converge to a proper limit as t →∞? Why or why not? If so, what is that limit?

————————————————————
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The answer is YES by Proposition 4.8.1, which in turn is implied by the limit theorem
for alternating renewal processes, Theorem 3.4.4, which in turn is implied by the key renewal
theorem. The limit is the same as the answer in part (b). First, all the time random variables
have densities, so there is no problem with non-lattice. The alternating renewal process step
is useful, because the function h(t) in the renewal equation that must be d.R.i. (directly
Riemann integrable) is nondecreasing and bounded, which is a convenient condition for d.R.i.
Specifically, the renewal equation is

g(t) = h(t) +
∫ t

0
g(t− s) dF (s),

and its solution is

g(t) = h(t) +
∫ t

0
h(t− s) dm(s),

where here g(t) = Pt(A) and h(t) = P (U > t), where U is the length of the “up” or “on”
interval in the alternating renewal process with cycle cdf F and m(t) is the renewal function
associated with F .

————————————————————

(e) What is the rate at which the taxi makes trips departing from location A heading
toward location B?

————————————————————
First, we might need to clarify that rate means per unit of time. The long-run rate that

the taxi makes trips from A is 1/mA,A, where mA,A is the mean time between arrivals to A.
The instants between arrivals to A can serve as an embedded renewal process. A proportion
PA,B of these visits are followed by a trip to B. So the long-run rate of trips from A to B is

PA,B/mA,A.

On the other hand, we know that αA = mA/mA,A by Proposition 4.8.1. Hence,

PA,B

mA,A
=

αAPA,B

mA
=

(3/127)(1/3)
2

=
1

254
.

————————————————————

(f) What is the long-run conditional probability that the taxi will come next to location
B, given that the taxi is now traveling away from location A?

————————————————————

lim
t→∞P (X(t) = (A, B)|X(t) ∈ {(A,B) ∪ (A, C)}) =

limt→∞ P (X(t) = (A,B))
limt→∞ P (X(t) ∈ {(A,B) ∪ (A,C)})

=
π(A,B)m(A,B)

π(A,B)m(A,B) + π(A,C)m(A,C)
=

(1/16)10
(1/16)10 + (2/16)40

=
1
9
.

Note that this conditional probability does not simply equal PA,B = 1/3. We need to take
time into account.

————————————————————
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(g) What is the long-run proportion of time that the taxi is traveling from A to C and the
remaining time before getting to C is at least 30 minutes?

————————————————————
This is a variant of Theorem 4.8.4 in Ross. Let m(A,C),(A,C) be the mean time between

beginning a trip from A to C. Let TA,C be the uniformly distributed travel time on a trip
from A to C. let mA,C ≡ E[TA,C ]. We already have two expressions for α(A,C), one being
mA,C/m(A,C),(A,C) and the other from the reasoning in part (c), involving Theorem 4.8.3 of
Ross.

lim
t→∞P (X(t) = (A, C), Y (t) > 30) =

E[(TA,C − 30)+]
m(A,C),(A,C)

=

∫∞
0 P ((TA,C − 30)+ > y) dy

m(A,C),(A,C)

=

∫ 30
0 P (U(20, 60)− 30 > y dy

m(A,C),(A,C)

=

∫ 30
0 (30− y)/40 dy

m(A,C),(A,C)

=
(900)/80)

m(A,C),(A,C)
=

(900)/80)α(A,C)

m(A,C)

=
(

900
80

)(
(80/254)

40

)
=

(
45
4

)(
1

127

)
=

45
508

≈ 0.089

————————————————————

(h) Which of the previous answers would change if the travel times were changed from
uniform to exponential with the same mean? (You need not do any new computations?)

————————————————————
Only the previous part, part (g), would have a different answer. All the others had formulas

that depend only on the mean travel time.

————————————————————

(i) Suppose that the travel times are indeed changed from uniform to exponential with the
same mean. Let X(t) be the state of the taxi at time t, e.g., idle at A or traveling from A to
B. Give an explicit formula (not numerical value) for the conditional probability

P (X(2) = idle atB and X(7) = idle atC|X(0) = idle atA).

————————————————————
Under the new exponential assumption, the SMP using the 9 states becomes a CTMC.

