
IEOR 6711: Stochastic Models I

Professor Whitt

Solutions to Homework Assignment 2

Problem 1.6 Answer in back.

Problem 1.7 Imagine that there are k buckets and we choose k balls and fill each bucket at the
same time. Set

Ii =

{
1 if i-th bucket contains a white ball
0 if i-th bucket contains a black ball.

Then X =
∑k

i=1 Ii. Observe that for i 6= j,

E[Ii] = E[I2
i ] = P(Ii = 1) =

n

n + m
,

E[Ii|Ij = 1] = P(Ii = 1|Ij = 1) =
n− 1

n + m− 1
and

E[IiIj ] = E[E[IiIj |Ij ]] = E[IjE[Ii|Ij ]] = P(Ij = 1)E[Ii|Ij = 1] =
n

n + m
× n− 1

n + m− 1
.

Using these, we get

E[X] = kP(I1 = 1) =
kn

n + m
,

E[X2] = kE[I2
1 ] + k(k − 1)E[I1I2]

=
kn

n + m
+

k(k − 1)n(n− 1)
(n + m)(n + m− 1)

, and

V(X) = E[X2]−E[X]2 =
knm(n + m− k)

(n + m)2(n + m− 1)
.

Problem 1.9 Assume that the results of each pairing are independent with each of the players
being equally likely to win. For each permutation i1, · · · , in of 1, 2, · · · , n define an indicator
variable I(i1,···,in) equal to 1 if that permutation is a Hamiltonian and 0 if it is not. Then

E[Number of hamiltonians] = E[
∑

I(i1,···,in)]

= n!E[I(1,2,···,n)]

=
n!

2n−1
.

Hence, for at least one outcome the number of Hamiltonians must be at least n!
2n−1 .
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Problem 1.14 Answer in back.

(a) Some explanation might help. The solutions in the back are somewhat confusing. There
is an extra “is 1” in the third line. It first is good to observe that

X1 =
10∑

i=1

Yi ,

where Yi are IID. (Even Y1 is well defined this way.) Then a step is left out. Let p be the
probability a 1 occurs before an even number. We develop an equation for p:

p =
1
6

+
2
6
p ,

so that
p =

1
4
.

Then use p to calculate E[Yi] by developing another equation. That step is given in the
answers.

Problem 1.17 Answer in back.

Problem 1.18 Let N be the number of flips that are made until a string of r heads in a row.
Define T as the the number of trials until the first tails. Then we have

E[N |T = k] =

{
k + E[N ] if k ≤ r

r if k > r .

Using the fact that T has geometric distribution,

E[N ] = E[E[N |T ]] =
∞∑

k=1

E[N |T = k]P(T = k)

=
r∑

k=1

(k + E[N ])(1− p)pk−1 +
∞∑

k=r+1

r(1− p)pk−1

= (1− p)
r∑

k=1

(k + E[N ])pk−1 + r(1− p)
∞∑

k=r+1

pk−1

= (1− p)
r∑

k=1

kpk−1 + E[N ](1− p)
r∑

k=1

pk−1 + rpr

=
1− (r + 1)pr + rpr+1

1− p
+ E[N ](1− pr) + rpr

=
1− pr

1− p
+ E[N ](1− pr)

=
1− pr

(1− p)pr
.
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Problem 1.20 Let L be the left hand point of the first interval. Note that {N(x)|L = y} =
{1 + N(y) + N(x− y − 1)}. If x > 1,

M(x) = E[N(x)] = E[E[N(x)|L]]

=
∫ x−1

0
E[N(x)|L = y]

dy

x− 1

=
1

x− 1

∫ x−1

0
E[1 + N(y) + N(x− y − 1)]dy

= 1 +
1

x− 1

∫ x−1

0
E[N(y) + N(x− y − 1)]dy

= 1 +
1

x− 1

∫ x−1

0
(M(y) + M(x− y − 1))dy

= 1 +
2

x− 1

∫ x−1

0
M(y)dy.

Problem 1.28 The MGF is given by φ(t) = λ
λ−t . So

φ′(t) =
λ

(λ− t)2
and φ′′(t) =

2λ

(λ− t)3
.

Hence,

E[X] = φ′(0) =
λ

λ2
=

1
λ

V(X) = E[X2]−E[X]2

= φ′′(0)− 1
λ2

=
2λ

λ3
− 1

λ2

=
1
λ2

.

Problem 1.29 The MGF of an exponential random variable, X, is φX(t) = λ
λ−t . Then

φ∑
n

Xi
(t) = E[et

∑
n

Xi ]

=
n∏

i=1

E[etXi ] = φX(t)n

=
(

λ

λ− t

)n

which is an MGF of an Gamma distribution with parameter (n, λ). Hence the result follows
from the uniqueness of MGF.

Problem 1.31

P(min{X, Y } > a|min{X, Y } = X) = P(X > a|X < Y ) =
P(a < X,X < Y )

P(X < Y )
.
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P(a < X, X < Y ) =
∫ ∞

a
P(Y > X|X = x)λ1e

−λ1xdx =
∫ ∞

a
e−λ2xλ1e

−λ1xdx

= λ1

∫ ∞

a
e−(λ1+λ2)xdx =

λ1

λ1 + λ2
e−(λ1+λ2a ,

P(X < Y ) =
∫ ∞

0
P(Y > X|Y = y)λ2e

−λ2ydy =
∫ ∞

0
(1− e−λ1y)λ2e

−λ2ydy

= 1− λ2

λ1 + λ2
=

λ1

λ1 + λ2
.

