
IEOR 6711: Stochastic Models I

Fall 2013, Professor Whitt

Lecture Notes, Tuesday, September 3

Laws of Large Numbers

1 Overview

We start by stating the two principal laws of large numbers: the strong and weak forms, denoted
by SLLN and WLLN. We want to be clear in our understanding of the statements; that leads
us to a careful definition of a random variable and an examination of the basic modes of
convergence for a sequence of random variables. We also want to focus on the proofs,
but in this course (as in the course textbook) we consider only relatively simple proofs that
apply under extra moment conditions. Even with these extra conditions, important proof
techniques appear, which relate to the basic axioms of probability, in particular, to countable
additivity, which plays a role in understanding and proving the Borel-Cantelli lemma (p.
4) . We think that it is helpful to fucus on these more elementary cases before considering the
most general conditions.

Key reading for this first week: §§1.1-1.3, 1.7-1.8, the Appendix, pp. 56-58.

2 The Classical Laws of Large Numbers

Theorem 2.1 Let X1,X2, . . . be IID random variables. Let Sn ≡ X1 + · · · + Xn, n ≥ 1,
S0 ≡ 0, be the associated partial sums. If E[|X1|] < ∞, then

(a) SLLN

Sn

n
→ E[X1] as n → ∞ w. p. 1 .

(b) WLLN

Sn

n
⇒ E[X1] as n → ∞ ,

where ≡ denotes equality by definition, w.p.1 is convergence with probability 1 (almost sure
convergence) and ⇒ denotes convergence in distribution.

Definition 2.1 (convergence in distribution) There is convergence Yn ⇒ Y if the associated
probability distributions of these random variables converge, i.e., if PYn

→ PY as n → ∞
or, equivalently, if the associated cumulative distribution functions (cdf’s) converge, i.e., if
FYn

(x) → FY (x) as n → ∞ for all x that are continuity points of the function FY (x), where
FY (x) ≡ P (Y ≤ x). (More on this later.)

Proof of (a) under extra condition E[X4
1 ] < ∞. p. 56 of Ross. Draws heavily on

Borel-Cantelli and thus §1.1.

Proof of (b) under extra condition E[X2
1 ] < ∞. Two parts: (i)

E

[

(

Sn

n
− E[X1]

)2
]

= V ar

(

Sn

n

)

=
V ar(X1)

n
→ 0 as n → ∞ .



(ii) Convergence in mean squared (L2) implies convergence in probability, which in turn implies
convergence in distribution. In fact, convergence in probability is equivalent to convergence in
distribution when the limit is constant (deterministic or non-random). Chebychev’s inequality
(which is a special case of Markov’s inequality, Lemma 1.7.1 in the book) shows convergence
in mean squared implies convergence in probability.

We remark that the IID condition can also be relaxed in a variety of ways; there is a large
literature.

3 Random Variables and Functions of Random Variables

To properly understand why there are two versions of the LLN, it is necessary to understand
what is a random variable and the possible modes of convergence for a sequence of random
variables.

(i) What is a random variable?

A (real-valued) random variable, often denoted by X (or some other capital letter), is a
function mapping a probability space (S,P ) into the real line R. This is shown in Figure
1. (It is also common to write Ω for the sample space and ω for an element in that set.)
Associated with each point s in the domain S the function X assigns one and only one value
X(s) in the range R. (The set of possible values of X(s) is usually a proper subset of the real
line; i.e., not all real numbers need occur. If S is a finite set with m elements, then X(s) can
assume at most m different values as s varies in S.)

As such, a random variable has a probability distribution. We usually do not care about
the underlying probability space, and just talk about the random variable itself, but it is good
to know the full formalism. The distribution of a random variable is defined formally in the
obvious way

F (t) ≡ FX(t) ≡ P (X ≤ t) ≡ P ({s ∈ S : X(s) ≤ t}) ,

where again ≡ means “equality by definition,” P is the probability measure on the underlying
sample space S and {s ∈ S : X(s) ≤ t} is a subset of S, and thus an event in the underlying
sample space S. See Section 1.1 of Ross; he puts this out very quickly. (Key point: recall that
P attaches probabilities to events, which are subsets of S.)

If the underlying probability space is discrete, so that for any event E in the sample space
S we have

P (E) =
∑

s∈E

p(s),

where p(s) ≡ P ({s}) is the probability mass function (pmf), then X also has a pmf pX on a
new sample space, say S1, defined by

pX(r) ≡ P (X = r) ≡ P ({s ∈ S : X(s) = r}) =
∑

s∈{s∈S:X(s)=r}

p(s) for r ∈ S1. (1)

Example 3.1 (roll of two dice) Consider a random roll of two dice. The natural sample space
is

S ≡ {(i, j) : 1 ≤ i ≤ 6, 1 ≤ j ≤ 6},

where each of the 36 points in S is assigned equal probability p(s) = 1/36. The random
variable X might record the sum of the values on the two dice, i.e., X(s) ≡ X((i, j)) = i + j.
Then the new sample space is

S1 = {2, 3, 4, . . . , 12}.
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A random variable: a function

(S,P) R

X

Range: real lineDomain: probability space

Figure 1: A (real-valued) random variable is a function mapping a probability space into the
real line.

In this case, using formula (1), we get the pmf of X being pX(r) ≡ P (X = r) for r ∈ S1, where

pX(2) = pX(12) = 1/36,

pX(3) = pX(11) = 2/36,

pX(4) = pX(10) = 3/36,

pX(5) = pX(9) = 4/36,

pX(6) = pX(8) = 5/36,

pX(7) = 6/36.

(ii) What is a function of a random variable?