With the state notation in the solution to part (c), we have

P (X(2) = idle atB and X(7) = idle atC|X(0) = idle atA)
≡ P (X(2) = B, X(7) = C|X(0) = A) = PA,B(2)PB,C(5),

where Pi,j(t) ≡ P (X(t + s) = j|X(s) = i) is the transition probability for the CTMC. The
transition probability Pi,j(t) in turn is an element of the transition matrix P (t), which can
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be obtained by solving one of the ODE’s Ṗ (t) = QP (t) or Ṗ (t) = P (t)Q. More directly, the
solution of these ODE’s can be represented explicitly as the matrix exponential

P (t) = eQt ≡
∞∑

k=0

Qktk

k!
,

where Q is the 9× 9 rate matrix for the CTMC. Here the rate matrix is

Q =

A
B
C

(A,B)
(A,C)
(B,A)
(B,C)
(C, A)
(C, B)




−1/2 0 0 1/6 2/6 0 0 0 0
0 −1 0 0 0 1/2 1/2 0 0
0 0 −1/2 0 0 0 0 2/6 1/6
0 1/10 0 −1/10 0 0 0 0 0
0 0 1/40 0 −1/40 0 0 0 0

1/10 0 0 0 0 −1/10 0 0 0
0 0 1/30 0 0 0 −1/30 0 0

1/40 0 0 0 0 0 0 −1/40 0
0 1/30 0 0 0 0 0 0 −1/30




We get these entries as follows. For the transition rate from A to (A,B), we multiply the
reciprocal of the mean idle time by the transition probability, getting 1/2×1/3 = 1/6. For the
transition rate from (A, B) to B, we use the reciprocal of the mean travel time. The diagonal
entries are minus the off-diagonal row sum.

Alternatively in this framework you could use a uniformization expression in the 9-state
framework above. It is also possible to give a more complicated SMP expression, without
introducing the extra states, but that is rather cumbersome.

————————————————————

3. Uniform random numbers

Consider a sequence of i.i.d. uniform random numbers {Un : n ≥ 1}, where Un is uniformly
distributed on the interval [0, 1]. Let Sn be the sum of the first n uniform numbers, i.e.,

Sn ≡ U1 + U2 + · · ·+ Un, n ≥ 1,

with S0 ≡ 0. Let Fn be the fractional part of Sn, defined by

Fn ≡ Sn − bSnc, n ≥ 1,

where bxc is the floor function, yielding the greatest integer less than or equal to the real
number x. Let Rn be the remainder beyond n of the first partial sum to exceed n. That is let
Zn be the least integer k such that Sk > n, and let

Rn ≡ SZn − n, n ≥ 1.

Let ⇒ denote convergence in distribution.
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(a) Is the stochastic process {Fn : n ≥ 1} a Markov process? Why or why not?

————————————————————
Yes, it is a Marlov process. The conditional probability distribution of Fn+1 given that

Fn = x, 0 ≤ x < 1, and given Fk, 1 ≤ k < n, depends only on Fn = x. In particular,

Fn+1 = x + y if Fn = x and Un+1 = y withx + y < 1,

while
Fn+1 = x + y − 1 if Fn = x and Un+1 = y withx + y ≥ 1,

where Un+1 is independent of U1, . . . Un and thus also of F1, . . . Fn.

————————————————————

(b) Is the stochastic process {Rn : n ≥ 1} a Markov process? Why or why not?

————————————————————
Yes, it is a Markov process. The conditional probability distribution of Rn+1 given that

Rn = x, 0 ≤ x < 1, and given Rk, 1 ≤ k < n, depends only on Rn = x. In particular,

Rn+1 = x + y − 1 if Rn = x and UZn+1 = y withx + y > 1,

where UZn+1 is independent of U1, . . . UZn and thus also of R1, . . . Rn,

Rn+1 = x+y1+y2−1 if Rn = x, UZn+1 = y1 and UZn+2 = y2 withx+y1 ≤ 1 < x+y1+y2,

where UZn+i is independent of U1, . . . UZn and thus also of R1, . . . Rn, and, more generally,

Rn+1 = x +
k∑

i=1

yi − 1 if Rn = x, UZn+i = yi, 1 ≤ i ≤ k withx +
k−1∑

i=1

yi ≤ 1 < x +
k∑

i=1

yi.

where UZn+i is independent of U1, . . . UZn and thus also of R1, . . . Rn,

————————————————————

(c) Prove that there exists a random variable F such that Fn ⇒ F as n →∞ and determine
the probability distribution of the random variable F .

