IEOR 6711: Stochastic Models I, Professor Whitt

Solutions to Homework Assignment 10

Numerical Problems 1.(a) 75 = 0.1667

1.(b) Yes, because the Markov chain is irreducicle and has a finite state space. The station-
ary probability of being in state 5 is w5 = 0.1667. The stationary probability vector is
7 such that m = wP. However, there is no limiting probability (i.e., we do not have a

limit for P™ as n — o0), because the chain is periodic, with period 2.
1.(c) For large n, P2™" = 0 and P ~ 275 = 0.3334
1.(d) 1/m5=6

2.(a) M; = 14.26303
2.(b) Nij5=2.21054
2.(0) Bl710 = 0.3684

Problem 4.18 Let a; = e_)‘Aj/j! , j=>0.
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(b) Yes, because it is a finite, irreducible Markov chain.
(c) As one of the equations is redundant, we can write them as follows :
Jj+1

;o= 7T0aj—|-Z7Tiaj_Z‘+1, j=0,--- N-1
=1

;o= 1.
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Problem 4.19 (a) are from state i to state j.
(b) go from a state in A to one in A°.

(c) This follows because between any two transitions that go from a state in A to one in

A€ there must be a transition from a state in A€ to one in A, and vice-versa.



(d) It follows from (c) that the long-run proportion of transitions that are from a state in

A to one in A must equal the long-run proportion of transitions that go from a state

in A€ to one in A; and that is what (d) asserts.

Problem 4.31 Let the states be

0:
1:
2:

(a)

spider and fly at same location
spider at location 1 and fly at 2
spider at 2 and fly at 1

1 0 O
P=1 54 28 .18
b4 18 .28

N L1 1 /28 "

which is obtained by first conditioning on the event that 0 is not entered and then

using the fact that for the
p 1-p
I=p p

More generally, we can find explicit analytical expressions for n-step transition

chain Pjy = 3+ 3(2p— 1™
probabilities by applying the spectral representation of the sub-probability transi-

=[50

(The same argument applies without that special structure. See the Appendix of

tion matrix

Karlin and Taylor for a textbook review of this part of basic linear algebra.) We

want to find constants A such that
@ = Az . (1)
Those are the eigenvalues of (). To find the eigenvalues, we solve the equation
det(Q — X)) =0,
where det is the determinant. Here the equation is
(a—N?=b*=0,

which yields two solutions: a + b and a — b. We then find the left eigenvectors

of ). A row vector x is a left eigenvector of ) associated with the eigenvalue



A if equation (1) hold. Similarly, the transpose of x, denoted by z’, is a right

eigenvector of () associated with eigenvalue A if

Qz" =M (2)
We then can find a spectral representation for Q:

Q = RAL , (3)

with the following properties: (i) R and L are square matrices with the same
dimension as @, (ii) the columns of R are right eigenvectors of Q; (iii) the rows of
L are left eigenvectors of @, (iv) RL = LR = I, and (v) A is a square diagonal

matrix with the eigenvalues for its diagonal elements. As a consequence, we have
Q" =RA"L forall n>1, (4)

enabling us to compute ", easily because A™ is a diagonal matrix with diagonal

elements A", where )\ is an eigenvector.

Here we get eigenvalues of Q) equal to a + b and a — b. Here we get eigenvector
1/2  1/2
VARV
1/2 —1/2

1 1
1 -1

We obtain one of these by directly solving for the eigenvectors (which are not

matrices

and

R =

unique). Given L or R, we can obtain the other by inverting the matrix, i.e.,
L=R1
Hence, equation (4) holds

[\

(a+b)" 0 MRLERYE
0  (a—0b" 12 -1/

Thus, in general,
W _ (a4 (b
1.1 2 2

and, in particular,
(0.46)" | (0.10)"
2 2
(b) E[N] = ; since N is geometric (on the positive integers, not including 0) with
p = 0.54.

Q?,l =