Given that we understand what is a random variable, we are prepared to understand what
is a function of a random variable. Suppose that we are given a random variable X mapping
the probability space (S,P ) into the real line R and we are given a function h mapping R into
R. Then h(X) is a function mapping the probability space (S,P ) into R. As a consequence,
h(X) is itself a new random variable, i.e., a new function mapping (S,P ) into R, as depicted
in Figure 2.

As a consequence, the distribution of the new random variable h(X) can be expressed in
different (equivalent) ways:

Fh(X)(t) ≡ P (h(X) ≤ t) ≡ P ({s ∈ S : h(X(s)) ≤ t}),
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A function of a random variable

X

(S,P) R

h

R

Domain: probability space Range: real line Range: real line

Figure 2: A (real-valued) function of a random variable is itself a random variable, i.e., a
function mapping a probability space into the real line.

≡ PX({r ∈ R : h(r) ≤ t}),

≡ Ph(X)({k ∈ R : k ≤ t}),

where P is the probability measure on S in the first line, PX is the probability measure on
R (the distribution of X) in the second line and Ph(X) is the probability measure on R (the
distribution of the random variable h(X) in the third line.

Example 3.2 (more on the roll of two dice) As in Example 3.1, consider a random roll of two
dice. There we defined the random variable X to represent the sum of the values on the two
rolls. Now let

h(x) = |x − 7|,

so that h(X) ≡ |X − 7| represents the absolute difference between the observed sum of the
two rolls and the average value 7. Then h(X) has a pmf on a new probability space S2 ≡
{0, 1, 2, 3, 4, 5}. In this case, using formula (1) yet again, we get the pmf of h(X) being
ph(X)(k) ≡ P (h(X) = k) ≡ P ({s ∈ S : h(X(s)) = k}) for k ∈ S2, where

ph(X)(5) = P (h(X) = 5) ≡ P (|X − 7| = 5) = 2/36 = 1/18,

ph(X)(4) = P (h(X) = 4) ≡ P (|X − 7| = 4) = 4/36 = 2/18,

ph(X)(3) = P (h(X) = 3) ≡ P (|X − 7| = 3) = 6/36 = 3/18,

ph(X)(2) = P (h(X) = 2) ≡ P (|X − 7| = 2) = 8/36 = 4/18,
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ph(X)(1) = P (h(X) = 1) ≡ P (|X − 7| = 1) = 10/36 = 5/18,

ph(X)(0) = P (h(X) = 0) ≡ P (|X − 7| = 0) = 6/36 = 3/18.

In this setting we can compute probabilities for events associated with h(X) ≡ |X −7| in three
ways: using each of the pmf’s p, pX and ph(X).

(iii) How do we compute the expectation (or expected value) of a (probability distribution)
or a random variable?

See Section 1.3. The expected value of a discrete probability distribution P is

expected value = mean =
∑

k

kP ({k}) =
∑

k

kp(k) ,

where P is the probability measure on S and p is the associated pmf, with p(k) ≡ P ({k}).
The expected value of a discrete random variable X can be written in two ways, as shown in
the two lines below:

E[X] =
∑

k

kP (X = k) =
∑

k

kpX(k)

=
∑

s∈S

X(s)P ({s}) =
∑

s∈S

X(s)p(s) .

In the continuous case, with probability density functions (pdf’s), we have corresponding
formulas, but the story gets more complicated, involving calculus for computations. The
expected value of a continuous probability distribution P with density f is

expected value = mean =

∫

s∈S
xf(x) dx .

The expected value of a continuous random variable X with pdf fX is

E[X] =

∫ ∞

−∞
xfX(x) dx =

∫

X(s)f(s) ds ,

where f is the pdf on S and fX is the pdf “induced” by X on R.

(iv) How do we compute the expectation of a function of a random variable?

Now we need to put everything above together. For simplicity, suppose S is a finite set,
so that X and h(X) are necessarily finite-valued random variables. Then we can compute the
expected value E[h(X)] in three different ways:

E[h(X)] =
∑

s∈S

h(X(s))P ({s}) =
∑

s∈S

h(X(s))p(s)

=
∑

r∈R

h(r)P (X = r) =
∑

r∈R

h(r)pX(r)

=
∑

t∈R

tP (h(X) = t) =
∑

t∈R

tph(X)(t) ,

where p(s) ≡ P ({s}) is the pmf associated with P on S, while pX(r) is the pmf of X and
ph(X)(t) is the pmf of h(X).
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Similarly, we have the following expressions when all these probability distributions have
probability density functions (the continuous case). First, suppose that the underlying proba-
bility distribution (measure) P on the sample space S has a probability density function (pdf)
f . Then, under regularity conditions, the random variables X and h(X) have probability
density functions fX and fh(X). Then we have:

E[h(X)] =

∫

s∈S
h(X(s))f(s) ds

=

∫ ∞

−∞
h(r)fX(r) dr

=

∫ ∞

−∞
tfh(X)(t) dt .

4 Implications for the LLN

So what does our study of random variables imply for the LLN? We see that the SLLN states
that Sn/n → E[X1] as n → ∞ w.p.1. We have almost sure convergence of the sequence of
functions {Sn/n}, all defined on the underlying sample space S. That is, for each s in a subset
of S having probability 1, we have convergence of the sequence of numbers Sn(s)/n → E[X1]
as n → ∞. All this is defined precisely in terms of the basic notion of the convergence of a
sequence of numbers.

On the other hand, the WLLN states that Sn/n ⇒ E[X1] as n → ∞. That means that
the associated probability distributions converge. The statement concerns the probability
distributions on the range of the functions (random variables). That is, FSn/n(x) → FE[X1](x)
and n → ∞ for all x that are continuity points of the limiting cdf FE[X1](x). The only value
that is not a continuity point is the mean itself E[X1], where the cdf has a unit jump.

We often are satisfied with the WLLN, because we often only care about the distributions
of the random variables.
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