————————————————————
The stochastic process {Fn : n ≥ 1} is a discrete-time Markov process, but the state space

is uncountably infinite, so that it falls outside of the scope of the material we have covered.
We must instead just think about what is going on. First, we directly have F1 = S1 ≡ U1

uniformly distributed and, given that Fn is uniformly distributed, we can easily prove that
the distribution of Fn+1 is again uniformly distributed on [0, 1]. Hence, Fn has a uniform
distribution on [0, 1] for all n. Hence, we trivially have Fn ⇒ F , where F is a random variable
uniformly distributed on [0, 1]; i.e.,

P (F ≤ x) = x, 0 ≤ x ≤ 1.

————————————————————

(d) Prove that there exists a random variable R such that Rn ⇒ R as n →∞ and determine
the probability distribution of the random variable R.
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————————————————————
This is the main part of the question. We should use renewal theory here. The idea is to

recognize that this is a simple and direct application of renewal theory, even if somewhat in a
disguised setting. We are concerned with the residual lifetime at time t = n. The discrete time
framework is a red herring; in this part it plays no role. However, the problem emphasizes the
difference between the two stochastic processes involved.

Notice that the stochastic process {Rn : n ≥ 1} evolves differently than the stochastic
process {Fn : n ≥ 1}. In fact, Rn is the standard excess process in renewal theory, i.e.,

Rn = Y (n), where Y (t) ≡ SN(t)+1 − t, t ≥ 0.

We already know that Y (t) ⇒ Y as t →∞, so it also necessarily does through any subsequence
of time arguments that go to infinity. Thus, Y (n) ⇒ Y as n → ∞ too. If we look at the
stochastic process {1Y (t)≥x : t ≥ 0} for any fixed x, we see that it corresponds to an alternating
renewal process with an initial up time where the process assumes the value 0 and then a down
time, where it assumes the value 0. Hence, the limit follows from the limit for alternating
renewal processes, Theorem 3.4.4 of Ross, which in turn follows from the key renewal theorem.
Since the distribution of the time between renewals is uniform, it is non-lattice. The random
variable R thus has the stationary excess distribution associated with the uniform distribution,
i.e.,

P (R ≤ x) =
1

E[U ]

∫ x

0
P (U > y) dy = 2

∫ x

0
1− y dy = 2x− x2, 0 ≤ x ≤ 1.

————————————————————

(e) Compare the probability distributions of the random variables F and R. Are the
distributions the same? Are the distributions stochastically ordered? Or do neither of these
relations hold?

————————————————————
First, we see that the distributions of F and R are different. The distribution of F is uni-

form, while the distribution of R is the distribution of Ue, having the stationary-excess distri-
bution of a uniform distribution. It is easy to see that these random variables are stochastically
ordered, i.e.

R ≤st F or P (R ≤ x) ≥ P (F ≤ x) for all x,

because
P (R ≤ x) = (2x− x2) ≥ x = P (F ≤ x) for all x, 0 ≤ x ≤ 1.

————————————————————

4. New Airport Security Check (30 points)

A new elaborate airport security check has been designed with three inspection stations.
At each inspection station, passengers are processed one at a time in order of arrival at that
station. There is ample waiting space at each station. Suppose that the processing times at
the stations are exponentially distributed random variables. Let the mean processing times
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be 10 seconds at station 1, 20 second at station 2 and 10 minutes at station 3 (more serious
inspection).

Suppose that passengers may enter the security check system at either station 1 or station
2. Suppose that passengers arrive at station 1 according to a Poisson process with rate 2 per
minute; suppose that passengers arrive at station 2 according to a Poisson process with rate 1
per minute.

Suppose that 1/4 of all passengers undergoing inspection at station 1 must repeat inspection
at station 1, where they are required to go to the end of the queue at station 1. Suppose that
1/2 of all passengers undergoing inspection at station 1 must go next to inspection at station
2, where they are required to go to the end of the queue at station 2. Suppose that 1/100 of all
passengers completing inspection at station 1 must go next to inspection at station 3. Suppose
that 1/2 of all passengers undergoing inspection at station 2 must go next to inspection at
station 1, where they are required to go to the end of the queue at station 1. Suppose that no
customers completing inspection at station 2 need to immediately repeat inspection at station
2. Suppose that 1/50 of all passengers completing inspection at station 2 must go next to
inspection at station 3. The remaining passengers completing inspection at stations 1 and
2 leave the system. All passengers completing inspection at station 3 leave the system after
completing inspection at station 3. Suppose that 1/1000 passengers completing inspection at
station 3 are classified as a serious security risk.

(a) Specify the customary (required) assumptions on the model elements that make the
stochastic process recording the number of passengers at each of the three stations a continuous-
time Markov chain (CTMC), and specify the model. Henceforth assume that these assumptions
are in force.

