TEOR 6711: Stochastic Models I

Solutions to Homework Assignment 9

Problem 4.1 Let D, be the random demand of time period n. Clearly D, is i.i.d. and indepen-
dent of all X for k < n. Then we can represent X,, + 1 by

Xn+1 = maX{O, Xn - 1[3700)(Xn) +S- 1[073) (Xn) — Dn+1}

which depends only on X, since D,, 11 is independent of all history. Hence {X,,,n > 1} is a

Markov chain. It is easy to see assuming oy = 0 for k < 0,

as—j ifi<s,j>0
P Yoegar ifi<s,j=0
Y i ifi>sj>0

Sy ifi>s,5=0

The following three problems (4.2, 4.4, 4.5) needs a fact:
P(ANB|C) = P(A|BNC)P(BI|C)

which requires a proof to use. Try to prove it by yourself.

Problem 4.2 Let S be the state space. First we show that
P(Xnk-H = j|Xn, =1, s Xy, = i) = P(Xnk-i-l = ]|Xnk = i)

by the following : Let A = {X,,, 11 =j}, B={Xy, =1, - ,Xpn, =i} and By, b € T are
elements of {(X;,l < ng,l #ny, -+, 1 #ng): X; € S}

P(AIB) = > P(ANBB)

beT

= Y P(A|B,N B)P(B,|B)
beZ

= Y P(A|X,, =i)P(By|B)
beT

= P(A|X,, =ir) Y P(By|B)

bel
= P(A[Xy, = i)P(QB)

= P(Xupi1 = 31X, = ih) -



We consider the mathematical induction on [ = n —m. For [ = 1, we just showed. Now

assume that the statement is true for all { < * and consider [ = [* + 1:

P(Xy, = j’Xm =1, 0, Xy, = Zk)

- Z P(Xn =7, Xn1= i|XTL1 =1, 7Xnk = Zk)
1ES

= > PNy =j1Xp1=1,Xp, =1, , X, = ip)P( X1 = i| Xy = i1, , Xy, = i)
€S

= Z P(X, = j|Xn—1 =1)P(Xp_1 =Xy, =ik) Byl <" cases
1€S

= Y P(Xp=j|Xn1 =14, Xp, =ix)P(Xp_1=i[X, =ix)
1ES

- Z P(Xn =J, Xn-1 = 1| Xn, =ir)
1ES

= P(X, =j|Xn, =ir)

which completes the proof for [ = [* + 1 case.

Problem 4.3 Simply by Pigeon hole principle which saying that if n pigeons return to their

m(< n) home (through hole), then at least one home contains more than one pigeon.

Consider any path of states ig = 4,41, ,4, = j such that B _; _ , > 0. Call this a path
from ¢ to j. If j can be reached from ¢, then there must be a path from ¢ to j. Let ¢g. - , i,
be such a path. If all of values ig, - - - , 4, are not distinct, then there must be a subpath from

i to j having fewer elements (for instance, if i,1,2,4,1,3,j is a path, then so is 4,1, 3, j).

Hence, if a path exists, there must be one with all distinct states.

Problem 4.4 Let Y be the first passage time to the state j starting the state ¢ at time 0.
Py o= P(X, = jlXo = 1)

= Y P(Xp=4Y =k|Xo =)
k=0

k=0

= D P(Xn = jl X = §)P(Y = k|Xo = i)
k=0

n
_ n—=k rk
= 2Pt
k=0

Problem 4.5 (a) The probability that the chain, starting in state i, will be in state j at time n

without ever having made a transition into state k.



(b) Let Y be the last time leaving the state ¢ before first reaching to the state j starting

the state 7 at time 0.
PZ’JL = P(X, =j|Xo=1)

= Y P(Xp=jY =k|Xg=1)
k=0

= Y P(Xp=3Y =k, X} =i|X =)
k=0

n
= Y P(Xn=4Y =k|X} =i,Xo = i)P(X}, = i| Xo = i)
k=0
n
= Y P(X,=4Y =k|Xy=4)P}
k=0

n
= Y P(Xpn=jXi#i,l=k+1,--- ,n—1|X; =i)P}

k=0
n
—k pk
= ZPZ;/Z P“
k=0
Problem 4.7
(a) oo

Here is an argument: Let x be the expected number of steps required to return to the initial
state (the origin). Let y be the expected number of steps to move to the left 2 steps, which
is the same as the expected number of steps required to move to the right 2 steps. Note
that the expected number of steps required to go to the left 4 steps is clearly 2y, because
you first need to go to the left 2 steps, and from there you need to go to the left 2 steps

again. Then, consider what happens in successive pairs of steps: Using symmetry, we get
r=2+0x(1/2)+yx (1/2) =2+y/2
and
y=2+(0x(1/4) +yx (1/2) + (2xy) x (1/4)
If we subtract y from both sides, this last equation yields
2=0.

Hence there is no finite solution. The quantity y must be infinite; a finite value cannot solve

the equation.

(b) Note that the expected number of returns in 2n steps is the sum of the probabilities of

returning in 2k steps for k£ from 1 to n, each term of which is binomial. Thus, we have

BN = 3 By oy
k=1

3



which can be shown to be equal to the given expression by mathematical induction.
(c) We say that f(n) ~ g(n) as n — oo if
f(n)/g(n) -1 as n—oo.

By Stirling’s approximation,

(2n+1)( ) 1/2 2n ~2y/n/m

so that

E[N,] ~+/2n/m as n — oo .

Problem 4.8 (a)
@

ZZL-H Qg
(b) {Ti,7 > 1} is not a Markov chain - the distribution of 7; does depend on R;. {(R;+1,T;),

1} is a Markov chain.

n—1
P(Ris1=74Ti=n|Ri =1,Ti-1=m) = Z o <Zak> >
k=141

k=Il+1
n—1
= o (Z ozk> , g>1
k=0

(c) If S,, = j then the (n + 1) record occurred at time j. However, knowledge of when

these n + 1 records occurred does not yield any information about the set of values
{X1,---,X;}. Hence, the probability that the next record occurs at time k, k > j,
is the probability that both max{Xy, -+, X;} = max{Xy,---, X}_1} and that X =
max{Xi, -, Xg}. Therefore, we see that {S,} is a Markov chain with

j 1 .
Pjy=———, k
Jk‘ k _ 1 ]{: ’ > J
Problem 4.11 (a)
o0
Z Pj; = E[number of visits to j|Xo = 1]
n=1

= E[number of visits to jlever visit j, Xo = 1] f;;
= (1 + E[number of visits to j|Xo = j]) fi;
Jij

= < 00 .

1 — fj

since 1 4+ number of visits to j| Xy = j is geometric with mean #
27

P>



(b) Follows from above since

1
1= fjj

= 1+ E[number of visits to j|Xo = j]

o0
= 142 B
n=1

Problem 4.12 If we add the irreducibility of P, it is easy to see that w = %1 is a (and the
unique) limiting probability.