Hence,

P(min{X, Y } > a|min{X, Y } = X) = e−(λ1+λ2)a .

Problem 1.34 Answer in back.

Problem 1.43

P(X ≥ a) = P(Xt ≥ at) ≤ E[Xt]
at

with the inequality following from the Markov inequality. Let X be exponential with rate
1, and let a = t = n in the preceding, to obtain that

e−n ≤ n!
nn

.

(Of course, the above inequality could also be shown by noting that it is equivalent to the
statement that P(Y = n) ≤ 1 where Y is Poisson with mean n.

Problem 1.23 Let i → j be the event that the particle moves from i to j in one step. Let i ⇒ j

be the event that the particle ever reaches j starting i. Conditioning on the random variable
denoting the first movements of the particle, I,

(a)

α = P(0 ⇒ 1)

= E[P(0 ⇒ 1|I)]

= P(0 → 1)P(1 ⇒ 1) + P(0 → −1)P(−1 ⇒ 1)

= p× 1 + (1− p)P(−1 ⇒ 1)

= p + (1− p)P(−1 ⇒ 0, 0 ⇒ 1)

= p + (1− p)P(−1 ⇒ 0)P(0 ⇒ 1)

= p + (1− p)P(0 ⇒ 1)2

= p + (1− p)α2 .
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(b) Solving the previous quadratic equation, we get two solutions, 1 and p
1−p . The condition

p
1−p < 1 implies p < 1/2. Hence if p ≥ 1/2, α should be 1. For p < 1/2, the strong
law of large numbers says that the particle ever goes to the negative infinity with
probability 1. If α = 1, then the starting position would be reached infinitely often,
which contradicts to the strong law of large numbers. Hence

α =

{
1 if p ≥ 1/2

p
1−p if p < 1/2 .

(c)

P(0 ⇒ n) = P(0 ⇒ 1)× · · · ×P(n− 1 ⇒ n)

= P(0 ⇒ 1)× · · · ×P(0 ⇒ 1)

= P(0 ⇒ 1)n

= αn .

(d)

P(i → i + 1|i ⇒ n) =
P(i → i + 1, i ⇒ n)

P(i ⇒ n)

=
P(i ⇒ n|i → i + 1)P(i → i + 1)

P(i ⇒ n)

=
P(i + 1 ⇒ n)p

P(i ⇒ n)

=
αn−i−1p

αn−i

=
p

α
= 1− p .

Problem 1.24 Let T(i⇒j) the number of steps to reach j first time starting i. Then we have
an apparent arithmetic like T(−1⇒1) = T(−1⇒0) + T(0⇒1) and a distributional identity like

T(−1⇒0)
d=T(0⇒1). We also know that T(−1⇒0) and T(0⇒1) are independent because of the

independence of every transition. That is, T(−1⇒0) and T(0⇒1) are iid. Using the notation
in the book, T ≡ T(0⇒1),

E[T(−1⇒1)] = 2E[T ] ,

V(T(−1⇒1)) = 2V(T ) .

Let the random variable X denote the particle’s location after the first move.
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(a) Conditioning on X gives

E[T ] = E[E[T |X]]

= E[T |X = 1]P(X = 1) + E[T |X = −1]P(X = −1)

= 1× p + (1 + E[T(−1⇒1)])(1− p)

= 1 + 2(1− p)E[T ] .

Hence, E[T ] = ∞ if p ≤ 1/2. If we can show that E[T ] < ∞ when p > 1/2, we obtain
in this case that

E[T ] =
1

2p− 1
.

Now let’s show that E[T ] < ∞ if p > 1/2 : Let p(n) denotes the probability that the
particle reaches 1 by n-transitions starting 0. Then n should be odd. That is, only
p(2n+1) is nonzero. Now we have an upper bound on this probability:

p(2n+1) ≤
(

2n

n

)
p[p(1− p)]n ∼ p

[4p(1− p)]n√
πn

using an approximation, due to Stirling, which asserts that

n! ∼ nn+1/2e−n
√

2π

where an ∼ bn denotes limn→∞ an
bn

= 1. Now it is easy to verify that if an ∼ bn, then
∑

n an < ∞ if, and only if,
∑

n bn < ∞. Hence E[T ] < ∞ if

∞∑

n=0

(2n + 1)p
[4p(1− p)]n√

πn
< ∞

which is true if 4p(1− p) < 1 or p 6= 1/2.

(b) Noting that T |{X = 1} = 1 and T |{X = −1} = 1 + T(−1⇒1) which is 1 plus the
convolution of two independent random variables both having the distribution of T .
Therefore,

E[T |X = 1] = 1, E[T |X = −1] = 1 + 2E[T ]

V(T |X = 1) = 0, V(T |X = −1) = 2V(T )

and thus

V(E[T |X]) = V(E[T |X]− 1) = 4E[T ]2p(1− p) =
4p(1− p)
(2p− 1)2

E[V(T |X)] = 2(1− p)V(T ) .

By the conditional variance formula

V(T ) = 2(1− p)V(T ) +
4p(1− p)
(2p− 1)2

which gives the result.
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(c) T(0⇒n) = T(0⇒1) + · · ·+ T(n−1⇒n) =
∑n

i=1 Ti where Ti are iid having distribution of T .
Hence

E[T(0⇒n)] = nE[T ] .

(d) By the same reasoning as in (c),

V(T(0⇒n)) = nV(T ) .
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