————————————————————
Here we have an open Jackson Markovian network of single-server queues. You might want

to look at the journal Production and Operations Management, vol. 17, No. 6, November-
December 2008, p. i.

There are two critical assumptions that need to be made:

(i) First, we need to assume that the two Poisson processes and all the service times are
mutually independent. That means that all service times are mutually independent, the two
Poisson processes are independent of each other, and the service times are independent of the
arrival processes.

(ii) Second, we need to assume that we have Markovian routing. We need to assume that
the routing of each passenger after completing processing at any station occurs with probability
equal to the specified proportion, and is independent of the system history up to that time.

Given those assumptions, the model is specified by: (i) the external arrival rates at
each station, given by the vector

(λe,1, λe,2, λe,3) = (2, 1, 0) per minute,

(ii) the vector of number of servers at each station and service rates (per server),

(s1, s2, s3) = (1, 1, 1) and (µ1, µ2, µ3) = (6, 3, 0.1) per minute,

and (iii) the Markovian routing matrix

P =
1
2
3




1/4 1/2 1/100
1/2 0 1/50
0 0 0



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————————————————————

(b) Given this model, what is the long-run proportion of time that station 2 is busy? What
is the long-run proportion of time that station 1 is busy? What is the long-run average waiting
time per passenger to complete the entire inspection process.

————————————————————
In order to determine the long-run performance, we need to first solve for the overall “net”

arrival rates at each station, accounting for the internal flows as well as the external flows. In
other words, we need to solve the traffic rate equations:

Λ = Λe(I − P )−1.

However, we can initially ignore station 3 because there is no flow from station 3 back to
stations 1 and 2. Hence, it suffices to solve two equations in the two unknowns λ1 and λ2:

λ1 = 2 +
λ1

4
+

λ2

2

λ2 = 1 +
λ1

2
.

We easily solve these two equations to get

(λ1, λ2) = (5.0, 3.5) per minute.

We next investigate stability by computing the traffic intensity at each station. We get
the traffic intensities

ρ1 =
λ1

µ1
=

5
6

< 1 and ρ2 =
λ2

µ2
=

3.5
3

=
7
6

> 1.

Since ρ2 > 1, we see that the system is unstable. The queue at station 2 will explode,
diverging to ∞ as t → ∞. Station 2 will always be busy in the long run. Thus the CTMC
fails to converge to a proper steady-state distribution.

Nevertheless, we can continue to see what would happen at station 1. The processing rate
at station 2 will be the maximum possible processing rate of 3 per minute. Half that output
will go back to station 1. Hence, we can determine a revised traffic rate equation for station 1:

λ1 = 2 +
λ1

4
+

λ2

2

= 2 +
λ1

4
+

3
2

so that
3λ1

4
=

7
2

and λ1 =
14
3

.

So, after reducing the flow into 1 from station 2 to 3/2, we get a net flow rate into station 1 of
14/3. The resulting traffic intensity at station 1 is

ρ1 =
14/3

6
=

7
9

< 1.

We first conclude that the model is not stable. A proper steady state does not exist. The
long-run proportion of time that station 2 is busy is 1, while long-run proportion of time that
station 1 is busy is 7/9.
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Finally, we are asked about the long-run average waiting time. The long-run average
is infinite, because a positive proportion will never be served. Passengers leave stations 1
and 2 from station 2 at rate 3 × 1/2 = 1.5; passengers leave stations 1 and 2 from station
1 at rate 14/3 × 1/4 = 7/6. The total rate in is 2 + 1 = 3, while the total rate out is
1.500 + 1.167 = 2.67 < 3.00. So the total population in the system is growing at rate 0.33 per
minute in the long run.

————————————————————

(c) How do long-run proportions of time that stations 1 and 2 are busy in part (b) change
when the arrival rate of passengers at station 1 from outside the system is changed from 2 per
minute to 1 per minute? Henceforth (for all the remaining questions), assume that the arrival
rate at station 1 from outside the system is indeed 1 per minute.

————————————————————
When we solve the new traffic rate equations in the two unknowns λ1 and λ2,

λ1 = 1 +
λ1

4
+

λ2

2

λ2 = 1 +
λ1

2
.

we get
(λ1, λ2) = (3.0, 2.5) per minute.

The associated traffic intensities are

(ρ1, ρ2) = (3.0/6.0, 2.5/3.0) = (1/2, 5/6).

It now remains to consider station 3. The arrival rate at station 3 is

λ3 = λ1 × 1
100

+ λ2 × 1
50

= 0.08 per minute (1)

The mean service time at station 3 is 10 minutes. Hence, the traffic intensity at station 3 is

ρ3 =
λ3

µ3
= (0.08)(10) = 0.8 < 1.

Hence all three traffic intensities are less than 1.
Now the system is stable. Now there exists a proper steady-state distribution. Let Qi(t) be

the number of passengers at station i at time t, either in service or waiting. By Theorem 6.9
in the CTMC notes, the long-run steady-state distribution is the product of three geometric
distributions

P (Q1(t) = j1, Q2(t) = j2, Q3(t) = j3) =
i=3∏

i=1

(1− ρi)ρ
ji
i . (2)

The long-run proportion of time that station i is busy is ρi, where the vector of traffic intensities
is

(ρ1, ρ2, ρ3) = (1/2, 5/6, 4/5).

————————————————————

(d) Given the adjusted model in part (c), what is the probability that there is simultaneously
1 passenger at station 1, 2 passengers at station 2 and 3 passengers at station 3 at some time
t after the system has been operating for a long time?
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————————————————————
As in the solution to part (c), by Theorem 6.9 of the CTMC notes, we have equation (2).

Hence,

P (Q1(t) = 1, Q2(t) = 2, Q3(t) = 3) = (1−(1/2))(1/2)1(1−(5/6))(5/6)2(1−(4/5)(4/5)3 =
2

675
.

————————————————————

(e) Given the model, what is the long-run proportion of all arriving passengers that will be
classified as a serious security risk?

————————————————————
By equation (1) above, the arrival rate to station 3 is 0.08 per minute. The total external

arrival rate is λe,1 + λe,2 = 1 + 1 = 2. Hence, a proportion 0.04 of all arrivals go to station
3. Then 1/1000 of these are deemed a serious security risk. That means the overall long-run
proportion will be

0.04× 0.001 = 0.00004 =
4

100, 000

That is 0.004% of all passengers Of course, that does not tell us what proportion of passengers
should be judged to be a serious security risk, because the effectiveness of the inspection is
not included in the model. This is only how many passengers will be deemed to be a security
risk. There are two possible errors: First, passengers who should be considered a risk may not
be identified. Second, some of these passengers identified as potential risks may not actually
present a problem.

————————————————————

(f) If possible, construct the reverse-time Markov chain associated with the CTMC specified
in part (a), as adjusted in part (c).

————————————————————
The reverse-time chain requires that we start the system in equilibrium with the steady-

state distribution, which has been determined in equation (2) above. When we do so, the
reverse-time chain is also a CTMC, indeed also an open Markovian queueing network, like the
forward process. We define reverse-time external arrival rates by

←−
λ e,i = λi(1−

3∑

j=1

P1,j),

as in (6.18) of the CTMC notes. We let ←−µ i = µi for all i. We make ←−λ i = λi for all i, as in
(6.17) of the CTMC notes. Finally, we let

←−
P j,i =

λiPi,j←−
λ j

for all i and j, as in (6.20) of the CTMC notes.
We can continue and fill in the numerical details. First, we have the net flow rates

←−
λ = λ = (3.00, 2.50, 0.08)

Then we have the external arrival rates for the reverse-time chain
←−
λ e = (18/25, 5/4, 2/25).
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Next we have the reverse-time Markovian routing matrix

←−
P =

1
2
3




1/4 5/12 0
3/5 0 0
3/8 5/8 0




You can then check that the net flow rates satisfy the reverse-time traffic-rate equations

←−
λ j = ←−

λ e,j +
i=3∑

i=1

←−
λ i
←−
P i,j

for each j, 1 ≤ j ≤ 3.

————————————————————

(g) Identify conditions, if possible, under which the stochastic process recording the number
of passengers at each of the three stations is a time-reversible continuous-time Markov chain.

————————————————————
The process is not time-reversible, because of the direction of flow. It is not possible. Each

station alone would be an M/M/1 queue, and the stochastic process Qi(t) : t ≥ 0} would
be a birth-and-death process, and so reversible, but the three-dimensional process cannot be
reversible with the given routing matrix P .

————————————————————

(h) Indicate how to efficiently prove that the result in (d) is correct.

————————————————————
We apply Theorem 6.8 of the CTMC notes. We need to verify conditions (6.9) and (6.10)

there. That needs to be done, just as in the alternate proof of Theorem 6.7 in the CTMC
notes. We do not write all this out here, but ideally the two conditions are specified and then,
even better, is to actually show that these conditions are satisfied.

————————————————————
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